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The Irreducibility of C∗–algebras Acting on Hilbert C∗–modules
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Abstract. Let B be a C∗-algebra, E be a Hilbert B module and L (E) be the set of adjointable operators on
E. LetA be a non-zero C∗-subalgebra of L (E). In this paper, some new kinds of irreducibilities ofA acting
on E are introduced, which are all the generalizations of those associated to Hilbert spaces. The difference
between these irreducibilities are illustrated by a number of counterexamples. It is concluded that for a
full Hilbert B-module, these irreducibilities are all equivalent if and only if the underlying C∗-algebra B is
isomorphic to the C∗–algebra of all compact operators on a Hilbert space.

1. Introduction

By a Hilbert module over a C∗–algebra B [2] we mean a right B–module E equipped with a B–valued
inner product < ·, · >B, which is B–linear in the second variable and conjugate linear in the first variable,
such that E is a Banach space with the induced norm given by

‖x‖ = ‖ < x, x >B ‖
1
2 , x ∈ E.

If the closed linear span of {< x, y >B |x, y ∈ E} coincides with B, then E is called a full Hilbert B–module.
Note that every C∗–algebra B can be considered as a full Hilbert C∗–module over itself, where the inner
product is given by

< x, y >B= x∗y, x, y ∈ B. (1)

For any submodule E0 of E, we put E⊥0 = {e ∈ E| < e, x >B= 0,∀x ∈ E0}. We denote by L (E) the C∗–algebra
of all adjointable operators on E. For any x, y ∈ E there is an operator θx,y ∈ L (E) defined by

θx,y(z) = x < y, z >B z ∈ E.

The linear span of such operators will be denoted by F (E). We set K (E) to be the norm closure of F (E),
which is a closed two-sided ideal (not necessarily proper) ofL (E). Note that if E = Bwith the inner product
given by (1), then K (E) � B through an isomorphism from K (E) to B by identifying θx,y with xy∗ for
x, y ∈ B. As a result, L (E) �M (B), whereM (B) is the multiplier algebra of B.

In this paper, we study the irreducibility of C∗–algebras acting on HilbertB–modules. Let E be a Hilbert
B–module and A be a C∗–subalgebra of L (E). Denote by C[A,L (E)] the set of all elements of L (E) that
commute with all the elements ofA. We consider the following chain of conditions:
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(SD) A is strictly dense in L (E);

(TI) The only closed B–submodules of E that are invariant forA are 0 and E;

(EI) For everyA–invariant B–submodule E0 of E, either E0 = 0 or E⊥0 = 0;

(MC) C[A,L (E)] = C[L (E),L (E)].

In the special case where B is the complex field, it can be found in [3] that conditions (SD)–(MC) are all
equivalent. It is interesting to study whether the above four conditions still remain to be equivalent if the
complex field is replaced by a general C∗-algebraB. Clearly, (TI)⇒ (EI)⇒ (MC); besides ifB is supposed to
be simple, (SD) implies (TI). So the question under discussion is to show whether the reverse implications
of each step from (MC) to (SD) are true or not. In this paper we will give a negative answer for each step
by constructing an associated counterexample based on some concrete C∗-algebra B.

It is also very interesting to find out some partial positive answers. We prove that if B is isomorphic
to the C∗–algebra of all compact operators on a Hilbert space, then for any Hilbert B–module E and any
C∗–subalgebraA of L (E), the implication (MC)⇒ (SD) is true. Moreover, given any C∗-algebra B, if there
exists a full HilbertB-module E such that the implication (EI)⇒ (TI) is true for any C∗-subalgebraA ofL (E),
then Bmust be isomorphic to the C∗–algebra of all compact operators on a Hilbert space. So, we conclude
that for a full Hilbert B-module, conditions (SD)–(MC) are all equivalent if and only if B is isomorphic to
the C∗–algebra of all compact operators on a Hilbert space.

The paper is organized as follows. In Section 2, we introduce and study some new kinds of irreducibilities
of C∗-algebras acting on Hilbert C∗–modules. In Section 3, we focus on the study of those irreducibilities
with the underlying C∗-algebra B being isomorphic to the C∗–algebra of all compact operators on a Hilbert
space.

2. Irreducibility of Module Operators

From now on, C, R and N are the complex field, the real field and the positive integer set respectively;
A and B are two non-zero C∗–algebras. Let

Asa = {a ∈ A|a∗ = a} andA+ = {a ∈ Asa|a ≥ 0}.

If Γ is a subset of a Banach space, we use the notation Γ to denote the norm closure of Γ. If furthermore, Γ
is a subset of a Hilbert B–module E, we put

Γ⊥ = {e ∈ E| < e, x >B= 0,∀x ∈ Γ}.

For convenience, throughout this paper, we assume that the inner product on every Hilbert space H is
linear in the second variable and conjugate linear in the first variable.

Definition 2.1. Let E be a Hilbert B–module and A be a C∗–subalgebra of L (E). We say A acts topologically
irreducibly ( briefly, TI) on E if E and 0 are the only closedB–submodules of E that are invariant forA. Equivalently,

A(xB) := span{a(x · b)|a ∈ A, b ∈ B} = E, ∀x ∈ E \ {0}.

Definition 2.2. Let E be a Hilbert B–module and A be a C∗–subalgebra of L (E). We say A acts essentially
irreducibly ( briefly, EI) on E if for everyA–invariant B–submodule E0 of E, either E0 = 0 or E⊥0 = 0.

Remark 2.3. Suppose that A acts essentially irreducibly on E. Denote by N the set {x ∈ E|A(x) = 0}. Since A is
non-zero, there is a y ∈ E \ {0} such that A(y) , 0, which implies that A(yB) , 0, hence [A(yB)]⊥ = 0, which in
turn implies that N = 0 since N ⊆ [A(yB)]⊥. We have proved thatA(xB) , 0 whenever x ∈ E \ {0}. In view of this
observation, we conclude thatA acts essentially irreducibly on E if and only if

[A(x)]⊥ = 0,∀x ∈ E \ {0}.
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For any C∗–subalgebraA of B, we denote by C[A,B] the set of all elements of B that commute with all
the elements ofA, which is also a C∗–subalgebra of B.

Definition 2.4. Let E be a HilbertB–module andA be a C∗–subalgebra ofL (E). We sayA has minimal commutant
( briefly, MC) if C[A,L (E)] = C[L (E),L (E)].

Taking K (E) as an example, we know that for each Hilbert B–module E, there always exists some
C∗–subalgebra of L (E) which satisfies (MC). The following proposition indicates that the same is however
not true for (TI). Recall that a C∗–algebraA is simple if it has not any non-trivial closed ideal.

Proposition 2.5. Let E be a full Hilbert B–module. The following statements are equivalent:

(1) B is simple;
(2) There exists a C∗–subalgebraA of L (E) satisfying (TI).

Proof. (1)⇒ (2). Set x, y ∈ E\{0}. By [4, Proposition 2.31], there exists a unique e ∈ E such that y = e < e, e >B.
Since B is simple, < e, e >B can be infinitely approximated by the elements of the form

∑n
i=1 ai < x, x >B bi,

where ai, bi ∈ B, i = 1, ..., n. Hence y can be approximated by the elements of the form
∑n

i=1 θe,xa∗i (xbi). This

proves that y ∈ K (E)(xB). Thus,K (E) acts topologically irreducibly on E.
(2)⇒ (1). Let I be any non–zero closed two–side ideal ofB. We assert that the submodule EI is non-zero.

In fact, if EI = 0, then
I = IBI = I < E,E >B I = < EI,EI >B = 0.

Now ifA is a C∗–subalgebra of L (E) which satisfies (TI), then EI is non-zero andA–invariant, thus EI = E.
It follows that

I ⊇ I < E,E >B I = < EI,EI >B = < E,E >B = B.

This completes the proof of (2)⇒ (1).

Remark 2.6. A C∗–algebra A is prime if 0 is a prime ideal of A ([3]). It also can be proved that for a full Hilbert
B–module E, there exists a C∗–subalgebra of L (E) acting essentially irreducibly on E if and only if B is prime.

By Proposition 2.5, throughout the rest of this paper if there is no special instructions, B is always
assumed to be simple. Then notice that every Hilbert B–module E must be full module. It is clear that (TI)
can imply (EI). Unfortunately the reverse is false.

Example 2.7. For positive integer n, we give a unital *–homomorphism ϕn from matrix algebra M2n (C) to M2n+1 (C)

ϕn : M2n (C)→M2n+1 (C), a 7→
(
a 0
0 a

)
.

LetB be the direct limit of (M2n (C), ϕn)∞n=1 which is a UHF algebra ([3]). Denote by ϕn the natural map from M2n (C)
toB for each n. By [3, Theorem 6.2.5], we assumeB acts non-degenerately on a Hilbert space H and the von Neumann
algebra B′′ generated by B admits a faithful tracial state τ. Observe that τ ◦ ϕn is the unique tracial state of M2n (C).

Let q1 be a one-rank projection of M2(C) and set p1 = ϕ1(q1) ∈ B. Clearly τ(p1) = 2−1. Element ϕ1(q1) is a
two-rank projection of M4(C). Let q2 be a one-rank projection of M4(C) with q2ϕ1(q1) = 0. Set p2 = ϕ2(q2) ∈ B. Then
we have p1p2 = 0 and τ(p2) = 2−2. Element ϕ2[ϕ1(q1) + q2] is a six-rank projection of M8(C). Let q3 be a one-rank
projection of M8(C) with q3ϕ2[ϕ1(q1) + q2] = 0. Set p3 = ϕ3(q3) ∈ B. We have p3(p2 + p1) = 0 and τ(p3) = 2−3.
Repeating these steps, we can construct a sequence of projections {pi}

∞

i=1 in B satisfying the following two conditions:

(1) If i , j, pip j = 0;
(2) τ(pi) = 2−i, i ∈ N .
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Set T =
∑
∞

i=1 2−ipi and Qi =
∑i

j=1 p j, i ∈ N .
Next we assert that if a ∈ B with aT = 0, then a must be 0. By Vigier’s theorem ([3, Theorem 4.1.1]), {Qi}i∈N

converges weakly to some Q in B′′+ with ‖Q‖ ≤ 1. Obviously, Q ≥ Qi for each i ∈ N , so τ(Q) ≥ 1 − 2−i for all i ∈ N .
Thus τ(Q) = 1. Since τ is faithful on B′′ , Q must be the identical operator on H. Let a be an element of B, then

aT = 0 ⇔ aTa∗ = 0
⇔ a(2−ipi)a∗ = 0, i ∈ N
⇔ apia∗ = 0, i ∈ N
⇔ aQia∗ = 0, i ∈ N
⇔ aa∗ = 0
⇔ a = 0.

Now consider B as a full Hilbert C∗–module E over itself with the inner product given by (1). Since B has a unit,
L (E) = K (E) � B. Denote by l the isomorphism from B to L (E). LetA be TBT, the hereditary C∗–subalgebra of B
generated by T. Notice thatA is simple. For any x ∈ B \ {0}, we have Txx∗T ∈ A \ {0}. Then

l(A)(xB) = AxB ⊇ ATxx∗TB ⊇ A(Txx∗T)A = A ⊇ {T},

which means
[l(A)(x)]⊥ = [l(A)(xB)]⊥ ⊆ {T}⊥ = 0.

However, l(A) does not act topologically irreducibly on E. Actually if l(A) acts topologically irreducibly on E, we can
get

AB = l(A)E = E = B,

which follows T is a strictly positive element ofB, namely TBT = B. SinceB has a unit, any strictly positive element
of B must be invertible. On the other hand, it is clear that 2−i is in the spectral set of T for any i ∈ N , so T can not be
invertible.

The following results show that (EI) can imply (MC).

Proposition 2.8. Let E be a Hilbert B–module. IfA is a C∗–subalgebra of L (E) acting essentially irreducibly on E,
then C[A,L (E)] = C[L (E),L (E)] = C · idE where idE is the identical operator on E.

Proof. It is enough to prove that each element of (C[A,L (E)])sa has only one spectral point.
Let a be a non–zero element of (C[A,L (E)])sa. Denote by σ(a) the spectral set of a. If a has more than two

spectral points, by Urysohn’s lemma, there are two non–zero bounded continuous real-valued functions
f1, f2 on σ(a) with f1 · f2 = 0. Set a1 = f1(a) and a2 = f2(a) and they are still in (C[A,L (E)])sa. It is obvious
that a1(E) and a2(E) are two non–zero closed submodules of E with < a1(E), a2(E) >B= 0, which contradicts
the assumption.

In the next example, B is not simple and we will show that (MC) can not imply (EI) when L (E) satisfies
(EI).

Example 2.9. Let H be an infinite-dimensional Hilbert space. Set B to be the unitization of K (H ⊕ H), namely
M2(K (H))∼. LetA to be the set {T ⊕ T|T ∈ K (H)}. Clearly,A is a C∗–subalgebra of B and

C[A,B] = C · 1 = C[B,B].

Now consider B as a full Hilbert C∗–module E over itself. Since B has a unit, K (E) = L (E) � B. We still denote
by l the isomorphism from B to L (E). Hence l(A) has minimal commutant. Put a = 0 ⊕ T and b = T ⊕ 0, where
T ∈ K (H). It is easy to see < l(A)(a), b >B= 0, which means l(A) does not satisfy (EI). However notice that L (E)
does act essentially irreducibly on E.
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Conjecture 2.10. When B is simple, (MC) can not imply (EI).

The strict topology on L (E) ([2]) is defined to be the topology given by the seminorms

t 7→ ‖t(x)‖, t 7→ ‖t∗(x)‖, (t ∈ L (E), x ∈ E).

When B is C, the strict topology is just the strong * topology.
If A is a strictly dense C∗–subalgebra of L (E), then for any x ∈ E \ {0}, we have A(x) = L (E)(x). Since

we assume B is simple,A(xB) = L (E)(xB) = E. (SD) must imply (TI).
[1, Theorem 1.13] showed that the Cuntz algebra On [1] is a simple C∗–algebra when n is a finite positive

integer. In fact the proof of that theorem can show a stronger result. For the reader’s convenience, we give
a short proof of the next lemma and we will follow standard terminology and notation in [1].

Lemma 2.11. Let n be a finite positive integer. For each X ∈ On \ {0}, it holds that

F
nXOn := span{A · X · B|A ∈ F n, B ∈ On} = On,

where F n is a UHF C∗–algebra contained in On which has the unit of On.

Proof. Replace the element X∗X with XX∗ in the proof of [1, Theorem 1.13]. Define ε, S1, Y, Q, λi0 and U in
the same way they were defined in [1, Theorem 1.13]. Remember UU∗ is a non-zero projection of F n. Set
A = UQ ∈ F n instead of S∗1UQ. Then we have AYA∗ = λi0 UU∗ and

‖AXX∗A∗ −UU∗‖ ≤ ‖AXX∗A∗ − AYA∗‖ + ‖AYA∗ −UU∗‖ ≤ 2ε < 1.

This shows that AXX∗A∗ is invertible in the C∗–algebra (UU∗)On(UU∗), so there is B ∈ (UU∗)On(UU∗) such
that AXX∗A∗B = UU∗ ∈ F n. Note that F n is algebraical simple, namely F n without any non-trivial ideal.
Thus F nUU∗F n, the ideal generated by UU∗ of F n must be F n. Hence the unit of On is in F nXOn.
Consequently, F nXOn contains all the elements of On.

Example 2.12. Let B be On where n is a finite positive integer and consider it as a full Hilbert C∗–module E over
itself. Since B has a unit, K (E) = L (E) � On and the strict topology on L (E) coincide with its norm topology.
Denote by l the isomorphism from B to L (E). LetA be F n. The preceding lemma shows that l(A) acts topologically
irreducibly on E and clearly l(A) is not strictly dense in L (E).

It is well known [3] that ifA is a C∗–algebra acting irreducibly on a Hilbert space H which has non-zero
intersection with K (H), the set of all compact operators on H, then A must contain K (H). This result can
be generalized to Hilbert module case. First we need do some preparations. By the polarisation identity

θx,y =
1
4

3∑
j=0

i j(θx+i j y,x+i j y), x, y ∈ E (where i2 = −1),

the following lemma is clear.

Lemma 2.13. Suppose that E is a Hilbert B–module. If T ∈ K (E)sa, then for any ε > 0, there exist x1, x2, . . . , xn,
y1, y2, . . . , ym ∈ E such that ∥∥∥∥T − [

n∑
i=1

θxi,xi −

m∑
j=1

θy j,y j ]
∥∥∥∥ < ε.

Theorem 2.14. Let E be a Hilbert B–module. If A is a strictly dense C∗–subalgebra of L (E) which has non-zero
intersection withK (E), thenA must containK (E).
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Proof. Set I = A∩K (E) and let {uλ} be an approximate unit of I. Since I is an ideal ofA, by the assumption
A acts topologically irreducibly on E, I(E) must be a non-zero closed A–invariant submodule of E. Thus,
I(E) = E, which implies {uλ} is also an approximate unit ofK (E).

Set T ∈ K (E)+ and assume ‖T‖ = 1. For ε > 0, we have shown that there exists u ∈ I with ‖u‖ ≤ 1 such
that ‖T − T · u‖ < 1

5ε. By Lemma 2.13, we have x1, x2, ..., xn, y1, y2, ..., ym ∈ E with

∥∥∥u − [
n∑

i=1

θxi,xi −

m∑
j=1

θy j,y j ]
∥∥∥ < 1

5
ε.

Set v =
∑n

i=1 θxi,xi −
∑m

j=1 θy j,y j . By [2, Proposition 1.4], there is a ∈ Awith ‖a‖ ≤ 1 such that

‖(T − a)(xi)‖ <
ε

5n‖xi‖
, i = 1, ..., n; ‖(T − a)(y j)‖ <

ε
5m‖y j‖

, j = 1, ..., m.

Hence

‖(T − a) · θxi,xi‖ = ‖θ(T−a)(xi),xi‖

≤ ‖(T − a)(xi)‖ · ‖xi‖

≤
ε

5n
, i = 1, ..., n.

Similarly, we also have ‖(T−a) ·θy j,y j‖ ≤
ε

5m , j = 1, ..., m. By those two inequalities, we get ‖T ·v−a ·v‖ < 2
5ε.

Finally,

‖T − a · u‖ ≤ ‖T − T · u‖ + ‖T · u − T · v‖ + ‖T · v − a · v‖ + ‖a · v − a · u‖

≤
1
5
ε +

1
5
‖T‖ · ε +

2
5
ε +

1
5
‖a‖ · ε

≤ ε.

Notice I is closed and a · u ∈ I, so T ∈ I. ConsequentlyK (E) ⊆ I.

Remark 2.15. Notice that Theorem 2.14 will fail if we remove the condition B is simple. Here is an example.
Let (H, π) be a non-zero irreducible representation of On. The C∗–algebra π(On) is strictly dense in L (H) and
π(On) ∩K (H) = 0. Let B = C ⊕ C. Set

E = H ⊕ C = {(h, λ)|h ∈ H, λ ∈ C},

which is a Hilbert B–module with the B–valued inner product

< (h1, λ1), (h2, λ2) >B:=< h1, h2 >H ⊕λ1λ2, (h1, λ1), (h2, λ2) ∈ E

and the operation
(h, λ) · (α1, α2) := (hα1, λα2), (h, λ) ∈ E, (α1, α2) ∈ B.

It is easy to see K (E) = K (H) ⊕ C (notice that θ(h1,λ1),(h2,λ2) = θh1,h2 ⊕ θλ1,λ2 ) and L (E) = L (H) ⊕ C. Now set
A = π(On)⊕C ⊆ L (E). It is clear thatA is strictly dense in L (E) andA∩K (E) , 0. HoweverA does not contain
K (E).

Remark 2.16. Example 2.12 also shows only (SD) can make Theorem 2.14 work.
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3. HilbertK–modules

Throughout this section, we putK to be the set of all compact operators on an infinite–dimensional (not
necessarily separable) Hilbert space.

Except the strict topology, there exists another useful topology on L (E), which we call the ultra–strict
topology. The ultra–strict topology on L (E) is defined to be the topology given by the seminorms

t 7→ ‖tk‖, t 7→ ‖t∗k‖, (t ∈ L (E), k ∈ K (E)).

In [2], Lance showed there is some difference between the strict topology and the ultra–strict topology.
Fortunately, by [2, Proposition 8.1] the next two conditions are equivalent for any C∗–subalgebraA ofL (E):

(1) A is strictly dense in L (E);
(2) A is ultra–strictly dense in L (E).

Let A1,A2 be two C∗–algebras. We write A1 ∼M A2, and call A1 and A2 are Morita equivalent [4] if
there exists a full HilbertA2–module E withA1 � K (E). Morita equivalence is an equivalence relation and
clearlyK ∼M C.

Proposition 3.1. Let E be a Hilbert K–module and A be a C∗–subalgebra of L (E). If A has minimal commutant,
thenA must be strictly dense in L (E).

Proof. First notice that K (E) and C are Morita equivalent, so there exists a Hilbert space H such that
K (E) � K (H). Denote by φ the isomorphism from K (E) to K (H). By this isomorphism we also have
L (E) � L (H). For convenience, we still put φ to be the isomorphism. A has minimal commutant, so does
φ(A). Then φ(A) is ultra–strongly * dense inL (H). Namely for any T ∈ L (H), there exists a net {aλ} ⊆ φ(A)
such that

‖(aλ − T)k‖ → 0, ‖(a∗λ − T∗)k‖ → 0,∀k ∈ K (H).

By φ−1, we get that for any S ∈ L (E), there exists a net {bλ} ⊆ A such that

‖(bλ − S)k‖ → 0, ‖(b∗λ − S∗)k‖ → 0,∀k ∈ K (E).

EquivalentlyA is ultra–strictly dense in L (E).

The following two conclusions are easy and useful.

Lemma 3.2. Let E be a HilbertB–module andA be a C∗–subalgebra ofL (E). The next two conditions are equivalent:

(1) A acts topologically irreducibly on E;
(2) ATK (E) := span{aTk|a ∈ A, k ∈ K (E)} = K (E), ∀T ∈ L (E) \ {0}.

Proof. If Γ1 and Γ2 are two sets of E, we denote by θΓ1,Γ2 the set span{θx1,x2 |x1 ∈ Γ1, x2 ∈ Γ2}. Particularly
θE,E = F (E).

(1)⇒ (2). Set T ∈ L (E) \ {0}. There is a x ∈ E such that T(x) , 0. SinceA acts topologically irreducibly
on E, we haveA[T(x)B] = E, which follows

ATθx,E = ATθx,EB = ATθ(x)B,E = θA[T(x)B],E = θE,E = K (E).

ThusATK (E) = K (E).
(2) ⇒ (1). Let x and y be two non-zero elements of E. By [4, Proposition 2.31], there exists a unique

e ∈ E such that y = θe,e(e). SinceAθx,xF (E) = Aθx,xK (E) = K (E), θe,e can be infinitely approximated by the
elements of the form

∑n
i=1 aiθx,xθzi,z

′

i
, where ai ∈ A, and zi, z

′

i ∈ E, i = 1, ..., n. Hence y can be approximated

by the elements of the form
∑n

i=1 ai(x < x, zi >< z′i , e >). This proves that y ∈ A(xB).

Lemma 3.3. Let E be a HilbertB–module andA be a C∗–subalgebra ofL (E). The next two conditions are equivalent:
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(1) A acts essentially irreducibly on E;
(2) {A ∈ L (E)|A∗B = 0,∀B ∈ AT} = 0, ∀T ∈ L (E) \ {0}.

Proof. (1) ⇒ (2). For convenience, put (AT)⊥ = {A ∈ L (E)|A∗B = 0,∀B ∈ AT}. Set T ∈ L (E) \ {0}. There
is a x ∈ E such that T(x) , 0. If T′ ∈ (AT)⊥, the rang of T′ must be contained in [AT(x)]⊥. Since A acts
essentially irreducibly on E, T′ has to be 0.

(2)⇒ (1). It is easy to see that if x ∈ E \ {0} and y ∈ [A(x)]⊥, then θy,yAθx,x = 0. By assumption, θy,y = 0,
so y = 0.

Proposition 3.4. Let E be a Hilbert B–module and A be a C∗–subalgebra of L (E). If the following conditions are
equivalent, then B ∼M C.

(1) A acts topologically irreducibly on E;
(2) A acts essentially irreducibly on E.

Proof. It suffices to show K (E) ∼M C. By the Rieffel Correspondence ([4]), K (E) is simple. Let (H, π) be a
non-zero irreducible representation ofK (E). SinceL (E) is the multiplier algebra ofK (E), π can be extended
to a faithful irreducible representation of L (E) into L (H). We still put it (H, π). Set e ∈ H with ‖e‖ = 1 and p
the projection from H onto span{e}.

If there exists q ∈ L (E) such that π(q) = p, then clearly q is a minimal projection inL (E), i.e. qL (E)q = Cq.
Thus

0 , qK (E)q ⊆ qL (E)q = Cq,

which follows q ∈ K (E) and π[K (E)] contains a compact operator. By [3, Theorem 2.4.9], π[K (E)] ⊇ K (H).
Since those two algebras are simple,K (E) is * isomorphic toK (H) through π.

Now suppose that p is not in π[L (E)]. We claim that for any T ∈ K (E) \ {0}, there must exist some
element y of (1− p)H with π(T)(y) , 0. In fact if T ∈ K (E) \ {0} and π(T)[(1− p)H] = 0, then π(T∗T) has to be
‖T‖2 · p, which will cause p ∈ π[L (E)].

Set ∆ be the set {a ∈ L (E)+|π(a) ≤ 1− p} and letA be the hereditary C∗–subalgebra of L (E) generated by
∆. By Kadison’s theorem ([3, Theorem 5.2.2]), for each x ∈ (1 − p)H \ {0}, there exists a ∈ L (E)+ such that
π(a)(e) = 0 and π(a)(x) = x, which follows ∆ is non-zero and π(A)H = (1 − p)H. Moreover by [3, Theorem
5.5.2], π(A) acts irreducible on (1−p)H. Let T ∈ K (E)\{0}, there exists y ∈ (1−p)H such that z = π(T)(y) , 0.
Then π(A)z = (1 − p)H. Now if T′ ∈ (AT)⊥, then π(T′ )(1 − p)H = 0, which means T′ has to be 0. Thanks
to Lemma 3.3, we have shown A acts essentially irreducibly on E. By hypothesis, A acts topologically
irreducibly on E. As a result of Lemma 3.2,AK (E) = K (E). Then

(1 − p)H = π(A)H = π(A)π[K (E)]H = π[AK (E)]H = π[K (E)]H = H,

which is a contradiction. So p must be contained in π[L (E)] and thus B ∼M C.

Combining Proposition 3.1 and Proposition 3.4, finally we get a characterization of Hilbert modules
over compact operators.

Theorem 3.5. Let E be a Hilbert B–module and A be a C∗–subalgebra of L (E). The following conditions are all
equivalent if and only if B ∼M C.

(1) A is strictly dense in L (E);
(2) A acts topologically irreducibly on E;
(2) A acts essentially irreducibly on E;
(4) A has minimal commutant.
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