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Abstract. The goal of this paper is to consider the notion of conjugate connection in a unifying setting for
both almost complex and almost product geometries, having as model the works of Mileva Prvanović. A
main interest is in finding classes of conjugate connections in duality with the initial linear connection; for
example in the exponential case of almost complex geometry we arrive at a rule of quantization.

1. Introduction and Motivation

Fix M a smooth, n-dimensional manifold for which we denote by C∞ (M)–the algebra of smooth real
functions on M, X (M)–the Lie algebra of vector fields on M, Tr

s (M)–the C∞ (M)-module of tensor fields of
(r, s)-type on M. Usually X,Y,Z, ... will be vector fields on M and if T → M is a vector bundle over M, then
Γ(T) denotes the C∞(M)-module of sections of T; e.g. Γ(TM) = X(M).

Let C(M) be the set of linear connections on M. Since the difference of two linear connections is a tensor
field of (1, 2)-type, it results that C(M) is a C∞(M)-affine module associated to the C∞(M)-linear module
T1

2(M).
Fix now F an endomorphism of the tangent bundle i.e. F ∈ T 1

1 (M); then the associated linear connections
and a special class of such F-structures are provided by:

Definition 1.1. i) ∇ ∈ C(M) is an F-connection if F is covariant constant with respect to ∇, namely ∇F = 0. Let
CF(M) be the set of these connections.
ii)([7]) F is a quadratic endomorphism if there exists ε ∈ {−1,+1} such that: F2 = εI.

In order to find the above set of connections for a fixed F let us consider according [8, p. 105] the maps:

ψF : C(M)→ C(M), χF : T1
2(M)→ T1

2(M) (1)
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given by:

ψF(∇) :=
1
2

(∇ + εF ◦ ∇ ◦ F) , χF(τ) :=
1
2

(τ + εF ◦ τ ◦ F). (2)

So:

ψF(∇)XY =
1
2

[∇XY + εF(∇XFY)] , χF(X,Y) =
1
2

[τ(X,Y) + εF(τ(X,FY))] . (3)

Then, ψF is a C∞(M)-projector on C(M) associated to the C∞(M)-linear projector χF:

ψ2
F = ψF, χ2

F = χF, ψF(∇ + τ) = ψF(∇) + χF(τ). (4)

It follows that ∇F = 0 means ψF(∇) = ∇ which gives that CF(M) = ImψF. This determines completely
CF(M). Fix ∇0 arbitrary in C(M) and ∇ in CF(M). So, ∇ = ψF(∇′) with ∇′ = ∇0 + τ. In conclusion,
∇ = ψF(∇0)+χF(τ); in other words, CF(M) is the affine submodule ofC(M) passing through the F-connection
ψF(∇0) and having the direction given by the linear submodule ImχF of T1

2(M).
Since the projector ψF is a main tool in finding CF(M), a careful study of it is necessary. Let us remark a

decomposition (of arithmetic mean type) of it [8, p. 106]:

ψF(∇) =
1
2

(∇ + CF(∇)) (5)

with the conjugation map CF : C(M)→ C(M):

CF(∇)X = εF ◦ ∇X ◦ F. (6)

Then the conjugate connection CF(∇) measures how far the connection ∇ is from being an F-connection and
as it is pointed out in [8, p. 105], CF is the affine symmetry of the affine module C(M) with respect to the
affine submodule CF(M), made parallel with the linear submodule kerχF.

The present paper is devoted to a carefully study of this connection CF(∇) since all the above compu-
tations put in evidence its rôle in the geometry of F; recently there are important studies regarding almost
complex and almost product geometries together, e.g. [5]. More precisely, the aim of our study is to obtain
several properties of it in both the general case and Riemannian geometry. The second section is devoted
to this scope and after a general result connecting ∇ and CF(∇), we treat two items:
a) the behavior of the conjugate connection to a linear change of F-structures,
b) the use of two tensor fields previously considered in the almost complex geometry.
With respect to a), we arrive at two particular remarkable cases concerning the recurrence of the given
quadratic endomorphism F while for b) we derive some useful new identities. Let us pointed out that we
follow a similar study for: i) the almost complex geometry in [2]; ii) the almost product geometry from [3];
iii) the (almost) tangent geometry from [4].

In the third section we give some generalizations of the results from the first part by adding an arbitrary
tensor field of (1, 2)-type. All generalized conjugate connections which form a duality with the initial linear
connection are determined. The last section is devoted to the exponential conjugate connection, an object
introduced in correspondence with a similar one from [1].

We finish this Introduction with the remark that a very interesting paper on a similar subject is [14].
We perform a new study at least from one reason: all our relations are written globally. We meet the
distinguished Academician Mileva Prvanović at several international conferences and we dedicate her this
work with great honor!

2. Properties of the Conjugate Connection

In what follows, for simplicity, we will denote by the superscript F the complex conjugate connection of
∇:

∇
(F) := CF(∇) = ∇ + εF ◦ ∇F (7)
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and then:

∇
(F)
X Y = ∇XY + εF(∇XFY − F(∇XY)) = εF(∇XFY). (8)

The first properties of the conjugate connection are stated in the next proposition:

Proposition 2.1. ∇(F) satisfies:

1. ∇(F)F = −∇F; it results that ∇ ∈ CF(M) if and only if ∇(F)
∈ CF(M);

2. ∇ and ∇(F) are in duality: (∇(F))(F) = ∇;
3. T∇(F) = T∇ + εF(d∇F), where d∇ is the exterior covariant derivative induced by ∇, namely

(d∇F)(X,Y) := (∇XF)Y − (∇YF)X; it results that for ∇ ∈ CF(M), the connections ∇ and ∇(F) have the same
torsion;

4. R∇(F) (X,Y,Z) = εF(R∇(X,Y,FZ)); it results that ∇ is flat if and only if ∇(F) is so;
5. Assume that (M, 1,F) is an almost ε-Hermitian manifold i.e. 1(FX,FY) = 1(X,Y), [13]-[15]; then (∇(F)

X 1)(FY,FZ) =

(∇X1)(Y,Z). It results that ∇ is a 1-metric connection if and only if ∇(F) is so.

Proof. 1. Other relations we shall use are:

∇
(F)
X FY = F(∇XY), F(∇(F)

X Y) = ∇XFY (9)

and then:

(∇XF)Y = ∇XFY − F(∇XY) = F(∇(F)
X Y) − ∇(F)

X FY = −(∇(F)
X F)Y. (10)

2. Although a direct proof can be provided by the formula (6), we prefer to give a proof here, in order to
use (7):

(∇(F))(F) = ∇(F) + εF ◦ ∇(F)F = ∇ + εF ◦ ∇F + εF ◦ (−∇F) = ∇. (11)

3. A direct computation gives:

T∇(F) (X,Y) = ∇(F)
X Y − ∇(F)

Y X − [X,Y] = εF(∇XFY) − εF(∇YFX) − [X,Y] = (12)

= εF(∇XFY − ∇YFX) + T∇(X,Y) − ∇XY + ∇YX = T∇(X,Y) + εF((∇XF)Y − (∇YF)X). (13)

4.

R∇(F) (X,Y,Z) = ∇(F)
X ∇

(F)
Y Z − ∇(F)

Y ∇
(F)
X Z − ∇(F)

[X,Y]Z = (14)

= ε
(
∇

(F)
X F(∇YFZ) − ∇(F)

Y F(∇XFZ) − F(∇[X,Y]FZ)
)

= (15)

= εF
(
∇X∇YFZ − ∇Y∇XFZ − ∇[X,Y]FZ

)
= εF(R∇(X,Y,FZ)). (16)

5.

(∇(F)
X 1)(V,W) = X(1(V,W)) − 1(∇(F)

X V,W) − 1(V,∇(F)
X W) = (17)

= X(1(V,W)) − ε1(F(∇XFV),W) − ε1(V,F(∇XFW)) (18)

for any X, V and W ∈ X(M). With V := FY and W := FZ we get:

(∇(F)
X 1)(FY,FZ) = X(1(FY,FZ)) − 1(F(∇XY),FZ) − 1(FY,F(∇XZ)) = (19)

= X(1(Y,Z)) − 1(∇XY,Z) − 1(Y,∇XZ) = (∇X1)(Y,Z) (20)

which completes the proof.
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There are some direct consequences of these formulae:
i) If the pair (∇,F) is special i.e. (∇XF)Y = (∇YF)X (according to [1] or [16, p. 1003]), then d∇F = 0 and again, the
connections∇ and∇(F) have the same torsion. If (M,F,∇) is ε-nearly Kähler, which means (∇XF)Y+(∇YF)X = 0
(see [16, p. 1003]), then F(d∇F) = 2ε(∇(F)

− ∇).
ii) If ∇ is the Levi-Civita connection of 1 (see [12]), then ∇(F) is also metric with respect to 1.
iii) If ∇ is the Levi-Civita connection of 1 and in addition, ∇ ∈ CF(M), then ∇(F) = ∇ as the unique symmetric
1-metric connection.

More generally, let f ∈ Di f f (M) be an automorphism of the G-structure defined by J i.e. f∗ ◦ F = F ◦ f∗.
If f is an affine transformation for ∇, namely f∗(∇XY) = ∇ f∗X f∗Y, then f is also an affine transformation for
∇

(F).
Let also recall that in a Hermitian geometry various choices of nice connections are obtained by requiring

additional less stringent conditions on the torsion; for example, the Chern and Bismut connections are
discussed in details in [9]. Two natural generalizations of the case ∇ ∈ CF(M) are given in our framework
by:

Proposition 2.2. Let ∇ be a symmetric linear connection.
i) Assume that F is ∇-recurrent i.e. ∇F = η ⊗ F, where η is a 1-form. Then ∇(F) is a semi-symmetric connection.
ii) Assume that ∇F = εη ⊗ IX(M). Then ∇(F) is a quarter-symmetric connection.

Proof. Recall that a non-torsionfree linear connection is called:
-semi-symmetric if there exists a 1-form π such that its torsion is, [6]:

T(X,Y) = π(Y)X − π(X)Y, (21)

-quarter-symmetric if in addition there exists a tensor field F of (1, 1)-type such that, [2, p. 122]:

T(X,Y) = π(Y)FX − π(X)FY. (22)

i) We have ∇(F) = ∇ + η ⊗ I and from the item 3 of previous Proposition we get T∇(F) = η ⊗ I − I ⊗ η = η ∧ I.
ii) It results that ∇(F) = ∇ + η ⊗ F and, as above, we get T∇(F) = η ⊗ F − F ⊗ η = η ∧ F.

The next subject consists of the behavior of ∇(.) for families of quadratic endomorphisms. Let F1 and
F2 be corresponding to the same ε and consider the pencil of (1, 1)-tensor fields Fα,β := αF1 + βF2, with α
and β ∈ R. In order that Fα,β to be a quadratic endomorphism with the same ε, there are necessary two
conditions:
1) F1 and F2 be skew-commuting structures: F1F2 = −F2F1; for ε = −1 this condition implies that the
dimension of M is n = 4m and the triple (J1, J2, J3 := J1 J2) is a quaternionic structure on M conform [10];
2) (α, β) belongs to the unit circle S1: α2 + β2 = 1.
Then:

∇
(Fα,β)
X Y = α2

∇
(F1)
X Y + β2

∇
(F2)
X Y + εαβ[F1(∇XF2Y) + F2(∇XF1Y)] (23)

and there are two remarkable particular cases:
i) if F1 and F2 are both recurrent with respect to ∇with the same 1-form of recurrence: ∇Fi = η⊗ Fi, then the
conjugate connections coincide ∇(F1)

≡ ∇
(F2) =: ∇(F12) and it follows the invariance of ∇(F.):

∇
(Fα,β) = ∇(F12); (24)

ii) assume that the triple (∇,F1,F2) is a mixed-recurrent structure: ∇Fi = η ⊗ F j with i , j. Then ∇ is the

average of the two conjugate connections, ∇ = 1
2(∇(F1) + ∇(F2)) and:

∇
(Fα,β) = ∇ + ε(α2

− β2)η ⊗ F1F2 + 2αβη ⊗ I. (25)



C. L. Bejan, M. Crasmareanu / Filomat 30:9 (2016), 2367–2374 2371

The last subject of this section treats two tensor fields associated to a pair (almost complex structure,
linear connection) in [11]:
1) the structural tensor field:

CF
∇

(X,Y) :=
1
2

[(∇FXF)Y + (∇XF)FY] (26)

2) the virtual tensor field:

BF
∇

(X,Y) :=
1
2

[(∇FXF)Y − (∇XF)FY]. (27)

From the item 1 of the first Proposition it results that both these tensor fields are skew-symmetric with
respect to the conjugation of connections:

CF
∇(F) = −CF

∇
, BF

∇(F) = −BF
∇
. (28)

Also:

CF
∇

(FX,FY) = εCF
∇

(X,Y), BF
∇

(FX,FY) = εBF
∇

(X,Y). (29)

The importance of these tensor fields for our study is given by the following straightforward relation:

∇
(F) = ∇ + ε(CF

∇
− BF

∇
). (30)

Recall after [2] or [3] that two linear connections are called projectively equivalent if there exists a 1-form
τ such that:

∇
′ = ∇ + τ ⊗ I + I ⊗ τ. (31)

A straightforward calculation gives that CF is invariant for projectively changes (31), while for B we have:

(BF
∇′
− BF

∇
)(X,Y) = τ(FY)FX − ετ(Y)X. (32)

Unfortunately, the conjugation of connections is not invariant under projectively equivalence since:

(∇′)(F) = ∇(F) + τ ⊗ I + εF ⊗ (τ ◦ F). (33)

3. Generalized Conjugate Connections and Duality

In this section we present a natural generalization of the complex conjugate connection.

Definition 3.1. A generalized complex conjugate connection of ∇ is:

∇
(F,C) := ∇(F) + C (34)

with C ∈ T1
2(M) arbitrary.

Since the duality∇ ↔ ∇(F) is a main feature of∇(F), let us search for tensor fields C such that (∇(F,C))(F,C) = ∇.
From:

(∇(F,C))(F,C)
X Y = ∇XY + εF(C(X,FY)) + C(X,Y), (35)

it results that we are interested in finding solutions C to:

F(C(X,FY)) = −εC(X,Y). (36)
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Let us remark that:
i) C0 = −ε∇F is a particular solution of (36),
ii) if C is a solution, then F ◦ C is again a solution.
So, let us search the duality property for:

∇
(F,λ,µ) = ∇(F) + λ∇F + µF(∇F) (37)

with λ, µ ∈ R.

Proposition 3.2. The duality ∇ ↔ ∇(F,λ,µ) holds only for the pairs:
i) (λ, µ) ∈ {(0, 0), (0,−ε)};
ii) in addition to the case ε = +1 for: (λ, µ) = (± 1

2 ,−
1
2 ).

Proof. From:

(∇(F,λ,µ))(F,λ,µ)
X Y = [(1 + εµ)2 + µ2 + 2ελ2]∇XY+ (38)

+2λ(2εµ + 1)F(∇XY) − 2λ(2εµ + 1)∇XFY − 2[µ(1 + εµ) + λ2]F(∇XFY) (39)

we obtain the system:
(1 + εµ)2 + µ2 + 2ελ2 = 1
λ(1 + 2εµ) = 0
µ(1 + εµ) + λ2 = 0.

(40)

From the second equation it results two cases:
i) λ = 0 which together with the third equation yields µ1 = 0 and µ2 = −ε. Both these solution satisfy also
the first equation; ii) µ = − ε2 which replaced in the third equation gives λ2 = ε

4 . It follows ε > 0 which
means the almost product case with µ = − ε2 and λ = ± 1

2 .
Let us pointed out that:

∇
(F,0,0) = ∇(F), ∇(F,0,−ε) = ∇, ∇(F,±1/2,−1/2)

X Y =
1
2

[∇XY ± (∇XF)Y + F(∇XFY)] (41)

which confirms our result.

Returning to the general case (34), let us present the generalizations of some relations from Proposition
2.1:
1. ∇(F,C)F = −∇F + C(·,F·)−F ◦C. Then ∇ ∈ CF(M) if and only if ∇(F,λ∇F+µF◦∇F)

∈ CF(M) with λ and µ arbitrary
real numbers;
2. the discussion above;
3. T∇(F,C) = T∇ + εF(d∇F) + 2Cskew, where Cskew is the skew-symmetric part of C i.e. 2Cskew(X,Y) =
C(X,Y) − C(Y,X). So, if C is symmetric and ∇ ∈ CF(M), then ∇ and ∇(F,C) have the same torsion;
4. R∇(F,C) (X,Y)Z = εF(R∇(X,Y)FZ)−C(X,F(∇YFZ))+C(Y,F(∇XFZ))−C([X,Y],Z)−F(∇XF(C(Y,Z)))+F(∇YF(C(X,Z)))+
C(X,C(Y,Z)) − C(Y,C(X,Z)).

Example 3.3. After Theorem 1 of [16, p. 1003], in the almost complex case the tensor field C = −1
2 J(∇J) is involved

in the tt∗-geometry of (M, J).

The rest of this Section is devoted to other two facts concerning the conjugate connection: firstly an
iterated conjugation of ∇ with respect to the given pair (F1,F2) of previous Section is considered and
secondly the constant covariance of a given endomorphism with respect to ∇ versus ∇(F). More precisely,
we have:
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Proposition 3.4. Let F1 and F2 quadratic endomorphisms with the corresponding ε1 and ε2. Then:(
∇

(F1)
)(F2)

X
Y = ε1ε2F2F1(∇XF1F2Y) (42)

Hence, if F2F1 = ±F1F2 we have the symmetry of conjugation:
(
∇

(F1)
)(F2)

=
(
∇

(F2)
)(F1)

.

For F1 = F2 we reobtain on this way the duality from Proposition 2.1. Also, it follows directly the
equivalence of the following statements in the case of ε1 = ε2:

i)
(
∇

(F1)
)(F2)

(=
(
∇

(F2)
)(F1)

) = ∇,
ii) F1F2(= ±F2F1) is parallel with respect to ∇.

Fix now another endomorphism T not necessary of quadratic type but commuting with the given F.
Then:

Proposition 3.5. The covariant derivative of T with respect to ∇(F) is:(
∇

(F)
X T

)
Y = εF((∇XT)FY) (43)

and then T is parallel with respect to ∇(F) if and only if it is parallel with respect to ∇.

Proof. We have:(
∇

(F)
X T

)
Y = ∇(F)

X TY − T(∇(F)
X Y) = εF(∇XFTY) − εTF(∇XFY) = εF(∇XTFY − T(∇XY)) (44)

which means the claimed relation. The second part follows from the the fact that F is admits the inverse
F−1 = εF.

4. Exponential Conjugate Connections

Let us consider the functions (csε, snε) given by: i) (cos, sin) for ε = −1, ii) (cosh, sinh) for ε = +1. Hence:
cs2
ε − εsn2

ε = 1. Following [1] we consider:

Definition 4.1. The exponential conjugate connection of ∇ is:

∇
(F,θ) := exp(−θF) ◦ ∇ ◦ exp(θF) (45)

where:

exp(θF) = csεθ · I + snεθ · F, exp(−θF) = csεθ · I − snεθ · F (46)

with θ an arbitrary real number, possible on the 1-dimensional torus S1 = R/Z.

Our conventions in (45) is the reverse of the choice of [1] and this fact is motivated by the usual
conjugation of b ∈ G with respect to the element a of a group (G, ·) as a−1

· b · a. Also, in [1] the exponential
complex conjugate connection is parametrized by the projective line P1 = S1/π. The classical conjugate ∇(F)

in the almost complex case corresponds to θ = π
2 .

Proposition 4.2. ∇(F,θ) is in duality with ∇ only for:
i) (ε = −1) θ = k

2π with k an integer;
ii) (ε = +1) θ = 0.

Proof. Is a consequence of: (∇(F,θ))(F,θ) = ∇(F,2θ) which results after a straightforward computation.

Let us remark that:
a) the almost product case means the reduction ∇(F,0) = ∇,
b) the almost complex case i) above is characterized by the quantization rule: θ ∈ π

2Z.
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