Vegetation patterns and litterfall production dynamics during post-agricultural succession in tropical lowland ecosystems: A case study in Manokwari, West Papua, Indonesia
Abstract
In West Papua, Indonesia, shifting cultivation relies on long-term natural fallow to restore soil fertility. Understanding the ecological processes underlying this practice, such as vegetation succession patterns and litterfall dynamics, is crucial for promoting sustainable agriculture and conserving natural resources in the region. This study examined changes in vegetation composition, structure, diversity, and litterfall production in 5-year, 10-year, and 15-year fallows in post-agricultural lowlands. Vegetation profiles were analyzed using nested plots, while litterfall production was measured using litter traps over six months. A general linear model (GLM) analysis of variance (ANOVA) followed by Tukey’s HSD test (p<0.05) and non-metric multidimensional scaling (NMDS) analysis were used to compare the three fallow ages. The results showed distinct differences in vegetation structure and composition, with older fallows exhibiting a more diverse and complex vegetation structure. Total litterfall production differed significantly between the 5-year fallow and the 10- and 15-year fallows, but not between the latter two. NMDS analysis revealed a clear separation between the 5-year fallow and the 10- and 15-year fallows, with 82.5% of the variability in data attributes explained by the differences in fallow age. Our findings suggest that maintaining fallow periods of 10 years or more can enhance vegetation diversity and structure, as well as increase organic matter input through litterfall production.
Keywords
Full Text:
PDFReferences
Araújo, V.F.P., Barbosa, M.R.V, Araújo, J.P., & Vasconcellos, A. (2019). Spatial-temporal variation in litterfall in seasonally dry tropical forests in Northeastern Brazil. Brazilian Journal of Biology, 80, 273–284. https://doi.org/10.1590/1519-6984.192113
Atkins, J.W., Shiklomanov, A., Mathes, K.C., Bond-Lamberty, B., & Gough, C.M. (2023). Effects of forest structural and compositional change on forest microclimates across a gradient of disturbance severity. Agricultural and Forest Meteorology, 339, 109566. https://doi.org/10.1016/j.agrformet.2023.109566
Bhaskar, R., Arreola, F., Mora, F., Martinez-Yrizar, A., Martinez-Ramos, M., & Balvanera, P. (2018). Response diversity and resilience to extreme events in tropical dry secondary forests. Forest Ecology and Management, 426, 61–71. https://doi.org/10.1016/j.foreco.2017.09.028
BMKG (Badan Meteorologi, Klimatologi dan Geofisika) (2024). Data Harian (Daily Data), UPT Stasiun Klimatologi Papua Barat, Kabupaten Manokwari, Papua Barat: Station Number 97694. Retrieved from https://dataonline.bmkg.go.id/dataonline-home
Borchert, R. (1998). Responses of tropical trees to rainfall seasonality and its long-term changes. Climatic change, 39(2), 381-393. https://doi.org/10.1023/A:1005383020063
BPS-Statistics of Manokwari Regency (2019). Kecamatan Sidey dalam Angka (Sidey Subdistrict in Figures). Retrieved from https://manokwarikab.bps.go.id/id/publication/2019/09/26/66f2f420211f2e78ef5c3755/kecamatan-sidey-dalam-angka-2019.html
BPS-Statistics of Manokwari Regency (2024). Kabupaten Manokwari dalam Angka (Manokwari Regency in Figure). Retrieved from https://manokwarikab.bps.go.id/id/publication/2024/02/28/c2b35e7798c6eba92f65289b/kabupaten-manokwari-dalam-angka-2024.html
BPS-Statistics West Papua Province (2024). Provinsi Papua Barat dalam Angka (Papua Barat Province in Figure). Retrieved from https://papuabarat.bps.go.id/id/publication/2024/02/28/1abcd220e6df6bf3af905766/provinsi-papua-barat-dalam-angka-2024.html
Chan, N., Takeda, S., Suzuki, R., & Yamamoto, S. (2016). Assessment of biomass recovery and soil carbon storage of fallow forests after swidden cultivation in the Bago Mountains, Myanmar. New Forests, 47, 565–585. https://doi.org/10.1007/s11056-016-9531-y
Chen, Y., Ma, S., Jiang, H., Hu, Y., & Lu, X. (2020). Influences of litter diversity and soil moisture on soil microbial communities in decomposing mixed litter of alpine steppe species. Geoderma, 377, 114577. https://doi.org/10.1016/j.geoderma.2020.114577
Curtis, J.T., & McIntosh, R.P. (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32(3), 476–496. https://doi.org/10.2307/1931725
da Silva, W.B., Périco, E., Dalzochio, M.S., Santos, M., & Cajaiba, R.L. (2018). Are litterfall and litter decomposition processes indicators of forest regeneration in the neotropics? Insights from a case study in the Brazilian Amazon. Forest Ecology and Management, 429, 189–197. https://doi.org/10.1016/j.foreco.2018.07.020
de Alencar, M.I.G., Dias, A.T.C., Asato, A.E.B., & Caliman, A. (2024). Patterns of decomposition and functional traits for flower and leaf litter in tropical woody species. Oecologia, 206(3), 253–264. https://doi.org/10.1007/s00442-024-05616-w
Doughty, C. E., Keany, J. M., Wiebe, B. C., Rey-Sanchez, C., Carter, K. R., Middleby, K. B., ... & Fisher, J. B. (2023). Tropical forests are approaching critical temperature thresholds. Nature, 621(7977), 105-111. https://doi.org/10.1038/s41586-023-06391-z
FAO (Food and Agriculture Organizations) (1976). Soil map of the world. FAO. Retrieved from https://www.fao.org/fileadmin/user_upload/soils/docs/Soil_map_FAOUNESCO/new_maps/IX_petit.jpg
FAO-UNESCO (Food and Agriculture Organizations-UNESCO) (1979). Soil map of the world, Volume IX Southeast Asia, 1: 5.000.000. FAO. Retrieved from https://openknowledge.fao.org/server/api/core/bitstreams/32ec7c20-3f60-417a-9a4b-c5ebf0910285/content
Feng, C., Wang, Z., Ma, Y., Fu, S., & Chen, H.Y.H. (2019). Increased litterfall contributes to carbon and nitrogen accumulation following cessation of anthropogenic disturbances in degraded forests. Forest Ecology and Management, 432, 832–839. https://doi.org/10.1016/j.foreco.2018.10.025
Ferreira, M.L., Barbosa, M.F., Gomes, E.P.C., Do Nascimento, A.P.B., De Luca, E.F., Da Silva, K.G., França, U.B., De Camargo, P.B., & Lafortezza, R. (2021). Ecological implications of twentieth century reforestation programs for the urban forests of São Paulo, Brazil: a study based on litterfall and nutrient cycling. Ecological Processes, 10(1), 27. https://doi.org/10.1186/s13717-021-00292-7
Gavito, M.E., Paz, H., Barragán, F., Siddique, I., Arreola-Villa, F., Pineda-García, F., & Balvanera, P. (2021). Indicators of integrative recovery of vegetation, soil and microclimate in successional fields of a tropical dry forest. Forest Ecology and Management, 479, 118526. https://doi.org/10.1016/j.foreco.2020.118526
Gonçalves, F.M.P., Revermann, R., Cachissapa, M.J., Gomes, A.L., & Aidar, M.P.M. (2018). Species diversity, population structure and regeneration of woody species in fallows and mature stands of tropical woodlands of southeast Angola. Journal of Forestry Research, 29, 1569–1579. https://doi.org/10.1007/s11676-018-0593-x
Guariguata, M.R., Chazdon, R.L., Denslow, J.S., Dupuy, J.M., & Anderson, L. (1997). Structure and floristics of secondary and old-growth forest stands in lowland Costa Rica. Plant Ecology, 132, 107–120. https://doi.org/10.1023/A:1009726421352
Hapsari, L., Trimanto, T., & Budiharta, S. (2020). Spontaneous plant recolonization on reclaimed post-coal mining sites in East Kalimantan, Indonesia: Native versus alien and succession progress. Biodiversitas Journal of Biological Diversity, 21(5), 2003-2018. https://doi.org/10.13057/biodiv/d210527
Hartemink, A.E. (2001). Biomass and nutrient accumulation of Piper aduncum and Imperata cylindrica fallows in the humid lowlands of Papua New Guinea. Forest Ecology and Management, 144(1–3), 19–32. https://doi.org/10.1016/S0378-1127(00)00655-1
Hartemink, A.E. (2003). Sweet potato yields and nutrient dynamics after short-term fallows in the humid lowlands of Papua New Guinea. NJAS: Wageningen Journal of Life Sciences, 50(3–4), 297–319. https://doi.org/10.1016/S1573-5214(03)80014-3
Hartemink, A.E. (2004). Nutrient stocks of short-term fallows on a high base status soil in the humid tropics of Papua New Guinea. Agroforestry Systems, 63, 33–43. https://doi.org/10.1023/B:AGFO.0000049431.12758.01
Hashimoto, T., Tange, T., Masumori, M., Yagi, H., & Kojima, K. (2007). Early successional process of a fallow forest in East Kalimantan, Indonesia. Tropics, 16(3), 253–259. https://doi.org/10.3759/tropics.16.253
Hepp, C. M., de Neergaard, A., & Bruun, T. B. (2018). Short‐term fallow in extensive upland shifting cultivation systems of northern Lao PDR: its role in soil fertility restoration. Land Degradation & Development, 29(9), 2911–2919. https://doi.org/10.1002/ldr.3032
Huang, Y., Ma, K., Niklaus, P.A., & Schmid, B. (2018). Leaf-litter overyielding in a forest biodiversity experiment in subtropical China. Forest Ecosystems, 5, 1–9. https://doi.org/10.1186/s40663-018-0157-8
Hurlbert, S.H. (1984). Pseudoreplication and the design of ecological field experiments. Ecological Monographs, 54(2), 187–211. https://doi.org/10.2307/1942661
Ina-Geoportal (2024). Data DEMNAS (Digital Elevation Model Nasional), 0.27-arcsecond resolution & DATUM EGM2008. Retrieved from https://tanahair.indonesia.go.id/portal-web/unduh
Indow, L., Maturbongs, R.A., Prabawardani, S., Hendri, H., & Lyons, G. (2021). Implementation of the remote indigenous community empowerment program on the sustainability of the local food crops in West Papua, Indonesia. Biodiversitas Journal of Biological Diversity, 22(12), 5247-5254. https://doi.org/10.13057/biodiv/d221202
Indrawati, S., Kusuma, Z., & Raharjo, B.T. (2022). Adaptation strategy and farmers land processing in the upland Arfak Mountains. Journal of Positive School Psychology, 6(4), 11370–11378. https://journalppw.com/index.php/jpsp/article/view/6994
Karyati, K., Ipor, I., Jusoh, I., & Wasli, M.E. (2018). Tree stand floristic dynamics in secondary forests of different ages in Sarawak, Malaysia. Biodiversitas Journal of Biological Diversity, 19(3), 717–723. https://doi.org/10.13057/biodiv/d190302
Kindt, R., Kalinganire, A., Larwanou, M., Belem, M., Dakouo, J.M., Bayala, J., & Kairé, M. (2008). Species accumulation within land use and tree diameter categories in Burkina Faso, Mali, Niger and Senegal. Biodiversity and Conservation, 17, 1883–1905. https://doi.org/10.1007/s10531-008-9326-3
Krashevska, V., Stiegler, C., June, T., Widyastuti, R., Knohl, A., Scheu, S., & Potapov, A. (2022). Land‐use change shifts and magnifies seasonal variations of the decomposer system in lowland tropical landscapes. Ecology and Evolution, 12(6), e9020. https://doi.org/10.1002/ece3.9020
Kukla, J., Whitfeld, T., Cajthaml, T., Baldrian, P., Veselá‐Šimáčková, H., Novotný, V., & Frouz, J. (2019). The effect of traditional slash‐and‐burn agriculture on soil organic matter, nutrient content, and microbiota in tropical ecosystems of Papua New Guinea. Land Degradation & Development, 30(2), 166–177. https://doi.org/10.1002/ldr.3203
Lee, J.-T., Chu, M.-Y., Lin, Y.-S., Kung, K.-N., Lin, W.-C., & Lee, M.-J. (2020). Root traits and biomechanical properties of three tropical pioneer tree species for forest restoration in landslide areas. Forests, 11(2), 179. https://doi.org/10.3390/f11020179
Lepš, J., Novotný, V., Čížek, L., Molem, K., Isua, B., William, B., Kutil, R., Auga, J., Kasbal, M., & Manumbor, M. (2002). Successful invasion of the neotropical species Piper aduncum in rain forests in Papua New Guinea. Applied Vegetation Science, 5(2), 255–262. https://doi.org/10.1111/j.1654-109X.2002.tb00555.x
Liu, X., Feng, Y., Zhao, X., Cui, Z., Liu, P., Chen, X., Zhang, Q., & Liu, J. (2024). Climatic drivers of litterfall production and its components in two subtropical forests in South China: A 14-year observation. Agricultural and Forest Meteorology, 344, 109798. https://doi.org/10.1016/j.agrformet.2023.109798
Machado, D.L., Engel, V.L., Podadera, D.S., Sato, L.M., de Goede, R.G.M., de Moraes, L.F. D., & Parrotta, J.A. (2021). Site and plant community parameters drive the effect of vegetation on litterfall and nutrient inputs in restored tropical forests. Plant and Soil, 464(1), 405–421. https://doi.org/10.1007/s11104-021-04964-3
Martin, F.P., Abdullah, M., Hadiyanti, L.N., & Widianingrum, K. (2018). Leaf litter production of mahogany along street and campus forest of Universitas Negeri Semarang, Indonesia. Journal of Physics: Conference Series, 983(1), 012180. https://doi.org/10.1088/1742-6596/983/1/012180
Mertz, O., Bruun, T.B., Jepsen, M.R., Ryan, C.M., Zaehringer, J.G., Hinrup, J.S., & Heinimann, A. (2021). Ecosystem service provision by secondary forests in shifting cultivation areas remains poorly understood. Human Ecology, 49(3), 271–283. https://doi.org/10.1007/s10745-021-00236-x
Montfort, F., Nourtier, M., Grinand, C., Maneau, S., Mercier, C., Roelens, J.-B., & Blanc, L. (2021). Regeneration capacities of woody species biodiversity and soil properties in Miombo woodland after slash-and-burn agriculture in Mozambique. Forest Ecology and Management, 488, 119039. https://doi.org/10.1016/j.foreco.2021.119039
Morffi-Mestre, H., Ángeles-Pérez, G., Powers, J. S., Andrade, J.L., Huechacona Ruiz, A.H., May-Pat, F., Chi-May, F., & Dupuy, J.M. (2020). Multiple factors influence seasonal and interannual litterfall production in a tropical dry forest in Mexico. Forests, 11(12), 1241. https://doi.org/10.3390/f11121241
Murdjoko, A., Djitmau, D.A., Ungirwalu, A., Sinery, A.S., Siburian, R.H.S., Mardiyadi, Z., ... & Lekitoo, K. (2021). Pattern of tree diversity in lowland tropical forest in Nikiwar, West Papua, Indonesia. Dendrobiology, 85, 78-91.
Nakagawa, M., Ushio, M., Kume, T., & Nakashizuka, T. (2019). Seasonal and long‐term patterns in litterfall in a Bornean tropical rainforest. Ecological Research, 34(1), 31–39. https://doi.org/10.1111/1440-1703.1003
Numata, M. (1982). Experimental studies on the early stages of secondary succession. Vegetatio, 48, 141–149. https://doi.org/10.1007/BF00726883
Ohtsuka, T., Yoshitake, S., Yashiro, Y., Shizu, Y., Iimura, Y., Yimatsa, N., ... & Koizumi, H. (2025). Changes in stand biomass accumulation and wood NPP during secondary succession: insights from a 23-year study of forest dynamics in a cool-temperate secondary deciduous forest. Plant Ecology, 226, 1-12. https://doi.org/10.1007/s11258-025-01538-6
Pacheco, F.V., de Oliveira Silveira, H.R., Alvarenga, A.A., Alvarenga, I.C.A., Pinto, J.E.B.P., & Lira, J.M.S. (2013). Gas exchange and production of photosynthetic pigments of Piper aduncum L. grown at different irradiances. American Journal of Plant Sciences, 4(12), 114–121. http://dx.doi.org/10.4236/ajps.2013.412A3014
Patel, S.K., Sharma, A., Singh, R., Tiwari, A.K., & Singh, G.S. (2022). Diversity and distribution of traditional home gardens along different disturbances in a dry tropical region, India. Frontiers in Forests and Global Change, 5, 822320. https://doi.org/10.3389/ffgc.2022.822320
Peel, M.C., Finlayson, B.L., & McMahon, T.A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644. https://doi.org/10.5194/hess-11-1633-2007
Rodríguez, W., Suárez, J.C., & Casanoves, F. (2023). Total litterfall and leaf-litter decomposition of Theobroma grandiflorum under different agroforestry systems in the western Colombian Amazon. Agroforestry Systems, 97(8), 1541–1556. https://doi.org/10.1007/s10457-023-00876-6
Sakai, A., Arbain, A., Sugiarto, S., Rahmawati, K., Mirmanto, E., Takahashi, M., & Ueda, A. (2022). Composition and diversity of tree species after fire disturbance in a lowland tropical forest in East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 23(3), 1576-1587. https://doi.org/10.13057/biodiv/d230348
Sari, R.R., Rozendaal, D.M.A., Saputra, D.D., Hairiah, K., Roshetko, J.M., & van Noordwijk, M. (2022). Balancing litterfall and decomposition in cacao agroforestry systems. Plant and Soil, 473(1), 251–271. https://doi.org/10.1007/s11104-021-05279-z
Sari, S.V., Qayim, I., & Hilwan, I. (2016). Litter decomposition rate of karst ecosystem at Gunung Cibodas, Ciampea Bogor Indonesia. Journal of Tropical Life Science, 6(2), 107–112. https://doi.org/10.11594/jtls.06.02.08
Sayer, E.J., Leitman, S.F., Wright, S.J., Rodtassana, C., Vincent, A.G., Brechet, L.M., Castro, B., Lopez, O., Wallwork, A., & Tanner, E.V.J. (2024). Tropical forest above‐ground productivity is maintained by nutrients cycled in litter. Journal of Ecology, 112(4), 690–700. https://doi.org/10.1111/1365-2745.14251
Shannon, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
Slik, J.W.F., Keßler, P.J.A., & van Welzen, P.C. (2003). Macaranga and Mallotus species (Euphorbiaceae) as indicators for disturbance in the mixed lowland dipterocarp forest of East Kalimantan (Indonesia). Ecological Indicators, 2(4), 311–324. https://doi.org/10.1016/S1470-160X(02)00057-2
Souza, S.R., Veloso, M.D.M., Espírito-Santo, M.M., Silva, J.O., Sánchez-Azofeifa, A., Souza e Brito, B.G., & Fernandes, G.W. (2019). Litterfall dynamics along a successional gradient in a Brazilian tropical dry forest. Forest Ecosystems, 6, 1–12. https://doi.org/10.1186/s40663-019-0194-y
Stride, G., Thomas, C.D., Benedick, S., Hodgson, J.A., Jelling, A., Senior, M.J.M., & Hill, J.K. (2018). Contrasting patterns of local richness of seedlings, saplings, and trees may have implications for regeneration in rainforest remnants. Biotropica, 50(6), 889–897. https://doi.org/10.1111/btp.12605
Susanto, D., Ruchiyat, D., Sutisna, M., & Amirta, R. (2016). Soil and leaf nutrient status on growth of Macaranga gigantea in secondary forest after shifting cultivation in East Kalimantan, Indonesia. Biodiversitas Journal of Biological Diversity, 17(2), 409-416. https://doi.org/10.13057/biodiv/d170202
Susanto, D., Suwinarti, W., & Amirta, R. (2018). Seed germination and cuttings growth of Piper aduncum. IOP Conference Series: Earth and Environmental Science, 144(1), 012018. https://doi.org/10.1088/1755-1315/144/1/012018
Susanto, S.A. (2019). Sebaran ukuran diameter pohon untuk menentukan umur dan regenerasi hutan di Lahan Bera Womnowi, Manokwari. Biotropika: Journal of Tropical Biology, 7(2), 67–76. https://doi.org/10.21776/ub.biotropika.2019.007.02.4
Susanto, S.A., Budirianto, H.J., & Maturbongs, A.C. (2020). Estimasi produktivitas serasah di lahan bera Womnowi, Distrik Sidey, Manokwari. Jurnal Ilmu Pertanian Indonesia (JIPI), 25(2), 185–192. https://doi.org/10.18343/jipi.25.2.185
Susanto, S.A., Qayim, I., & Triadiati, T. (2021). Karakteristik lahan bera dengan umur berbeda dan pengaruhnya terhadap dekomposisi serasah di Manokwari, Papua Barat. Jurnal Tanah Dan Iklim, 45(2), 117–132.
Teixeira, H.M., Cardoso, I.M., Bianchi, F.J.J.A., da Cruz Silva, A., Jamme, D., & Peña-Claros, M. (2020). Linking vegetation and soil functions during secondary forest succession in the Atlantic forest. Forest Ecology and Management, 457, 117696. https://doi.org/10.1016/j.foreco.2019.117696
Tesfay, F., Kibret, K., Gebrekirstos, A., & Hadgu, K.M. (2020). Litterfall production and associated carbon and nitrogen flux along exclosure chronosequence at Kewet district, central lowland of Ethiopia. Environmental Systems Research, 9, 1–12. https://doi.org/10.1186/s40068-020-00172-7
Tresch, S., Frey, D., Le Bayon, R.-C., Zanetta, A., Rasche, F., Fliessbach, A., & Moretti, M. (2019). Litter decomposition driven by soil fauna, plant diversity and soil management in urban gardens. Science of the Total Environment, 658, 1614–1629. https://doi.org/10.1016/j.scitotenv.2018.12.235
Triadiati, T., Tjitrosemito, S., Guhardja, E., Sudarsono, S., Qayim, I., & Leuschner, C. (2011). Litterfall production and leaf-litter decomposition at natural forest and cacao agroforestry in Central Sulawesi, Indonesia. Asian Journal of Biological Science, 4, 221–234.
Tuturop, A., Nugroho, J.D., & Warawarin, A. (2022). Agroforestry and climate smart agriculture to improve food security and resilience indigenous people in Teluk Patipi District Fakfak Regency West Papua Province. IOP Conference Series: Earth and Environmental Science, 989(1), 012005. https://doi.org/10.1088/1755-1315/989/1/012005
Verma, A., Kumar, P., Soni, M.L., Pawar, N., Pradhan, U., Tanwar, S.P.S., & Kumar, S. (2022). Litter production and litter dynamics in different agroforestry systems in the arid western region of India. Biological Agriculture & Horticulture, 38(1), 40–60. https://doi.org/10.1080/01448765.2021.1971110
Vickers, L.A., Knapp, B.O., Dey, D.C., & Knapp, L.S.P. (2023). Do forest health threats affect upland oak regeneration and recruitment? Advance reproduction is a key co-morbidity. Forest Ecosystems, 10, 100152. https://doi.org/10.1016/j.fecs.2023.100152
Wapongnungsang, W., Ovung, E., Upadhyay, K.K., & Tripathi, S.K. (2021). Soil fertility and rice productivity in shifting cultivation: impact of fallow lengths and soil amendments in Lengpui, Mizoram northeast India. Heliyon, 7(4), e06834. https://doi.org/10.1016/j.heliyon.2021.e06834
Wen, B., Xue, P., Zhang, N., Yan, Q., & Ji, M. (2015). Seed germination of the invasive species Piper aduncum as influenced by high temperature and water stress. Weed Research, 55(2), 155–162. https://doi.org/10.1111/wre.12134
Whitfeld, T.J.S., Lasky, J.R., Damas, K., Sosanika, G., Molem, K., & Montgomery, R.A. (2014). Species richness, forest structure, and functional diversity during succession in the New Guinea lowlands. Biotropica, 46(5), 538–548. https://doi.org/10.1111/btp.12136
Widiyatno, W., Budiadi, B., Suryanto, P., Rinarno, Y.D.B.M., Prianto, S.D., Hendro, Y., Hosaka, T., & Numata, S. (2017). Recovery of vegetation structure, soil nutrients and late-succession species after shifting cultivation in Central Kalimantan, Indonesia. Journal of Tropical Forest Science, 29(2), 151–162. https://www.jstor.org/stable/44160932
Williams-Linera, G., Bonilla-Moheno, M., López-Barrera, F., & Tolome, J. (2021). Litterfall, vegetation structure and tree composition as indicators of functional recovery in passive and active tropical cloud forest restoration. Forest Ecology and Management, 493, 119260. https://doi.org/10.1016/j.foreco.2021.119260
Wills, J., Herbohn, J., Wells, J., Maranguit Moreno, M.O., Ferraren, A., & Firn, J. (2021). Seedling diversity in actively and passively restored tropical forest understories. Ecological Applications, 31(3), e02286. https://doi.org/10.1002/eap.2286
Xu, S., Sayer, E.J., Eisenhauer, N., Lu, X., Wang, J., & Liu, C. (2021). Aboveground litter inputs determine carbon storage across soil profiles: a meta-analysis. Plant and Soil, 462, 429–444. https://doi.org/10.1007/s11104-021-04881-5
You-Bao, W., Deng-Yi, L.I.U., Li, Z., Ying, L.I., & Ling, C.H.U. (2004). Patterns of vegetation succession in the process of ecological restoration on the deserted land of Shizishan copper tailings in Tongling City. Journal of Integrative Plant Biology, 46(7), 780. https://www.jipb.net/EN/Y2004/V46/I7/780
Yuminarti, U., & Darwanto, D.H. (2018). Contemporary farming system in the shifting cultivation practiced by Arfak Tribe in Hink District, Pegunungan Arfak Regency, West Papua, Indonesia. Asian Agri-History, 22(3), 208. https://doi.org/10.18311/aah/2018/21391
Zhu, X., Liu, W., Chen, H., Deng, Y., Chen, C., & Zeng, H. (2019). Effects of forest transition on litterfall, standing litter and related nutrient returns: Implications for forest management in tropical China. Geoderma, 333, 123–134. https://doi.org/10.1016/j.geoderma.2018.07.023
Refbacks
- There are currently no refbacks.