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Abstract. This paper concerns the stochastic optimal control problem of switching systems with delay. The
evolution of the system is governed by the collection of stochastic delay differential equations with initial
conditions that depend on its previous state. The restriction on the system is defined by the functional
constraint that contains state and time parameters. First, maximum principle for stochastic control problem
of delay switching system without constraint is established. Finally, using Ekeland’s variational principle,
the necessary condition of optimality for control system with constraint is obtained.

1. Introduction

Uncertainty and time delay are associated with many real phenomena, and often they are sources of
complicated dynamics. Systems with uncertainties have provided a lot of interest for problems of nuclear
fission, communication systems, self-oscillating systems and etc. [13, 15, 43].Stochastic differential equations
have the benefit in description of the natural systems, which in one or another degree are subjected to the
influence of the random noises [28, 39]. The differential equations with time delay can be used in modeling
of processes with a memory; that is, the behaviour of the system is dependent of the past [33, 38]. Many
problems in physics,engineering, biological and economical sciences are expressed in terms of optimality
principles, which often provide the most compact description of the laws governing dynamics and design
of a systems [9, 40, 47]. Optimization problems for delay control systems have attracted a lot of interest
[21, 23, 25, 27]. Stochastic models and stochastic control problems have many practical applications [24, 29,
33, 35]. The modern stochastic optimal control theory has been developed along the lines of Pontryagin’s
maximum principle and Bellman’s dynamic programming [26, 48]. The stochastic maximum principle has
been first considered by Kushner [34] Earliest results on the extension of Pontryagin’s maximum principle
to stochastic control problems are obtained in [10, 16, 17, 30]. Modern presentations of stochastic maximum
principle with backward stochastic differential equations are considered in [18, 36, 37, 42]. Switching systems
consist the several subsystems and a switching law indicating the active subsystem at each time instantly.
For general theory of stochastic switching systems, we refer to [19]. A manufacturing systems,power
systems, communication systems, aerospace space and a lot of problems of mathematical finance are some
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applications of stochastic switching systems. Recently, optimization problems for switching systems have
attracted a lot of theoretical and practical interest [4, 7, 12, 14, 20, 44, 46]. Deterministic and stochastic
optimal control problems of switching systems, described by differential equations with delay, are actual at
present [3, 11, 31, 45]. In this paper, backward stochastic differential equations have been used to establish
a maximum principle for stochastic optimal control problems of delay switching systems with constraint.
Such kind of problems without delay have been considered by the author in [1, 2, 5, 6]. The optimal control
problem of delay switching systems without endpoint constraints is considered in [3]. The plan of the paper
is as follows: The next section formulates the main problem, presents some concepts and assumptions. The
necessary condition of optimality for delay stochastic switching systems without endpoint constraint is
obtained in Section 3. In Section 4, using Ekeland’s variational principle [22] investigated control system
with restriction is convert into the sequence of unconstrained optimal control problems. A maximum
principle and transversality condition are established for the transformed problem. Finally, the necessary
condition of optimality in the case with endpoint constraints is achieved. The conclusion and final remarks
are given at the last section.

2. Statement of the Problem. Assumptions and Notations

In this section we fix notations and definitions used throughout this paper. Let N be some positive
constant, Rn denotes the n dimensional real vector space, | . | denotes the Euclidean norm and 〈·, ·〉 denotes
scalar product in Rn. E represents the mathematical expectation; by 1, r we denote the set of integer
numbers 1,...,r . Let w1(t),w2(t), ...,wr(t) are independent Wiener processes that generate the filtration
Fl

t = σ̄(wl(t), tl−1, tl), l = 1, r. (Ωl,Fl,Pl) be a probability space with corresponding filtration
{
Fl

t, t ∈ [tl−1, tl]
}
.

L2
F (a, b; Rn) denotes the space of all predictable processes x(t, ω) ≡ x(t) such that: E

b∫
a
|x (t, ω)|2 dt < +∞.

Rm×n is the space of linear transformations from Rm to Rn. Let Ol ⊂ Rnl , Ql ⊂ Rml , l = 1, r, be open sets;
T = [0,T] be a finite interval and 0 = t0 < t1 < ... < tr = T. We also use following notations : t = (t0, t1, ..., tr);

t = (t0, t1, ..., tr), u = (u1,u2, ...,ur), x = (x1, x2, ..., xr); Ft =
r⋃

l=1
Fl

t.

Dynamic of the system is described by the following differential equation with delay:

dxl(t) = 1l
(
xl(t), xl(t − h),ul(t), t

)
dt + f l

(
xl(t), xl(t − h), t

)
dwl(t), t ∈ (tl−1, tl] l = 1, r; (1)

xl+1(t) = Kl+1 (t) t ∈ (tl − h, tl) , l = 0, r − 1 , (2)

xl+1(tl) = Φl+1
(
xl(tl), tl

)
l = 1, r − 1 ; x1

t0
= x0, (3)

ul(t) ∈ Ul
∂ ≡

(
ul (·, ·) ∈ L2

Fl |ul (t, ·) ∈ Ul
⊂ Rml , a.c.

)
, (4)

where Ul
∂

are non-empty bounded sets. The elements of Ul
∂

are called the admissible controls. Let Λl, l = 1, r
be the set of piecewise continuous functions Kl (·) l = 1, r : [tl−1 − h, tl−1)→ Nl ⊂ Ol and h ≥ 0.

The problem is concluded to find the optimal solution (x,u) =
(
x1, x2, ..., xr,u1,u2, ...,ur

)
and switching

sequence t = (t1, t2, ..., tr) on the decisions of the system (1)-(4), which minimize the cost functional:

J(u) =

r∑
l=1

E

ϕl
(
xl(tl)

)
+

tl∫
tl−1

pl
(
xl(t),ul(t), t

)
dt

 (5)

under the endpoint condition

Eqr(xr(tr), tr) ∈ G, (6)
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G is a closed convex set in R.
Introduce the sets:

Ai = Ti+1
×

i∏
j=1

O j ×
i∏

j=1
Λ j ×

i∏
j=1

Q j, i = 1, r,

with the elements

πi = (t0, t1, ti, x1(t), x2(t), ..., xi(t),u1,u2, ...,ui).

Now for completeness of the presentation and convenience of the reader, we introduce following definitions
from [3].

Definition 2.1. The set of functions {xl(t) = xl
(
t, πl

)
, t ∈ [tl−1 − h, tl] , l = 1, r} is said to be a solution of the

equation (1) with variable structure corresponding to an element πr
∈ Ar if the function xl(t) ∈ Ol on the

interval [tl−1 − h, tl] satisfies the conditions (2),(3), while on the interval [tl−1, tl] it is absolutely continuous
almost certainly (a.c.) and satisfies the equation (1) almost everywhere.

Definition 2.2. The element πr
∈ Ar is said to be admissible if the pairs

(
xl(t), ul(t)

)
, t ∈ [tl−1, tl] , l = 1, r

are the solutions of system (1)-(4) and satisfy the constraints (6).

Definition 2.3. Let A0
r be the set of admissible elements. The element π̄r

∈ A0
r , is said to be an optimal

solution of problem (1)-(6) if there exist admissible controls ūl(t), t ∈ [tl−1, tl] , l = 1, r and corresponding
solutions x̄l(t), t ∈ [tl−1, tl] , l = 1, r of system (1)-(3) such that the pairs

(
x̄l(t), ūl(t)

)
, l = 1, r minimize the

functional (5).

Assume that the following requirements are satisfied:
I. Functions 1l, f l, pl, l = 1, r and their derivatives are continuous in

(
x, y,u, t

)
:

1l (x, y,u, t) : Ol ×Ol ×Ql × T→ Rnl , f l (x, y, t) : Ol ×Ol × T→ Rnl×nl , pl (x,u, t) : Ol ×Ql × T→ Rnl

II. For fixed (u, t) functions 1l, f l, pl, l = 1, r hold the conditions:(
1 + |x| +

∣∣∣y∣∣∣)−1 (∣∣∣1l (x, y,u, t)∣∣∣ +
∣∣∣1l

x
(
x, y,u, t

)
+

∣∣∣1l
y
(
x, y,u, t

)∣∣∣∣∣∣+∣∣∣ f l (x, y, t)∣∣∣ +
∣∣∣ f l

x
(
x, y, t

)∣∣∣ +
∣∣∣ f l

y
(
x, y, t

)∣∣∣ +
∣∣∣pl (x,u, t)

∣∣∣ +
∣∣∣pl

x (x,u, t)
∣∣∣) ≤ N.

III. Functions ϕl(x) : Rnl → R are continuously differentiable and their derivatives are bounded by
N(1 + |x|).

IV. Functions Φl(x, t) : Ol−1 × T → Ol, l = 1, r − 1 are continuously differentiable in respect to (x, t) and
their derivatives are bounded by N(1 + |x|).

V. Function qr(x, t) : Ol × T→ R is continuously differentiable in respect to (x, t) and satisfies:∣∣∣qr(x, t)
∣∣∣ +

∣∣∣qr
x(x, t) 6

∣∣∣ N(1 + |x|).

3. Controlled Switching Systems with Delay

Using similar technique from [2], the following necessary condition of optimality for problem (1)–(5) is
obtained.

Theorem 3.1. Suppose that conditions I − IV hold and

πr = (t0, t1, tr, x1(t), x2(t), ..., xr(t),u1,u2, ...,ur)
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is an optimal solution of problem (1)–(5). There exist random processes (ψl(t), βl(t)) ∈ L2
F(tl−1, tl; Rnl )×L2

F(tl−1, tl; Rnl×nl )
which are the solutions of the following adjoint equations:

dψl(t) = −[Hl
x(ψl(t), xl(t), yl(t),ul(t), t) + Hl

y(ψl(t + t), xl(t + h), yl(t + h),ul(t + h), t + h)]dt
+βl(t)dwl(t), tl−1 6 t < tl − h,
dψl(t) = −Hl

x(ψl(t), xl(t), yl(t),ul(t), t)dt + βl(t)dwl(t), tl − h 6 t < tl,
ψl(tl) = −ϕl

x(xl(tl)) + ψl+1(tl)Φl
x(xl(tl), tl), l = 1, r − 1,

ψr(tr) = −ϕr
x(xr(tr)),

(7)

Then
a) ∀ ūl

∈ Ul, l = 1, r, a.c. fulfills the maximum principle:

Hl(ψl(θ), xl(θ), yl(θ), ūl, θ) −Hl(ψl(θ), xl(θ),ul(θ), θ) ≤ 0, a.e. θ ∈ [tl−1, tl]; (8)

b) following transversality conditions hold:

alψ
l+1(tl)Φl

(
xl(tl), tl

)
− blψ

l+1(tl)1l+1
(
xl+1(tl + h),Kl+1(tl),ul+1(tl + h), tl + h

)
= 0, a.c., l = 1, r − 1. (9)

Here
Hl (ψ(t), x(t), y(t),u(t), t

)
= ψ(t)1l (x(t), y(t),u(t), t

)
+ β(t) f l (x(t), y(t), t

)
− pl (x(t),u(t), t);

yl(t) = xl(t − h); a1 = ... = ar−1 = 1; ar = b1 = 0; b2 = ... = br = 1

Proof. Let ūl(t),ul(t) l = 1, r be some admissible controls; call the vectors ∆ūl(t) = ūl(t) − ul(t), l = 1, r be an
admissible increments of the controls ul(t). By (1)-(3), the trajectories x̄l(t), xl(t) l = 1, r corresponds to the
controls ūl(t),ul(t) l = 1, r. The vectors ∆x̄l(t) = x̄l(t) − xl(t), l = 1, r are called increments of the solutions
xl(t) l = 1, r that correspond to the increments ∆ūl(t), l = 1, r. Let 0 = t0 < t1 < ... < tr = T be switching
sequence corresponds to the optimal solution. Then following identities are obtained for some sequence
0 = t̄0 < t̄1 < ... < t̄r = T:

d∆x̄l(t) =
[
∆ūl1l(xl(t), yl(t),ul(t), t) + 1l

x(xl(t), yl(t),ul(t), t)∆x̄l(t) + 1l
y(xl(t), yl(t),ul(t), t)∆ȳl(t)

]
dt

+
[

f l
x(xl(t), yl(t), t)∆x̄l(t) + f l

y(xl(t), yl(t), t)∆ȳl(t)
]

dwl(t) + η1
t , t ∈ (tl−1, tl] ,

∆x̄l(t) = 0, t ∈ [tl−1 − h, tl−1) ,∆x̄1(t0) = 0,
∆x̄l(tl−1) = Φl−1

(
x̄l−1(tl−1), t̄l−1

)
−Φl−1

(
xl−1(tl−1), tl−1

)
l = 2, r

(10)

where
∆ū1(x(t), y(t),u(t), t) = 1(x(t), y(t), ū(t), t) − 1(x(t), y(t),u(t), t),

η1
t =

1∫
0

[
1l∗

x (xl(t) + µ∆x̄l(t), ȳl
t, ū

l
t, t) − 1

l∗
x (xl(t), yl

t,u
l(t), t)

]
∆x̄l(t)dµ dt+

1∫
0

[
1l∗

y (xl(t), yl
t + µ∆ȳl(t), ūl

t, t) − 1
l∗
y (xl(t), yl

t,u
l(t), t)

]
∆ȳl(t)dµ dt+

1∫
0

[
f l∗
x (xl(t) + µ∆x̄l(t), ȳl(t), t) − f l∗

x (xl(t), yl(t), t)
]
∆x̄l(t)dµdwl(t)+

1∫
0

[
f l∗
y (xl(t), yl(t) + µ∆ȳl(t), t) − f l∗

y (xl(t), yl(t), t)
]
∆ȳl(t)dµdwl(t).
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According to Ito’s formula [28] the following has been yielded:

d(ψl∗(t)∆x̄l(t)∆t̄l) = dψl∗(t)∆x̄l(t)∆t̄l + ψl∗(t)d∆x̄l(t)∆t̄l + ψl∗(t)∆x̄l(t)d∆t̄l+{
βl∗(t)[ f l

x(xl(t), yl(t), t)∆x̄l(t) + f l
y(xl(t), yl(t), t)∆ȳl(t)]∆t̄l

+βl∗(t)
1∫

0
[ f l

x(xl(t) + µ∆x̄l(t), ȳl(t), t) − f l
x(xl(t), yl(t), t)]∆x̄l(t)∆t̄ldµ+

+βl∗(t)
1∫

0
[ f l

y(xl(t), yl(t) + +µ∆ȳl(t), t) − f l
y(xl(t), yl(t), t)]∆ȳl(t)∆t̄ldµ } dt.

The stochastic processes ψl(t) , l = 1, r, at the points t1, t2, ..., tr are defined as follows:

ψl(tl) = −ϕl
x

(
xl(tl)

)
+ ψl+1(tl)Φl

x(xl(tl), tl ), ψr(tr) = −ϕr
x(x(tr)) (11)

Taking into consideration (9)-(11) expression of increment of the cost functional (5) along the admissible
control looks like:

∆J (u) =
r∑

l=1
E

ϕl
(
x̄l(tl)

)
− ϕl

(
xl(tl)

)
+

tl∫
tl−1

[
pl

(
x̄l(t), ūl

t, t
)
− pl

(
xl(t),ul(t), t

)]
dt


= −

r∑
l=1

E
tl∫

t−1

[
ψl∗(t)∆ūl1l

(
xl(t), yl(t),ul(t), t

)
+ ψl∗(t)1l

x

(
xl(t), yl(t),ul(t), t

)
∆x̄l(t)

+ψl∗(t)1l
y

(
xl(t), yl(t),ul(t), t

)
∆ȳl(t) + βl∗(t) f l

x

(
xl(t), yl(t), t

)
∆x̄l(t) + βl∗(t) f l

y

(
xl(t), yl(t), t

)
∆ȳl(t)

−∆ūl pl
(
xl(t),ul(t), t

)
− pl

x

(
xl(t),ul(t), t

)
∆x̄l(t) ] ∆t̄ldt +

r−1∑
l=1
ψl+1(tl)Φt

(
xl(tl), tl

)
+

r∑
l=1
ηtl

tl−1
,

(12)

where

ηtl
tl−1

= −E
1∫

0

(
1 − µ

) [
ϕl∗

x

(
x̄l(tl)

)
− ϕ∗x

(
xl(tl)

)]
∆x̄l(tl)dµ−

E
tl∫

tl−1

1∫
0

(
1 − µ

) [
Hl

x

(
ψl(t), xl(t) + µ∆x̄l(tl), yl(t),ul(t), t

)
−Hl

x

(
ψl(t), xl(t)ul(t), t

)]
∆x̄l(t)∆t̄ldµdt

E
tl∫

tl−1

1∫
0

(
1 − µ

) [
Hl

y

(
ψl(t), xl(tl), yl(t) + µ∆ȳl(tl),ul(t), t

)
−Hl

y

(
ψl(t), xl(t), yl(t),ul(t), t

)]
∆ȳl(t)∆t̄ldµdt

−E
1∫

0

(
1 − µ

)
ψl+1

tl

[
Φl

x

(
xl(tl) + µ∆x̄l(tl), (tl)

)
−Φl

x

(
xl(tl), tl

)]
∆xl(tl)∆t̄ldµ

(13)

According to a necessary condition for an optimal solution, we obtain that the coefficients of the
independent increments ∆xl(t),∆yl(t),∆t̄l equal zero. Using assumption IV and the expression (10), from
the identity (12), we obtain that (9) is true.

By (9) and (11) , through the simple transformations, expression (12) can be rewritten under the following
form:

∆J (u) =
r∑

l=1
∆Jl

(
ul
)

= −
r∑

l=1
E

tl∫
tl−1

[
∆ul Hl

(
ψl(t), xl(t), yl(t),ul(t), t

)
+

∆ul Hl
x

(
ψl(t), xl(t), yl(t),ul(t), t

)
∆x̄l(t) + ∆ul Hl

y

(
ψl(t), xl(t), yl(t),ul(t), t

)
∆ȳl(t) ] ∆t̄ldt +

r∑
l=1
ηtl

tl−1

(14)
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Due to the fact the space of admissible controls is not assumed to be convex , onwards we will use following
spike variations:

∆ul(t) = ∆uθl

t,εl =

{
0, t < [θl, θl + εl) , εl > 0, θl ∈ [tl−1, tl)
ūl
− ul

t, t ∈ [θl, θl + εl) , ūl
∈ L2

(
Ω,Fθl ,P; Rm

)
,

where εl are small enough. In terms of the presented variations the expression (14) takes the form of:

∆θ J (u) = −
r∑

l=1
E
θl+εl∫
θl

[
∆ul Hl

(
ψl(t), xl(t), yl(t),ul(t), t

)
+

∆ul Hl
x

(
ψl(t), xl(t), yl(t),ul(t), t

)
∆x̄l(t) + ∆ul Hl

y

(
ψl(t), xl(t), yl(t),ul(t), t

)
∆ȳl(t) ] ∆t̄ldt +

r∑
l=1
ηθl+εl
θl

(15)

The following lemma will be used in estimation of increment (15).

Lemma 3.2. ([6]) Assume that conditions I− IV are fulfilled. Then lim
εl→0

E
∣∣∣xθl
εl

(t) − xl(t)
∣∣∣2 ≤ Nεl, a.e. in [tl−1, tl) , l =

1, r .

Here xθl
εl

(t) are the trajectories of system (1)-(3), corresponding to the controls uθl
εl

(t) = ul(t) + ∆uθl
εl

(t).

By invoking the expression (13),using 3.2 following estimation is implied:

ηθl+εl
θl

= o (εl) , l = 1, r.

According to optimality of controls ūl(t), l = 1, r from (15) for each l it follows that:

∆θl J(u) = −εlE
[
∆ūl H(ψl(θl), xl(θl), yl(θl),ul(θl), θl)

]
∆t̄l + o(εl) ≥ 0

According to sufficient smallness εl it follows that (8) is fulfilled.

4. Necessary Condition of Optimality for Stochastic Switching Systems with Constraint

The main result of the paper, presented in this section, is proved via an approximation of the initial
control problem by the sequence of unconstraint systems. Based on 3.1 the necessary condition of optimality
for stochastic control systems with delay (1)-(6) with endpoint constraint is obtained.

Theorem 4.1. Suppose that, conditions I-V hold. Let πr = (t0, t1, ..., tr, x1(t), x2(t), , ..., xr(t),u1,K1, ...,Kr,u2, ...,ur)
is an optimal solution of problem (1)-(6), and random processes (ψl(t), βl(t)) ∈ L2

Fl (tl−1, tl; Rnl )× L2
Fl (tl−1, tl; Rnl×nl ) are

the solution of the following adjoint equations:


dψl(t) = −[Hl

x(ψl(t), xl(t), yl(t),ul(t), t) + Hl
y(ψl(t + t), xl(t + h), yl(t + h),ul(t + h), t + h)]dt

+βl(t)dwl(t), tl−1 6 t < tl − h,
dψl(t) = −Hl

x(ψl(t), xl(t), yl(t),ul(t), t)dt + βl(t)dwl(t), tl − h 6 t < tl,
ψl(tl) = −λlϕl

x(xl(tl)) + ψl+1(tl)Φl
x(xl(tl), tl), l = 1, r − 1,

ψr(tr) = −λ0ϕr
x(xr(tr)) − λrqr

x(xr(tr), tr).

(16)

Then
a) a.e. θ ∈ [tl−1, tl] and ∀ ūl

∈ Ul, l = 1, r, a.c. the maximum principle (8) fulfill;
b) a.c. following transversality conditions hold for each l = 1, r − 1

(1 − al)λ1qr(xr(tr), tr) = alψ
l+1(tl)Φl

(
xl(tl), tl

)
− blψ

l+1(tl)1l+1
(
xl+1(tl + h),Kl+1(tl),ul+1(tl + h), tl + h

)
. (17)
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Proof. For any natural j let’s introduce the following approximating functional for each l = 1, r :

I j (u) = S j < E
r∑

l=1

[ϕl (tl) +

tl∫
tl−1

pl
(
xl(t),ul(t), t

)
dt],Eqr(xr(tr), tr) >

= min
(c,y)∈ε

√∣∣∣c − 1/ j − EM (x,u, t)
∣∣∣2 +

∣∣∣y − Eqr(xr(tr), tr)
∣∣∣2,

where M (x,u, t) =
r∑

i=1

ϕl(xl(tl)) +
tl∫

tl−1

p(xl(t),ul(t), t)dt

;ε =
{

c : c ≤ J0, y ∈ G
}
;c =

r∑
i=1

cl and J0 minimal value of

the functional in the problem (1)-(5).
Let Vl

≡ (Ul
∂
, d) be space of controls obtained by means of the following metric:

d(ul, vl) = (l ⊗ P)
{
(t, ω) ∈ [tl−1, tl] ×Ω : νl

t , ul(t)
}
.

For each l = 1, r , the Vl is a complete metric space [22].
Proof of the next lemma immediately follows from Ito’s formula and assumptions I, II, IV.

Lemma 4.2. Assume that ul,n(t) , l = 1, r be the sequence of admissible controls from Vl, and xl,n(t) be the sequence
of corresponding trajectories of the system (1)-(4).

Then, lim
n→∞

{
sup

tl−1≤t≤tl

E
∣∣∣xl,n(t) − xl(t)

∣∣∣2} = 0,if : d(ul,n(t),ul(t))→ 0.

Here xl(t) is a trajectory corresponding to an admissible controls ul(t) , l = 1, r.

Due to continuity of the functionals Il
j : Vl

→ Rnl , according to Ekeland’s variational principle, there

are controls such as; ul, j(t) : d(ul, j(t),ul(t)) ≤
√
εl

j and for ∀ul(t) ∈ Vl the following is achieved: Il
j(u

l, j) ≤

Il
j(u

l) +
√
εl

jd(ul, j,ul), εl
j = 1

j .

This inequality means that (t1, ..., tr, x1, j(t), ..., xr, j(t),K1, ...,Kr,u1, j(t), ...,ur, j(t)) for each t ∈ (tl−1, tl] is a
solution of the following problem:

J j(u) =
r∑

l=1

Il
j(u

l) +
√
εl

jE
tl∫

tl−1

δ(ul(t),ul, j(t))dt

→ min

dxl(t) = 1l(xl(t), yl(t),ul(t), t)dt + f l(xl(t), yl(t), t)dw(t), l = 1, r
xl+1(t) = Kl+1(t), l = 0, r − 1
xl+1(tl) = Φl+1

(
xl(tl), tl

)
, l = 0, r − 1 ;

x1(t0) = x0,ul(t) ∈ Ul
∂

(18)

Function δ(u, v) is determined in the following way: δ(u, v) =

{
0,u = v
1,u , v.

Taking into account (18) from Theorem 3.1 there follows: if (x1, j(t), ..., xr, j(t),u1, j(t), ...,ur, j(t)) is an op-
timal solution of problem (18), and there exist the random processes (ψl, j(t), βl, j(t)) ∈ L2

Fl (tl−1, tl; Rnl ) ×
L2

Fl (tl−1, tl; Rnl×nl ) that are solutions of the following system:

dψl, j(t) = −Hl
x

(
ψl, j(t), xl, j(t), yl, j(t),ul, j(t), t

)
dt −Hl

y

(
ψl, j(t + h), xl, j(t + h), yl, j(t + h),ul, j(t + h), t + h

)
dt

+βl, j(t)dwl(t), t ∈ [tl−1, tl − h) ,
dψl, j(t) = −Hl

x

(
ψl, j(t), xl, j(t), yl, j(t),ul, j(t), t

)
dt + βl, j(t)dwl(t), t ∈ (tl − h, tl) ,

ψl, j(tl) = −λ j
lϕ

l
x

(
xl, j(tl)

)
+ ψl+1(tl)Φl

x(xl, j(tl), tl), l = 1, r − 1

ψr(tr) = −λ j
0ϕ

r
x

(
xr, j

tr

)
− λ j

rqr
x

(
xr, j

tr
, tr

)
.

(19)
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where non-zero (λ j
0, λ

j
1, ..., λ

j
r) meet the following requirement:

λ j
l =

−cl + 1/ j + ϕl(xl(tl)) +
tl∫

tl−1

p(xl(t),ul(t), t)dt

 /J0
j , l = 0, r − 1;

λ j
r = −y + Eqr(xr, j(tr), tr)/J0

j .

(20)

Here

J0
j =

∣∣∣y − Eqr(xr, j(tr), tr)
∣∣∣2 +

∣∣∣∣∣∣∣∣∣c − 1/ j − E
r∑

l=1

ϕl(xl(tl)) +

tl∫
tl−1

p(xl(t),ul(t), t)dt


∣∣∣∣∣∣∣∣∣
2

1/2

2) a.e. θ ∈ [tl−1, tl] and ∀ ũl
∈ Vl, l = 1, r, a.c. is satisfied:

Hl(ψl, j(θ), xl, j(θ), yl, j(θ), ūl, j, θ) −Hl(ψl, j(θ), xl, j(θ), yl, j(θ),ul, j, θ) ≤ 0 (21)

3) for each l = 1, r − 1 the following transversality conditions hold:

(1 − al)λ
j
1qr(xr, j(tr), tr) = alψl+1, j(tl + h)Φl+1, j

(
xl, j(tl), tl

)
−blψl+1, j(tl + h)1l+1, j

(
xl+1, j(tl + h),Kl+1(tl),ul+1(tl + h), tl + h

)
, a.c.

(22)

According to conditions I-IV it is achieve that: (λ j
0, ..., λ

j
r)→ (λ0, ..., λr) if j→∞.

To complete the proof of Theorem 4.1 we need the following fact.

Lemma 4.3. Letψl(tl) be a solution of system (16),ψl, j(tl) be a solution of system (19). If d(ul, j(t),ul(t))→ 0, j→∞,
then

E

tl∫
tl−1

|ψl, j(t) − ψl(t)|2dt+E

tl∫
tl−1

|βl, j(t) − βl(t)|2dt→ 0 , l = 1, r.

Proof. It is clear that ∀t ∈ [tl − h, tl):

d
(
ψl, j(t) − ψl(t)

)
= −

[
Hl

x

(
ψl, j(t), xl, j(t), yl, j(t),ul, j(t), t

)
−Hl

x

(
ψl(t), xl(t), yl(t),ul(t), t

)]
dt+(

βl, j(t) − βl(t)
)

dw(t) = −
[
ψl, j(t) 1l

x

(
xl, j(t), yl, j(t),ul, j(t), t

)
+ βl, j(t) f l

x

(
xl, j(t), yl, j(t), t

)
−pl

x

(
xl, j(t),ul, j(t), t

)
− ψl(t)1l

x

(
xl(t), yl(t),ul(t), t

)
−βl(t) f l

x

(
xl(t), yl(t), t

)
+ pl

x

(
xl(t),ul(t), t

)]
dt +

(
βl, j(t) − βl(t)

)
dw(t)

Let us square both sides of the last equation. According to Ito’s formula ∀s ∈ [tl − h, tl):

E(ψl, j(t) − ψl(t))2
− E(ψl, j(s) − ψl(s))2 =

2E
tl∫

s
[ψl, j(t) − ψl(t)][(1l∗

x (xl, j(t), yl, j(t),ul, j(t), t) − 1l∗
x (xl(t), yl(t),ul(t), t))ψl, j(t)+

+1l∗
x (xl(t), yl(t),ul(t), t)(ψl, j(t) − ψl(t)) + ( f l∗

x (xl, j(t), yl, j(t), t) − f l∗
x (xl(t), yl(t), t))βl, j(t) + f l∗

x (xl(t), yl(t), t)×

×(βl, j(t) − βl(t)) − pl(xl, j(t),ul, j(t), t) + pl
x(xl(t),ul(t), t)]dt + E

tl∫
s

(βl, j(t) − βl(t))2dt

Now, due to assumptions I-IV we get:

E
tl∫

s
|βl, j(t) − βl(t)|2dt + E|ψl, j(s) − ψl(s)|2 ≤ EN

tl∫
s
|ψl, j(t) − ψl(t)|2dt + ENε

tl∫
s
|βl, j(t) − βl(t)|2dt + E

∣∣∣ψl, j(tl) − ψl(tl )
∣∣∣2 .
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Hence, by the Gronwall inequality [26] we obtain

E|ψl, j(s) − ψl(s)|2 ≤ DeN(tl−s) a.e. in [tl − h, tl], (23)

where D = E|ψl, j(tl)−ψl(tl)|2.Hence, it follows from (16) and (19) that: ψl, j(tl)→ ψl(tl) which leads to D→ 0.
Consequently, it follows thatψl, j(s)→ ψl(s) in L2

F(tl−1−h, tl; Rnl ), and thus βl, j(s)→ βl(s) in L2
F(tl−1−h, tl; Rnl×nl ).

Then ∀t ∈ [tl−1, tl − h) from expression we get:

d
(
ψl, j(t) − ψl(t)

)
= −

[
Hl

x

(
ψl, j

t , x
l, j(t), yl, j(t),ul, j(t), t

)
−Hl

x

(
ψl(t), xl(t), yl(t),ul(t), t

)]
dt−[

Hl
y

(
ψl, j(t + h), xl, j(t + h), yl, j(t + h),ul, j(t + h), t + h

)
−Hl

y

(
ψl(t + h), xl(t + h), yl(t + h),ul(t + h), t + h

)]
dt

+
(
βl, j(t) − βl(t)

)
dw(t);

using simple transformations, in view of assumptions I-IV, it is achieved:

E
tl−h∫
s
|βl, j(t) − βl(t)|2dt + E|ψl, j(s) − ψl

s|
2
≤ EN

tl−h∫
s

∣∣∣ψl, j(t) − ψl(t)
∣∣∣2 dt+

+ENε
tl−h∫
s
|βl, j(t) − βl(t)|2dt + E|ψl, j(tl − h) − ψl(tl − h)|2.

Hence, according to Gronwall inequality we have:
E|ψl, j(s) − ψl(s)|2 ≤ DeN(tl−h−s)a.e. in [tl−1, tl − h), l = 1, r − 1;, where constant D is determined in the

following way: D = E|ψl, j(tl − h) − ψl(tl − h)|2,which D → 0. Then from (23) implies that ψl, j(s) → ψl(s) in
L2

Fl (tl−1, tl; Rn) and βl, j(s)→ βl(s) in L2
Fl (tl−1, tl; Rn×n).

Based on Lemma 4.3, passing to the limit in system (19), we derive the fulfilment of (16). Finally,fulfilment
of maximum principle and transversality conditions can be obtain to take the limits in (21) and (22).

In order to establish the existence and uniqueness of solution of adjoint stochastic differential equations,
it is enough to follow the method described in the article [16], to make use of the independence of Wiener
processes w1(t), ...,wr(t).

5. Conclusion

Investigated stochastic delay systems are widely used in various optimization problems of nuclear
fission, communication , self-oscillating, biology, technology, engineering and economy [9, 13, 21, 23, 32,
45, 47]. A classical approach for optimization, and particularly for control problems are to derive necessary
conditions satisfied by an optimal solution. In this paper a necessary condition of optimality in form of
maximum principle for stochastic control problem of constrained switching systems with delay on state is
obtained. The necessary conditions developed in this study can be viewed as a stochastic analogues of the
problems formulated in [8, 14, 20, 44] and extension of results [36, 42]. Theorem 3.1 and Theorem 4.1 are a
improving of the results confirmed in [1, 2, 5, 6].
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