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Abstract.Given a finite group G, we introduce the permutability degree of G, as

pd(G) =
1

|G| |L(G)|

∑
X∈L(G)

|PG(X)|,

where L(G) is the subgroup lattice of G and PG(X) the permutizer of the subgroup X in G, that is, the
subgroup generated by all cyclic subgroups of G that permute with X ∈ L(G). The number pd(G) allows
us to find some structural restrictions on G. Successively, we investigate the relations between pd(G), the
probability of commuting subgroups sd(G) of G and the probability of commuting elements d(G) of G.
Proving some inequalities between pd(G), sd(G) and d(G), we correlate these notions.

1. Introduction

All the groups of the present paper are supposed to be finite. Given a group G and its subgroup lattice
L(G), the subgroup commutativity degree

sd(G) =
|{(H,K) ∈ L(G) × L(G) | HK = KH}|

|L(G)|2

of G and the commutativity degree

d(G) =
|{(x, y) ∈ G × G | xy = yx}|

|G|2

of G have been largely studied in the last years. Fundamental properties and interesting generalizations of
sd(G) can be found in [11–13, 22, 27–29], and for d(G) in [1, 2, 6, 8–10, 14, 17–20, 24]. To study these notions,
various perspectives have been considered in literature, because both measure theory and combinatorial
techniques may be applied in order to get restrictions on the structure of a group.

The present paper investigates a similar concept, the permutability de1ree of G

pd(G) =
1

|G| |L(G)|

∑
X∈L(G)

|PG(X)|
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and its connections with sd(G) and d(G). In the previous formula, the permutizer PG(X) of a subgroup X
of G is defined to be the subgroup generated by all cyclic subgroups of G that permute with X, that is,
PG(X) = 〈1 ∈ G | 〈1〉X = X〈1〉〉. This means that X ∈ L(PG(X)) and X , PG(X) if and only if X〈1〉 = 〈1〉X for
some 1 ∈ G − X.

We concentrate on permutizers because several classifications are available in literature on this topic.
Recall that a group G such that X , PG(X) for every proper subgroup X of G is said to satisfy the permutizer
condition P, or briefly P–1roup. Therefore the permutizer condition generalizes the well–known normalizer
condition (see [26]) and gives information on how the group is near to be supersolvable. The study of
permutizers is not new and it is based on a series of fundamental contributions [3, 21, 23, 30] in the last 20
years. From [3, Corollary 2], we know that for groups of odd order the permutizer condition is equivalent
of being supersolvable and actually, a complete classification of P–groups can be found in [3].

Now we may define the subgroup
P(G) =

⋂
H∈L(G)

PG(H)

and correlate it with other subgroups of G. For instance, it is easy to check that the norm N(G) of G (see [26]
for the properties of N(G)) satisfies the following relation

Z(G) =
⋂
x∈G

CG(x) ⊆ N(G) =
⋂

H∈L(G)

NG(H) ⊆
⋂

H∈L(G)

PG(H) = P(G).

This relation emphasizes how P(G) is connected with other subgroups, widely investigated in literature,
such as intersections of normalizers or of centralizers. Note that for any X ∈ L(P(G)) one has PG(X) = G.

The subgroup P(G) is also important because it allows us to “manipulate” the expression of pd(G), for
getting some analogies with

sd(G) =
1

|L(G)|2
∑

H∈L(G)

|CL(G)(H)| and d(G) =
1
|G|2

∑
x∈G

|CG(x)|,

where PG(X) is the natural substitute of CL(G)(X) = {Y ∈ L(G) | YX = XY} in [22, 27] and of CG(x) = {y ∈
G | xy = yx} in [2, 8]. This manipulation of the expression of pd(G) will allow us to detect whether P(G) is
cyclic or not by looking only at the size of pd(G).

2. Basic Properties and Terminology

Some of the following observations will be useful later on.

Remark 2.1. Since PG(X) is a subgroup of G, for all X ∈ L(G), and it always contains the trivial subgroup,
then |PG(X)| ≤ |G| and also

0 <
∑

X∈L(G)

|PG(X)| ≤ |L(G)| |G|

so that pd(G) ∈]0, 1].

Remark 2.2. A group G has pd(G) = 1 if and only if the sum of all |PG(X)| for X ∈ L(G) is equal to |G||L(G)|. By
default, a quasihamiltonian group G, that is, a group in which every subgroup is permutable, has pd(G) = 1.
A classification of quasihamiltonian groups can be found in [26, Theorems 2.4.11 and 2.4.16] and, roughly
speaking, these groups are direct products of abelian groups by a copy of the quaternion group of order 8.
In particular, abelian groups have permutability degree equal to 1.

Another case in which the permutability degree reaches 1 is the following.

Remark 2.3. A P–group G in which all proper subgroups are maximal has pd(G) = 1. In such a case for all
proper subgroups X of G one has X ⊂ PG(X) = G and so pd(G) = 1. One might be tempted to think that
all P–groups have permutability degree equal to 1, but Example 3.2 below shows this is false, and then the
additional condition “in which all proper subgroups are maximal” cannot be omitted.
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Now we rewrite the original expression of permutability degree in the following more useful form.
Since L(P(G)) is a sublattice of L(G), it turns out that

pd(G) =
1

|G||L(G)|

 ∑
X∈L(P(G))

|PG(X)| +
∑

X∈L(G)−L(P(G))

|PG(X)|

 . (2.1)

Note also that a cyclic group C (or better a quasihamiltonian group Q) has sd(C) = pd(C) = d(C) = 1 (or
better sd(Q) = pd(Q) = 1). Therefore, relations between sd(G) and pd(G) are meaningful when G is noncylic
and nonquasihamiltonian (see Remark 2.2).

For the sake of completeness, we recall some results of Beidleman and Heineken in [4]. The quasicenter
Q(G) of G is the subgroup of G generated by all elements 1 ∈ G such that 〈1〉K = K〈1〉, where K is an
arbitrary subgroup of G. The subgroup Q(G) was introduced by Mukherjee and studied by several authors
in the last years (see [4, 5, 25]), who investigated chains of quasicenters and relations with supersolvable
groups. On the other hand, the hyperquasicenter of G, denoted by Q∞(G), is the largest term of the chain
1 = Q0(G) ≤ Q1(G) = Q(G) ≤ . . . ≤ Qi(G) ≤ Qi+1(G) ≤ . . . of normal subgroups of G, where, for any i ≥ 0,
Qi+1(G)/Qi(G) = Q(G/Qi(G)) and Q∞(G) =

⋃
i≥0

Qi(G).

Recall that a normal subgroup N of G is said to be hypercyclically embedded in G if it contains a G–invariant
series whose factors are cyclic. It is easy to see that G contains a unique largest hypercyclically embedded
subgroup, which we denote Σ(G). More precisely, [4, Theorem 1] shows that Σ(G) = Q∞(G) is true for any
group G. Some interesting connections hold between P–groups, P(G) and Q∞(G). For instance, [3, (3.1), p.
697] shows that a group G is a P–group if and only if G/Σ(G) is a P–group. As a first consequence, a group
G is a P–group if and only if G/Q∞(G) is a P–group. As a second consequence, Z(G) ⊆ Q(G) ⊆ P(G) is true
for any group G. Furthermore, Q∞(G) = P(G) if and only if P(G) = Σ(G).

3. Examples

Now we specify some of the previous notions for the symmetric group S3 on 3 objects. This will help
us to visualize analogies and differences between permutability degrees, subgroup commutativity degrees
and commutativity degrees.

Example 3.1. The smallest nonabelian group S3 has L(S3) = {{1},S3,A3,H,K,L}, where A3 = 〈(123)〉 = 〈a〉,
H = 〈(12)〉 = 〈h〉, K = 〈(13)〉 = 〈k〉, L = 〈(23)〉 = 〈l〉. Noting that HK , KH, HL , LH, KL , LK, one has

PS3 ({1}) = PS3 (A3) = PS3 (S3) = S3 ; PS3 (H) = PS3 (K) = PS3 (L) = S3 ; P(S3) = S3.

The fact that PS3 ({1}) = PS3 (A3) = PS3 (S3) = S3 is clear, since we are dealing with permutizers of normal
subgroups. On the other hand, A3 = 〈a〉 ⊆ PS3 (H) by definition. Now, H ⊆ PS3 (H) is obvious. Then HA3,
which is a subgroup of S3, should be contained in PS3 (H) and |HA3| =

|H| |A3 |

|H∩A3 |
= 6. This forces PS3 (H) to be

equal to S3. Similarly we get PS3 (K) = PS3 (L) = S3.
S3

�
�
�A3
@
@
@
{1}

H

@
@
@

�
�
�

��
�
��
�

K

H
HHH

HHL Fig.III.1. Hasse diagram of L(S3).

It is interesting to note that an example as easy as this has a lot of properties in our perspective of
study. The group S3 is supersovable by looking at the series {1} /A3 /S3, but is not quasihamiltonian, due to
HK , KH. At the same time, S3 does not satisfy the normalizer condition, since it is not nilpotent. Moreover,
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S3 has Z(S3) = {1}, Σ(S3) = Q2(S3) = Q∞(S3) = S3, Q(S3) = A3 and it is a P–group, since S3/Σ(S3) = {1} is
obviously a P–group.

A direct calculation shows that

6 · 6 pd(S3) =
∑

X∈L(S3)

|PS3 (X)| = |PS3 (H)| + |PS3 (K)| + |PS3 (L)| + |PS3 (A3)| + |PS3 (S3)| + |PS3 ({1})| = 36,

then pd(S3) = 1 > sd(S3) = 5
6 >

1
2 = d(S3), agreeing with the computations in [27, p.2510] and [8, 9].

Another easy (but interesting) example is the following.
Example 3.2. The dihedral group of order 8 is D8 = 〈a, b | a2 = b4 = 1, a−1ba = b−1

〉 and has L(D8) =
{{1}, 〈b〉, 〈b2

〉, 〈a〉, 〈ba〉, 〈b2a〉, 〈b3a〉, {1, b2, a, b2a}, {1, b2, ba, b3a},D8}. The normal subgroups are D8, {1}, B = 〈b〉,
Z(D8) = 〈b2

〉, M1 = {1, b2, a, b2a} and M2 = {1, b2, ba, b3a}. Notice that H = 〈b2a〉 and K = 〈a〉 are contained in
M1, while U = 〈ba〉 and V = 〈b3a〉 in M2.

D8
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�
�M1
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@

@
@

�
�
��
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@
@
Z(D8)
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{1}

Fig.III.2. Hasse diagram of L(D8).

Moreover

8 = |D8| = |PD8 ({1})| = |PD8 (D8)| = |PD8 (〈b〉)| = |PD8 (Z(D8))| = |PD8 (M1)| = |PD8 (M2)|,

4 = |M1| = |PD8 (H)| = |PD8 (K)|, 4 = |M2| = |PD8 (V)| = |PD8 (U)|

and Q(D8) = P(D8) = Z(D8) < Σ(D8) = Q∞(D8) = D8. In fact, D8 = Σ(D8) is supersolvable and it is also a
P–group, but nevertheless its permutability degree is different from 1, because

8 · 10 pd(D8) =
∑

X∈L(D8)

|PD8 (X)| = 6 · |D8| + 2 · |{1, b2, a, b2a}| + 2 · |{1, b2, ba, b3a}| = 64.

More precisely,

d(D8) =
5
8
< pd(D8) =

64
80

=
4
5
< sd(D8) =

46
55
.

The value of d(D8) can be found in [8] and that of sd(D8) in [27]. This example shows that there exist
P–groups with permutability degree different from 1. Note that D8 satisfies 8 = |D8| < |L(D8)| = 10 but

8 = |{{1},D8, 〈b〉, {1, b2, ba, b3a}, {1, b2, a, b2a}, 〈b2a〉, 〈b2
〉, 〈a〉}| = |CL(D8)(〈a〉)|

6≤ |ZL(D8)(〈a〉)| = |{{1}, 〈b2a〉, 〈b2
〉, 〈a〉}| = 4.

Examples 3.1 and 3.2 illustrate a series of problems for the computation of the permutability degree,
arising from the nature of the subgroup lattice of the groups under consideration. We will come back to
this point later on.

4. General Properties of the Permutability Degree

We note that [8, Theorems 2.5, 3.3] shows that the commutativity degree is monotone. This is a
well–known property, which is due to the fact that we are dealing with a positive monotone measure
of probability. Similar situations can be found for sd(G) in [27, Proposition 2.4, Corollaries 2.5, 2.6, 2.7,
Theorems 3.1.1, 3.1.5] and in [9, 14, 22]. For pd(G) we have something similar.
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Theorem 4.1. Let H be a subgroup of a group G. Then

|L(H)|
|L(G)| |G : H|

pd(H) ≤ pd(G).

Moreover, if |PG(X) : PH(X)| ≤ |G : H| for all X ∈ L(G), P(G) ≤ H and |L(G) − L(P(G))| ≤ |L(P(G))|, then
|L(G)| pd(G) ≤ 2|L(H)| pd(H). In particular,

|L(H)|
|L(G)| |G : H|

pd(H) ≤ pd(G) ≤
2|L(H)|
|L(G)|

pd(H).

Proof. We start by proving the first inequality. Since |PH(X)| ≤ |PG(X)| for all X ∈ L(G), we have

|G| |L(G)| pd(G) =
∑

X∈L(G)

|PG(X)| ≥
∑

X∈L(G)

|PH(X)| =
∑

X∈L(H)

|PH(X)| = pd(H) |H| |L(H)|

and the result follows.
Now we prove the second inequality. Since by hypothesis, |PG(X) : PH(X)| ≤ |G : H|, we have |PG(X)| ≤

|G : H||PH(X)| and so

|G| |L(G)| pd(G) =
∑

X∈L(G)

|PG(X)| ≤ |G : H|
∑

X∈L(G)

|PH(X)|

but, from (2.1), this means

= |G : H|

 ∑
X∈L(P(G))

|PH(X)| +
∑

X∈L(G)−L(P(G))

|PH(X)|


and the inequality |L(G) − L(P(G))| ≤ |L(P(G))| provided by hypothesis, implies

≤ |G : H|

 ∑
X∈L(P(G))

|PH(X)| +
∑

X∈L(P(G))

|PH(X)|

 = 2|G : H|
∑

X∈L(P(G))

|PH(X)|

≤ 2|G : H|
∑

X∈L(H)

|PH(X)| = 2 |G : H| |H| |L(H)| pd(H)

from which we have |L(G)| pd(G) ≤ 2|L(H)| pd(H).

A classic splitting result for the product probability of two independent events is described by the
following corollary. The proof may be generalized to finitely many factors, whose orders are pairwise
coprime.

Proposition 4.2. Let G and H be two groups such that gcd(|G|, |H|) = 1. Then pd(G ×H) = pd(G) pd(H).

Proof. Given three groups A, B and C such that A × B ⊆ C, we know that NC(A × B) = NC(A) ×NC(B). This
holds similarly for the permutizers and it is easy to see that PC(A × B) = PC(A) × PC(B). Now this fact and
the assumption gcd(|G|, |H|) = 1 allow us to conclude that

1
|G ×H| |L(G ×H)|

∑
X×Y∈L(G×H)

|PG×H(X × Y)| =
1

|G| |L(G)|
1

|H| |L(H)|

∑
X∈L(G)

|PG(X)|
∑

Y∈L(H)

|PH(Y)|.
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The underlying problem we deal with is the order of the subgroup lattices, which is hard to predict in
general. If we concentrate on some groups arising from finite geometries, then the situation is more clear
(dihedral groups, semidihedral groups and generalized quaternion groups were studied in [2, 8, 11, 22, 27–
29] from a similar perspective). Having in mind Examples 3.1 and 3.2, we observe from [26, pp. 26–29] and
[22, 27] that the dihedral group

D2n = 〈x, y | x2 = yn = 1, x−1yx = y−1
〉 = C2 n Cn = 〈x〉 n 〈y〉 (4.1)

of symmetries of a regular polygon with n ≥ 1 edges has order 2n and splits in the semidirect product of a
cyclic group 〈y〉 ' Cn of order n by a cyclic group 〈x〉 ' C2 of order 2 acting by inversion on Cn. In particular,
S3 ' D6 for n = 3 and one can note that the Hasse diagram of L(D6) = L(S3) forms a diamond in which
there are only 4 atomic elements (see [26] for this terminology) in between {1} and D6 and their number can
be easily computed. The following Fig.III.3 summarizes the information of Example 3.1 in a more general
situation.

D2p
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@
@
{1}

H1

@
@
@

�
�
�

��
��

��
H2 Hp

H
HHH

HH

���
���

���
���

XXXXXXXXXXXX...

Fig.III.3. Hasse diagram of L(D2p) with odd prime p ≥ 3;
H1 ' H2 ' . . . ' Hp ' C2.

From Figs.III.1, III.2 and III.3, it is clear that L(D2p) has p + 1 proper subgroups, and this fact comes out
from the following formula

|L(D2n)| = σ(n) + τ(n), (4.2)

where σ(n) and τ(n) are the sum and the number of all divisors of n (here n is arbitrary, not necessarily an
odd prime), respectively.

In particular, if n = pm is a power of a prime p (possibly p = 2) for some m ≥ 0, then the set of all divisors
of pm is Div(pm) = {1, p, p2, . . . , pm

} so that

σ(pm) =

m∑
j=0

p j =
1 − pm+1

1 − p
and τ(pm) = |Div(pm)| = m + 1. (4.3)

The reader has probably noted that we used the formula for the sum of a geometric series in the previous
expression for σ(pm). Then we may conclude that

|L(D2pm )| = 1 + m +
1 − pm+1

1 − p
= m +

pm+1 + p − 2
p − 1

. (4.4)

The next result shows an upper bound for pd(G), when |L(G)| is of type (4.4).

Theorem 4.3. Let G be a noncyclic group and p the smallest prime divisor of |G|. If |P(G)| = p and |L(G)| =

m +
pm+1+p−2

p−1 for some m ≥ 0, then

pd(G) ≤
pm+1 + 2p2 + (m − 3)p −m

pm+2 + (m + 1)p2 − (m + 2)p
.
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Proof. If PG(X) = G for some X ∈ L(G), then |G| = |PG(X)| = |P(G)| and G would be cyclic, contradicting our
assumption. Without loss of generality we may assume PG(X) , G for all X ∈ L(G). The minimality of p
implies that |PG(X)| ≤ |G|p for all X ∈ L(G). Of course, |L(P(G))| = 2 and (2.1) becomes

|G| ·
(

mp −m + pm+1 + p − 2
p − 1

)
· pd(G) = 2|G| +

∑
X∈L(G)−L(P(G))

|PG(X)|

≤ 2|G| + (|L(G) − L(P(G))|)
|G|
p

= 2|G| +
|G|
p

(|L(G)| − 2) = 2|G| +
|G|
p

(
mp −m + pm+1 + p − 2

p − 1
− 2

)
=
|G|
p

(
mp −m + pm+1 + p − 2 − 2p + 2 + 2p2

− 2p
p − 1

)
=
|G|
p

(
pm+1 + 2p2 + (m − 3)p −m

p − 1

)
.

This proves what we claimed.

5. Some Theorems of Structure

The present section is devoted to prove restrictions on P(G), arising from exact bounds for pd(G), when
G is an arbitrary group. The evidences of Examples 3.1 and 3.2 motivated most of the following results.

Theorem 5.1. Let G be a group (with pd(G) , 1) and p the smallest prime divisor of |G|. Then(
1 −

p
|G|

)
|L(P(G))|
|L(G)|

+
p
|G|
≤ pd(G).

Moreover, if PG(X) is a proper subgroup of G for all X ∈ L(G) − L(P(G)), then

pd(G) ≤
1
p

+
(p − 1)|L(P(G))|

p |L(G)|
.

Proof. In order to prove the lower bound, it is enough to note from (2.1) that

|L(G)||G|pd(G) = |L(P(G))||G| +
∑

X∈L(G)−L(P(G))

|PG(X)| ≥ |L(P(G))||G| +
(
|L(G)| − |L(P(G))|

)
p, (5.1)

where we have used in the last step that |PG(X)| ≥ p. Then we continue

= (|G| − p)|L(P(G))| + p|L(G)|

from which we get

pd(G) ≥
(|G| − p)|L(P(G))| + p|L(G)|

|L(G)||G|
=

(|G| − p)|L(P(G))|
|L(G)||G|

+
p
|G|
.

Now we prove the upper bound. Formula (2.1) becomes again (5.1)

|G||L(G)| pd(G) = |L(P(G))||G| +
∑

X∈L(G)−L(P(G))

|PG(X)|

once one uses the fact that PG(X) = G for every X ∈ L(P(G)). Now, since |G : PG(X)| , 1 for every
X ∈ L(G) − L(P(G)), we get |G : PG(X)| ≥ p, that is, |PG(X)| ≤ |G|p . Therefore (5.1) is upper bounded by

≤ |L(P(G))||G| +
(
|L(G)| − |L(P(G))|

) |G|
p

=
(p − 1)|L(P(G))||G|

p
+
|L(G)||G|

p

and the result follows.
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Of course, D8 satisfies the lower bound, but not the upper bound, of Theorem 5.1. Details can be
deduced from the information of Example 3.2. This is to justify that Theorem 5.1 originates from evidences
of computational nature. On the other hand, Example 3.2 shows also that Z(D8) = P(D8) ' C2. Then, when
can we say that P(D8) is noncyclic? The next two results concern this question.

Theorem 5.2. If P(G) is a nontrivial proper subgroup of a group G and pd(G) = 1
2 +

|L(P(G))|
2 |L(G)| , then P(G) is noncyclic.

Proof. By assumption we exclude the cases P(G) = G and P(G) = {1}, which are the extremal situations
already known. Assume that P(G) is cyclic of prime order q ≥ p ≥ 2, where p is the smallest prime dividing
|G|. We may apply the arguments of the proof of Theorem 4.3 and, noting that |L(P(G))| = 2, we find that

pd(G) =
1
2

+
|L(P(G))|
2 |L(G)|

=
1
2

+
1

|L(G)|
=
|L(G)| + 2

2|L(G)|
≤

2 |G|
|G| |L(G)|

+
|G| (|L(G)| − 2)

p |G| |L(G)|
=

(2p + |L(G)| − 2) |G|
p |G| |L(G)|

and then the inequality
|L(G)| + 2

2
=
|L(G)|

2
+ 1 ≤

(2p − 2)
p

+
|L(G)|

p

which means
|L(G)|

2
−
|L(G)

p
=

(p − 2)|L(G)|
2p

≤ 1 −
2
p

=
p − 2

p
.

From this we derive the contradiction |L(G)|
2 ≤ 1, as at least {1} and G are contained in L(G). Therefore, P(G)

cannot be cyclic of prime order and we may assume that P(G) is cyclic of order k ≥ 2. Now, we note that
|L(P(G))| = |Div(k)|, where Div(k) is the set of all divisors of k. Here the argument we just used for q may
still be applied. In fact we have

1
2

+
|Div(k)|
2 |L(G)|

=
|L(G)| + |Div(k)|

2|L(G)|
≤
|Div(k)| |G|
|G| |L(G)|

+
|G| (|L(G)| − |Div(k)|)

p |G| |L(G)|

=
(|Div(k)| p + |L(G)| − |Div(k)|) |G|

p |G| |L(G)|

then
|L(G)| + |Div(k)|

2
=
|L(G)|

2
+
|Div(k)|

2
≤

(p − 1)|Div(k)|
p

+
|L(G)|

p

which means
|L(G)|

2
−
|L(G)

p
=

(p − 2)|L(G)|
2p

≤
(p − 1)|Div(k)|

p

and this would imply that |L(G)| ≤ |Div(k)| = |L(P(G))|, that is, L(G) ⊆ L(P(G)) and then L(G) = L(P(G)).
This condition implies G = P(G), a contradiction.

The reader may note that Theorem 5.2 describes a very general situation, which cannot be reduced to
those in Examples 3.1 and 3.2. In fact, looking at Example 3.1, P(D6) = D6 and so P(D6) is not a proper
subgroup of D6, and this means that one of the assumptions of Theorem 5.2 is not satisfied. On the other
hand, P(D8) = Z(D8) is a nontrivial proper subgroup of D8 (see Example 3.2), but 4

5 = pd(D8) , 1
2 + 1

10 = 3
5 ,

and in fact P(D8) is cyclic. Once again, Theorem 5.2 can not be applied. These two examples show that we
cannot strengthen further Theorem 5.2.

However, we may detect groups G with cyclic P(G). The following result shows this circumstance.

Theorem 5.3. Let P(G) be a nontrivial proper subgroup of a group G with pd(G) = 4
5 and p be the smallest prime

divisor of |G|. If 4|G|−5p
5|G|−5p ≤

2
|L(G)| , then P(G) is cyclic of prime order.
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Proof. From the lower bound of Theorem 5.1, we have

pd(G) =
4
5
≥

(
1 −

p
|G|

)
|L(P(G))|
|L(G)|

+
p
|G|
⇔

4
5

1 − p
|G|

−

p
|G|

1 − p
|G|

≥
|L(P(G))|
|L(G)|

⇔

4|G|−5p
5|G|
|G|−p
|G|

≥
|L(P(G))|
|L(G)|

⇔
4|G| − 5p
5|G| − 5p

≥
|L(P(G))|
|L(G)|

.

We conclude that |L(P(G))|
|L(G)| ≤

2
|L(G)| , hence |L(P(G))| ≤ 2. This forces P(G) to be cyclic of prime order.

6. Computations for Dihedral Groups

We describe an instructive example, which correlates most of the notions which we have seen until now.

Proposition 6.1. Let p be an odd prime. Then

1 = pd(D2p) > sd(D2p) =
7p3
− 5p2

− 11p + 9
p4 + 4p3 − 2p2 − 12p + 9

>
p + 3

4p
= d(D2p).

Proof. Noting that D2p = C2 n Cp (see (4.1)) and that L(D2p) forms a diamond (as in Fig.III.3), we conclude
that Z(D2p) is trivial and CD2p (Cp) = Cp is the unique maximal normal subgroup of D2p. Moreover D2p is a
P–group, because Q∞(D2p) = D2p. Therefore a proper subgroup H of D2p should be properly contained in
PD2p (H) and necessarily PD2p (H) = D2p. Thus, we find that pd(D2p) = 1.

On the other hand, we may specialize the formula

sd(D2p) =
τ(p)2 + 2τ(p)σ(p) + 1(p)

(τ(p) + σ(p))2 ,

given in [27, Theorem 3.1.1], where

1(p) =
3p3
− 5p2 + p + 1

p2 − 2p + 1
is the arithmetic function in [27, Eq. 10, p.2514]. From (4.3) we deduce τ(p) = 2 and σ(p) = p + 1 so that

sd(D2p) =
4 + 2 · 2 · (p + 1) +

3p3
−5p2+p+1

p2−2p+1

p2 + 6p + 9
=

8 + 4p +
3p3
−5p2+p+1

p2−2p+1

p2 + 6p + 9
=

8p2
−16p+8+4p3

−8p2+4p+3p3
−5p2+p+1

p2−2p+1

p2 + 6p + 9

=
7p3
− 5p2

− 11p + 9
(p2 + 6p + 9)(p2 − 2p + 1)

=
7p3
− 5p2

− 11p + 9
p4 + 4p3 − 2p2 − 12p + 9

.

Now [20, Remark 4.2] shows that d(D2p) =
p+3
4p and for all odd primes we have

0 > p5
− 21p4 + 30p3 + 26p2

− 63p + 27

⇔ 28p4
− 20p3

− 44p2 + 36p > p5 + 7p4 + 10p3
− 18p2

− 27p + 27

⇔ 28p4
− 20p3

− 44p2 + 36p > p5 + 4p4
− 2p3

− 12p2 + 9p + 3p4 + 12p3
− 6p2

− 36p + 27

⇔ 4p(7p3
− 5p2

− 11p + 9) > (p + 3)(p4 + 4p3
− 2p2

− 12p + 9)

⇔
7p3
− 5p2

− 11p + 9
p4 + 4p3 − 2p2 − 12p + 9

>
p + 3

4p
.

The result follows.

From Proposition 6.1, pd(D2p) has a constant value for all odd primes, while sd(D2p) and d(D2p) are
functions of p. This is an important difference of the permutability degree with respect to the subgroup
commutativity degree and the commutativity degree. This reflects the fact that we are looking at permutizers
in a group, and not at centralizers.
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7. Some Open Questions

We end with a series of open questions. They arise naturally from the study of the present subject. The
first is motivated by the families of dihedral groups, analyzed in Section 6 (and in other parts of the present
paper). Most of these groups may be described in terms of product of groups.

Open Question 7.1. Let G = NH be a product of a normal subgroup N by a subgroup H. What can be said
about the permutability degree of G ?

It is well known that most of dihedral groups, generalized quaternion groups and semidihedral groups
has this structure. They present further analogies in terms of central quotients: one, for instance, is that
D8/Z(D8) ' Q8 and, roughly speaking, one can generalize this isomorphism to Q24 = Q16, Q25 = Q32 and so
on. The reader may refer to [15, 16] for recent studies on these groups. Therefore:

Open Question 7.2. What is the permutability degree of generalized quaternion groups and semidihedral
groups?

There is also another question, which is more general and may require some computational efforts. A
classical result of Cayley allows us to embed a group in a suitable symmetric group. The knowledge of
symmetric groups plays in fact a fundamental role in several aspects of the theory of groups. Therefore:

Open Question 7.3. What is the permutability degree of the symmetric group Sn on n objects?

Finally, the classification of (finite) simple groups may provide interesting aspects of study. For the
(finite) simple (and almost simple) groups of sporadic type a lot is known about their subgroup lattices, see
[7]. Therefore

Open Question 7.4. What is the permutability degree of (finite) simple groups?
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