Approximation of Metric Spaces by Reeb Graphs: Cycle Rank of a Reeb Graph, the Co-rank of the Fundamental Group, and Large Components of Level Sets on Riemannian Manifolds

Irina Gelbukh

Abstract


For a connected locally path-connected topological space X and a continuous function f on it such that its Reeb graph Rf is a finite topological graph, we show that the cycle rank of Rf, i.e., the first Betti number b1(Rf), in computational geometry called number of loops, is bounded from above by the co-rank of the fundamental group π1(X), the condition of local path-connectedness being important since generally b1(Rf) can even exceed b1(X). We give some practical methods for calculating the co-rank of π1(X) and a closely related value, the isotropy index. We apply our bound to improve upper bounds on the distortion of the Reeb quotient map, and thus on the Gromov-Hausdorff approximation of the space by Reeb graphs, for the distance function on a compact geodesic space and for a simple Morse function on a closed Riemannian manifold. This distortion is bounded from below by what we call the Reeb width b(M) of a metric space M, which guarantees that any real-valued continuous function on M has large enough contour (connected component of a level set). We show that for a Riemannian manifold, b(M) is non-zero and give a lower bound on it in terms of characteristics of the manifold. In particular, we show that any real-valued continuous function on a closed Euclidean unit ball E of dimension at least two has a contour C with diam(C ∩ ∂E) ≥ √3.

Refbacks

  • There are currently no refbacks.