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Half Inverse Problem for the Impulsive Diffusion Operator
with Discontinuous Coefficient
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Abstract. The half inverse problem is to construct coefficients of the operator in a whole interval by using
one spectrum and potential known in a semi interval. In this paper, by using the Hocstadt-Lieberman
and Yang-Zettl’s methods we show that if p (x) and g(x) are known on the interval (71/2, 7t), then only one
spectrum sulffices to determine p (x), g(x) functions and f, I coefficients on the interval (0, ) for impulsive
diffusion operator with discontinuous coefficient.

1. Introduction

Inverse spectral problem is recovering the operator from its given spectral datas. These problems
are of great importance in applied mathematics and physics, for example, vibration of a string, quantum

mechanics etc. Inverse spectral problems for regular or singular Sturm-Liouville and diffusion operators
are investigated in [1 — 32].

First results on half inverse problems for regular Sturm-Liouville operator were given by Hochstadt and
Lieberman in [33]. In later years, half inverse problems for various Sturm-Liouville operators and diffusion
operators, i.e., quadratic pencils of Sturm-Liouville operators, were studied by authors [34 — 44].

In this paper, we denote the problem L = L (p,q, o, 8,7, h, H) of the form

Ly(x)=—y" () +[2Ap(x) + g ()] y (x) = )\zp ®yx), xe(,mn) (1)

with the boundary conditions

U(y) =y 0)=hy) =0, V(y):==y' (1) + Hy (1) = 0 ()

and the discontinuity conditions

(3 +0)=v(5-9)

V(5 v0)=pv (5 -0 (5 -0)

2010 Mathematics Subject Classification. Primary 34A55 ; Secondary 34B24, 34L.05

Keywords. impulsive diffusion operator, inverse spectral problem, half inverse problem

Received: 21 February 2014; Accepted: 10 February 2015

Communicated by Dragan S. Djordjevié¢

Email addresses: ycakmak@cumhuriyet.edu. tr (Yasar Cakmak), skaracan@curmhuriyet.edu. tr (Seval Isik)



Y. Cakmak, S. Igik / Filomat 30:1 (2016), 157-168 158

where real-valued functions p (x) € W; (0,m), q(x) € L, (0, m), A is the spectral parameter, a, 3, y are real
[3—1|2+)/2 # 0 and

numbers, § > 0,

To study the half inverse problem, we consider a boundary value problem L together with L, of the
same form but with different coefficients p(x), 4 (x), h, &, y and B. Hence, we consider a second problem

L=L (’;7,’11‘, a,ﬁy,ﬁ,H) of the form

Zy (xX)=-y" )+ [2Ap () + g (0)] y (x) = Azp )y ), xe(0,m) 4)
with the boundary conditions
U(y):=1 (0)—hy(0) =0, V(y) ==y (m) + Hy(m) = 0 )

and the discontinuity conditions

v(3+0)=(3-0)

(6)
(X gy (T T_
Y (2 +0) Py (2 O)+W(2 0)'

The aim of this paper is to solve half inverse problem for the problem L by using the Hocstadt-Lieberman
and Yang-Zettl’s methods. That is, we proved that if p (x) and g(x) functions are known on the interval
(n/2,m), then only one spectrum suffices to determine p (x), q(x) functions and , h coefficients on the
interval (0, ) for impulsive diffusion operator with discontinuous coefficient of problem L.

2. Preliminaries

Let ¢ (x, A) be the solution of equation (1) satisfying the initial conditions ¢ (0, A) = 1, ¢” (0, A) = 0. There
are the functions A (x, t) and B (x, t) whose first order partial derivatives are summable on (0, ) for each
x € (0, ). The following represantation for ¢ (x, 1) solution can be obtained from the appendix

¢x,A)= p*cos (/\W (x) - \(‘/’%) +p~ cos (/\#_ (x) + \“}%)

) pr(x) (7)
+fA(x,t)cos)\tdt+ fB(x,t)sin/\tdt
0 0

where * = %(ﬁi ai[;’)'#i(x) =+ p(x)x+g(1$ w/p(x)),a)(x) = fp(t)dt.
0

It is easy to verify from the integral representation above that the following asymptotic relation is valid
for [A] — o0

@(x,A) =p*cos (Aw (x) - \“}%) +p~ cos (/\y‘ (x) + \‘“/L(L)) +0 (22t ®)
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where 7 := [Im A]|.
The function

A1) = V(p) = ¢ (m,A) + Hp (m, 1) 9)

is called the characteristic function for the problem L. Since the boundary value problem L is self-adjoint,
all zeros of A (A) are real and simple under the following conditions

Y0y -y (my(m)=

and

T

[

0

24 q(x) (y(x)|2} dx > 0.

From (8) and (9), we have

(10)

A = Ag (A)+O(M)

where
Ao(A) =-p* (/\a )sm ()\y (m) = “’(”)) + B (/\a pm )sm (AP‘ (n) + w(n))
+HB* cos ()\y+ (m) - m(n>) + HB™ cos (/\y () + “’(”))

The function A (A) is entire in A. Zeros {A,},5o of A (1) coincide with the eigenvalues of the problem L.
We note that for A € {A : [A — A,,| > O} for fixed 6 > 0,

A(A) = (BT IAal = C)exp (tu™ (). (11)

3. Main Result

In this section, we consider the following half inverse problem by using Hochstadt-Lieberman and
Yang-Zettl’s methods in [33,40] for problem L.

Lemma 3.1. If A, = ’/{;for alln € N then g = E

Proof. Since A, = }\: and A (A), A (A) are entire functions in A of order 1 by Hadamard factorization theorem,

A(A) = Cé A (A)

forall A € C.
Letting |A| — oo for all imaginary A’s, we conclude from
1 A(A) _ ,"; j(mi)
[Al=o0 A (/\) ‘3
that
+
1=0,C = ﬁ ((n) <n)/

ﬁ+
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thus
A(A) = CA(N). (12)
On the other hand, (12) can be written as
Ao (A) = CAg (A) = C(A(A) = Ao (1)) = (A(A) = Ag (A)). (13)
Hence,

q&M—&MD4Mm—MM»
= —p* (/\a )sm (/\y () - w(n)) +p” (/\a )sm (/\y () + w(n))
+HB* cos ()\y* () — “’(”)) + HB™ cos (/\y (r) + <2 (14)

[ B* (/\oz n)) sin (/\y () = w(n)) +B (/\a - ’%) sin (/\y () + “’(”))
+HB* cos ()\y* () - w(”)) +HB™ cos (/\/J (r0) + 4@ )]
If we multiply both sides of (14) with sin (/\ ut(m) — “’(”)) and integrate with respect to A in (0, T) for any

positive real number T, then we get

T
f (A ) =80 (1) = (A (A) = Ag (A)] sin (Ap* () — “22) dA
0

T
= [ [ = 52)in a0 - 52) 1 521+ 42)
0 (15)
+Hp" cos (AW (m) - @) + Hp™ cos (Ay‘ () + @)] sin ()\yJr (m) — @) A
T

—Cf [—E*( Sy ))sm(/\y () — 2 )+ﬁ ( p(n))sm(/\‘u () + 20 )

0
+HEJr cos (Mf (m) — #) + HE‘ cos (/\p‘ () + “’Ev—n))] sin (Mf (m) — @) dA.

Since (7& (1) = Ao ()\)) =0(1)and (A (A) = Ag(A)) = O (1) for A in (0, T),

) 5 oft)

Ca’[?r cos w(m) -
4 a

By letting T — oo we conclude with

a)(n)—a(n)) _ Bt (17)

a "31'

Similarly, if we multiply both sides of (14) with sin ()\y (m) + “’(")) and integrate again with respect to
Ain (0,T), then we get

Ccos(

CCOS(ELQZL:iELE)): £ (18)

@ E—
Taking g > 0 into account, (17) and (18) implies that § = E d
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Theorem 3.2. Let {A,} be the spectrum of both L and L. If p(x) = p(x) and q(x) = g (x) on (g,n), then h = Z,
B= ,E, p (x) = p(x) and g (x) = q (x) almost everywhere on (0, 7).

Proof. It is clear from [24] that the solutions ¢ (x, 1), ¢ (x, A) of equations (1) and (4), respectively, with the
initial conditions ¢ (0,A4) = ¢ (0,A4) = 1,¢’(0,A) = h, ¢’ (0, A) = h can be expressed in the integral forms on

b3

X

X

@ (x,A) = cos (Ax — w (x)) + fA (x,t) cos Atdt + fB (x,t) sin Atdt

0

X

0

X

@ (x,A) = cos (Ax — @ (x)) + fg(x, t) cos Atdt + fg(x, t) sin Atdt.

0

0

(19)

(20)

where the kernels A (x, 1), E(x, t) have properties similar to those of A (x, t), B (x,t).
Using (19) and (20) , we find that

@, A A) = % [cos (2Ax — O (x)) + cos (w (x) — @ (x))]

+fA (x, ) cos (Ax — @ (x)) cos Atdt + fg(x, t) cos (Ax — w (x)) cos Atdt
0 0

+fB (x, t)sin At cos (Ax — @ (x)) dt + fg(x, f) sin At cos (Ax — w (x)) dt
0 0

+ fA (x, t) cos Atdt fg(x, t) cos /\tdt] + [fB (x, £) sin Atdt fg(x, f) sin Atdt

0 0 0 0
+ fA (x, t) cos Atdt fg(x, ) sin Atdt | + fg(x, t) cos Atdt fB (x, t) sin Atdt
0 0 0 0

where 0 (x) = w (x) + @ (x). N _
By extending the range of A (x,t), A (x,t) evenly and B (x, t), B (x, t) oddly with respect to the argument
t, we can write

@, AN)pxA) = % [cos 2Ax — O (x)) + cos (w (x) — @ (x))]

) 1)
3

fHC (x,t) cos At — O (1)) dt — st (x, 1) sin (2At — O (1)) dt‘
0 0

where
He (x,t) =2A (x,x — 2t)cos [0 (t) — @ (x)] + 2A (x,x — 2t) cos [0 () — w (x)]

—2B(x,x —2t)sin [0 (t) — @ (x)] - 2B (x,x — 2t)sin [0 () — w (¥)]
+K7 (x,t)cos O (t) — Ky (x,t) cos O (t) — My (x,t)sin O (t) + M, (x, t) sin O (t),
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Hq (x,£) = 2A (x,x — 2t) sin [0 (£) — @ (x)] + 2A (x, x — 2t) sin [0 () — w (¥)]
+2B (x, x — 2) cos [0 (t) — @ (x)] + 2B (x, x — 2t) cos [0 () — w (¥)]
+Ky (x,1)sin O (t) — Ky (x, ) sin O (t) + M; (x,t) cos 6 (t) — M (x,t) cos 6 (1),

x—2t x
Ki(x,t) = fA(x,s)g(x,s +2t)ds + fA (x,s)g(x,s —2t)ds,
—x 2t—x
x=2t X
Ky (x,t) = —fB(x,s)E(x,s +2t)ds — fB(x,s)'E(x,s —2t)ds,
-x 2t—x
x=2t x
My (x,t) = fA (x,s)E(x,s + 2f)ds — fA (x,s)E(x,s —2t)ds,
—X 2t—x
x=2t X
M, (x, 1) = —fB(x,s)Z{(x,s +2f)ds + fB(x,s)Z(x,s—zt)ds.
-X 2t—x

Now, let us write the equations

0" (x, )+ [Ap () + g ()] @ (x,A) = )\Zp X)) p(x,A) (22)

and

0" (¢, A) + [2A0(x) + T ()] @ (x, A) = A2 p () @ (x, A) . (23)

First, by multiplying (22) with ¢ (x, A) and (23) with ¢ (x, 1), second subtracting them side by side and
then integrating on (0, ), we get
/2
— —_ , — /2 n
f[ZA PE)-p@)+@E-q0)] @A) Q AN dx = (@ @) e EA) - @D, + 1%,
0

from the hypothesis p (x) = p(x), 4 (x) =9 (x) on (g, 7'[) and the initial conditions ¢ (0,4) =1, ¢’ (0,4) = 0,
we obtain
/2
f 2AGE) - p () + @) -9 @) 9 (& )P, D dx+h—h+q (0, 1)@, )= (7, ) @ (7, 1) = 0. (24)
0

Let

P(x):=px)-p),Qx) =q(x) —q(x)
and
/2

HQ):=h-h+ f(ZAP () + Q@) ¢ (x, 1) P (x, 1) dx.
0
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It is clear from the properties of @ (x, A), ¢’ (x, A) and the boundary conditions (2) that the first term in
(24) vanishes and thus

HA,) =0 (25)

for each eigenvalue A,.
Let us define

/2 /2

Hi () = f P () (6, 1) 7 (x, A)dx, Hy (1) = f Q) @ (x, )P (x, A)dx,
0 0

then equation (25) can be rewritten as
(7= h) + 20, Hy (Ay) + Ha () = 0. (26)
From (21) and (24), we obtain
IH () < (C1 + G2 |A]) exp (t7) (27)

for all complex A, where Cy, C, > 0 is constant.
If we denote

@A) := %, (28)

then @ () is an entire function with respect to A.
It follows from (11) and (27) that

Dd(A)=0(1) (29)

for sufficiently large |A].
Using Liouville’s Theorem, we obtain

®(A)=C, forall A

where C is a constant.
Now, we can rewrite the equation H (1) = CA (A) as

/2

(h—n)+ f(Z)\P(x) +Q )@ (x,A) P (x,A)dx =
0

C {—ﬁ* (/\oz - ’%) sin (Ay* () - #) + B (/\oz - ’?) sin ()\y‘ (m) + #)
+HB* cos ()\y* (m) - #) + HB™ cos (/\y‘ (m) + @)} + O (exp (tu* (m))).
By the Riemann-Lebesgue Lemma, the limit of the left side of the above equality exists for A — oo,
A € R. Therefore, we get that C = 0. Then

(H - h) +2AH; (A) + Ha (A) = 0 for all A. (30)

By virtue of (21),

/2

/2
2H1 (A) = fP () cos (w (x) — w (x)) dx + fPl (t) cos At — O (t)) dt — sz (t) sin At — 6 (1)) dt,
0

0

/2

0
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where
/2 /2

Pit)=P(t)+ fP (x)H, (x,t)dx, P> (t) = fP (x) Hs (x, t) dx.

t t

164

(31)

If we change the order of integration, apply partial integration and take P; (7/2) = P (n/2) and P, (11/2) =

0 into account, we get

/2 /2 /2
2H; (A) = fP (x) cos (w (x) — @ (x)) dx + le () ¥Mdt — sz () e~ 2 gy
0 0 0
/2
= fP (x) cos (w (x) — @ (x)) dx + P(;\/Z) sin [Am — 6 (11/2)]
0
) /2 ) /2
_Pég\o) + ﬁfTi (t) ezi/\tdt _ jfﬂ (t) e—ZiAtdtl
0 0
where
Ty (f) = Pi(t) ;iP2 () 00 Ty () = Py (t) —Zipz () £100).

Similarly, we get

/2 /2 /2

2H, (A) = fQ (x) cos (w (x) — w (x)) dx + le (t) cos At — 0O (t)) dt — sz (t)sin At — O (b)) dt,
0 0 0

where
/2 /2

Q) =Q® + | Q) Hc(x,t)dx, Q(f) = | Q(x)Hs (x, ) dx.
/ /

By changing the order of integration, we obtain

m/2 /2 /2
2H, (A) = fQ (x) cos (w (x) — w (x)) dx + le (t) e¥Mdt + fRz (f) e 2iM ¢
0 0 !
where
Ry(t)= DO oty gy o LB o,

2 2
If (32) and (34) are substituted into (30), we get

/2 /2

(—ﬁ—h)+2AfP(x)cos(w(x) —5(x))dx+fQ(x)cos(a)(x)—EJ(x))dx+P(n/2)sin(/\n— 0 (rt/2))
0

0
/2 /2 /2 /2

—P,(0) +i f T) (t) e2Mdt — i f T, (t) e 2Mdt + f Ry (t) XMt + f Ry () e~ 2Mdt = 0.

0 0 0 0

(32)

(33)

(34)

(35)
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Using the Riemann-Lebesgue Lemma for A — o0, A € Rin (35), then it follows that
/2

fP (x) cos (w (x) —w (x))dx =0

0
P(n/2)=0

(36)
/2
z(ﬁ—h) + fQ(x)cos(a)(x) —@(x)dx=0
0
and
/2 /2
f (Ry (1) +iT; (1)) ™t + f (Ra (t) = iT} (1)) e ¥ Mdt = 0
0 0
for all complex number A.
Since the system {eimt tAe ]R} is entire in L, (—g, g) , it follows
Ry (t) +iT; () =0
Ry (t) —iT)(t) =0
which yields the following system
(Qi () +Pr(®) O (1) = Py (B) +i(Qa () + P2 () O (t) + P} (B) = 0
(QU) + P (O (1)~ Py (1) ~i(Q:()) + P2 () () + P} (H) =0
And hence,
Qi)+ P (1) 0 (1) -Py(t) =0 37)
Q)+ P2 (0O () +P (=0
Substituting (31) and (33) into system (37) and taking P (r/2) = 0 into account, it yields
/2 /2
00 =~ [Henowa- [(o 0w - FEE)pwa- @ 0+ 16 P
t t
/2
Pt) =-|P(x)dx (38)
|
/2 /2
Pt = —st (x, ) Q(x)dx — f(@’ () Hg (x, 1) + %)P(x)dx +H.(t,t)P(t)
t t
If we denote that

F()=(Q(),P(t), P )
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and
Ho) 0 O~ D gy,
K(x,t) = 0 0 1 ,
o) 0 OB+ DD
equation (38) can be reduced to a vector form
/2
F(t)+fK(x,t)F(x)dx=Ofor0<t<g. (39)

t

Since the equation (39) is a homogenous Volterra integral equation, it only has the trivial solution.
Therefore, we obtain

F()=0for0<t<
that gives us
Q) =P(t)=0for0<t< g
Thus, we obtain
p(x) =p(x) and g (x) =g (x) on (0, 7).
Moreover, it is obvious that h = T from 36). O
Appendix

Substituting the functions ¢ (x, 1) and ¢” (x, A) instead of y and y” in equation (1), respectively, we
directly get following equalities

22—5” [A(é'“ () sin 4L _ B (&, u* (&) cos 4L ]dg,

w (x) = xp (0) + e e

U (x)+0

7

20 | e w()
px)=p0)+—[A(x,t)sin == + B (x,t) cos ——=
t=p=(x)-0

w(x
g~ V) V)

@)

(x, u* (x)) cos == Voo + B (x, u* (x)) sin \“/’;(_))},

§(X)+0
-(x)—O}

p(x

] ”
Bg* q(x)+(ﬂ))) =2 p(x

plx

[A
— X, ’] d w(x; wlx
B~ _q(x)‘*(%)—:ZWE{[A(X t)COS\/% B(x,t)sin \/:Tl)]

0A (x,t)

B(x,0) = T

t=0
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and additionally if we suppose that p (x) € W% 0,m),q(x) e W; (0, ), then the functions A (x, t) and B (x, t)
satisfy the following system of partial differential equations

2 2
TAND @A n-2p) ZED = TAKD
0? A B
PEED @B+ A = ZED
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