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Abstract. In this article, we concern with the nonlinear Bernstein operators NB, f of the form
n k
(NB.f)®) = ) Pue(x, f(=]] , 0<x<1, neN,
k=0 n

acting on bounded functions on an interval [0, 1], where P, satisfy some suitable assumptions. As a
continuation of the very recent paper of the authors [22], we estimate their pointwise convergence to a
function f having derivatives of bounded (Jordan) variation on the interval [0, 1] .

We note that our results are strict extensions of the classical ones, namely, the results dealing with the
linear Bernstein polynomials.

1. Introduction

We consider the problem of approximating a given real-valued function f, defined on [0, 1], by means
of a sequence of nonlinear Bernstein operators NB,, f. Positive linear operators, convolution, moment and
sampling operators have an important role in several branches of Mathematics. For instance, in recon-
struction of signals and images, in Fourier analysis, operator theory, probability theory and approximation
theory (see e.g. [14, 28]).

In this paper, we will take into account the nonlinear Bernstein operators, generated by the classical
Bernstein operators considered in [22].

Let f be a function defined on the interval [0, 1] and let N := {1, 2, ...} . The classical Bernstein polynomial
of f:[0,1] — R of degree n is defined by

(an)(x) = Zf(g)pn,k(x) , 0<x<1, nelN, 1)
=0

where p,, k(x) = (Z)xk (1 — x)"* is the Bernstein basis. These polynomials were introduced by Bernstein [10]

in 1912 to give the first constructive proof of the Weierstrass approximation theorem. Some properties of
the polynomials (1) can be found in Lorentz [23].
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We now state a brief and technical explanation of the relation between approximation by linear and
nonlinear operators. Approximation with nonlinear integral operators of convolution type was introduced
by J. Musielak in [25] and widely developed in [7] (and the references contained therein). To the best of our
knowledge, the approximation problem were limited to linear operators because the notion of singularity
of an integral operator is closely connected with its linearity until the fundamental paper of Musielak [25].
In [25], the assumption of linearity of the singular integral operators was replaced by an assumption of a
Lipschitz condition for the kernel function K, (f, u) with respect to the second variable. Especially, nonlinear
integral operators of the following type

b

(TAf) () = f Kit—x fE)dt, xe(@b),

a

and its special cases were studied by Bardaro-Karsli and Vinti [3, 4] and Karsli [17] in some Lebesgue spaces.

For further reading, we also refer the reader to [1, 2, 8, 9, 15, 21, 24, 29] and the very recent paper of the
authors [22] as well as the monographs [7] and [13] where other kind of convergence results of linear and
nonlinear operators in the Lebesgue spaces, Musielak-Orlicz spaces, BV-spaces and BV ,-spaces have been
considered.

Very recently, by using the techniques due to Musielak [25], Karsli-Tiryaki and Altin [22] considered the
following type nonlinear counterpart of the well-known Bernstein operators;

B0 =Y Pualns(E]) o<1, wen, 2
k=0

acting on bounded functions f on an interval [0, 1], where P, ; satisfy some suitable assumptions. They
proved some existence and approximation theorems for the nonlinear Bernstein operators. In particular,
they obtained some pointwise convergence for the nonlinear sequence of Bernstein operators (2) to some
point x of f, as n — oo.

It should be note that the same definition of nonlinear Bernstein operators was given in the excellent
papers due to Bardaro and Mantellini [5, 6], in which other kinds of convergence properties are studied.

In the present paper, the study of operators (2) will be continued.

As a continuation of [22], we estimate their pointwise convergence to functions f and ¢ o | f ( having
derivatives of bounded (Jordan) variation on the interval [0,1].

The paper is organized as follows: The next section contains basic definitions and notations.

In Section 3, the main approximation results of this study are given. They are dealing with the rate of
pointwise convergence of the nonlinear Bernstein operators NB, f to the limit f, where f and ¢ o ) f | are
functions whose derivatives are of bounded variation on the interval [0, 1]. We shall prove that (NB, f)(x)
converge to the limit f(x) for x € (0,1). Let us note that the counterpart of such kind of results for
positive linear operators are the rate of convergence for functions in DBV (I), functions whose derivatives
are bounded variation defined on a set I C R, were first obtained by Bojanic and Cheng [11, 12]. Further
papers on the subject are [16, 18, 19], and [26, 27].

In Section 4, we give some crucial results which are necessary to prove the main result.

The final section, that is Section 5, concerns with the proof of the main results presented in Section 3.
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2. Preliminaries

In this section, we recall the following structural assumptions according to [22], which will be funda-
mental in proving our convergence theorems.

Let X be the set of all bounded Lebesgue measurable functions f : [0,1] — R.

Let W be the class of all functions ¢ : Rj — R} such that the function ¢ is continuous and concave with
P(0) =0, Y(u) > 0 for u > 0.
We now introduce a sequence of functions. Let {P, x}, . be a sequence functions P, : [0, 1]x R— R defined

by
Pux(t,u) = pri(t)H, (1) 3)

forevery t € [0,1],u € R, where H,, : R — Ris such that H,(0) = 0 and p,, (t) is the Bernstein basis.
Throughout the paper, we assume that u : N — R* is an increasing and continuous function such that
lim (1) = oo.

n—oo

First of all, we assume that the following conditions hold:

a) H, : R — R is a real-valued function such that

IHy(u) - Hy@) < Y (u—2l), eV,

holds for every u,v € R, and n € IN. That is, H, satisfies a (L — 1) Lipschitz condition (see [7]).

b) We now set

Z Pn,k(x) 7 0 <u S 1

Kar,u) = ™ @)
0 , u=20
and
x+(1-x)/nlP
Ay(x) = f dy (Ku(x,t)) for any fixed x € (0,1)
x—x/nlE

where >0,y > 1and

t

Mo (6 1) o= f d, (K, (3, 10). ©)

0
Similar approach and some particular examples can be found in [8, 20-22] and [27].
Suppose that there are § > 0, y > 1 such that a finite function C(x) exists with
P (B, |t - xI°) (x) < C(x), x € (0, 1) (6)

uniformly with respect to n € IN.

c¢) Denoting by r,(u) := H,(u) — u, u € R and n € IN. We suppose that for n sufficiently large

sup |1 (10)] = sup [Ho(u) = 1] < ——
u u

p(n)

holds.
The symbol [a] will denote the greatest integer not greater than a.
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3. Convergence Results

We will consider the following type of nonlinear Bernstein operators,

(NB,.f) (x) = ;; P (x’f (S))

defined for every f € X for which NB,, f is well-defined, where

Pn,k(xr u) = Pn,k(x)Hn(u)

forevery x € [0,1],u € R.
For any function f for which the one-sided limits f(x+), f(x—) exist at every point x € (0, 1), we let

) - flx+) , x<t<1
A= 0 , t=x 7)

- flx=) , 0<t<x

and \1/ 1/)(|fx‘) is the total variation of gb()fx|) on|0,1].
0

Let DBV (I) denotes the class of differentiable functions defined on a set I ¢ IR whose derivatives are
bounded variation on I and will be denoted as

DBV (I)={f: f € BV(])}.
We are now ready to establish the main results of this study:

Theorem 3.1. Let ¢ € W and f be a function with derivatives of bounded variation on [0,1]. Then for every
x € (0,1), we have for sufficiently large n,

(NB.) () - f )] < ’f’<x+>;f'<x—>| \/m

[ V] x+-x)/k

, 1
Vo W+ ®)

x—x/k

+

SN

k=

—_

b
where \/ ( fx) is the total variation of f, on [a,b].

Theorem 3.2. Let p € W and f € X be such that 1 o |f) € DBV ([0, 1]). Then for every x € (0,1), we have for
sufficiently large n,

|(Nan) (x) _f(x)| < |(1P o ‘f|) (x-) ; (¢ o |f|) (x+)| \/@
’ 1

(e lfl), 25 9)

b ' .
where \/ (1/) ° | f })X is the total variation of (1/1 ° | f |)x on [a,b].
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4. Auxiliary Result
In this section, we give crucial results which are necessary to prove our theorems.
Lemma 4.1. For (B,t°)(x),s =0, 1,2, one has

Ba)() = 1, (But)(x) = 3, (Bu2)(x) = 22 + L9,

For the proof of this Lemma see [23].
By direct calculation, we find the following equalities:

x(l X)

(Bu(t=0H)(0) = =—— , Bu(t-x)(x)=0

Lemma 4.2. Forall x € (0,1) and for each n € IN, one has

t

_ C)
/\n(x, t) =: fdu (Kn(x, Ll)) < m , 0<t<uy, (10)
0
and
t C
1-Au(x,t) = fd“ (K (x,u)) < % , x<t<l1 (11)

t
where C(x) is as given in (6).

Proof. We have

t t

me=:f@mmwsfﬁ‘ﬁdmaw

0 0

MfWﬂdWWW

According to (6), we have

C(x)

/\n(x, t) < m

Proof of (11) is analogous. [

5. Proof of the Theorems

Proof of Theorem 3.1. In general, a singular integral may be written in the form

b
(nﬁw=j}meth 12)

where M, (x,t) is the kernel, defined fora < x < b, a <t < b, which has the property that for functions f (x)
of a certain class and in a certain sense, (T, f) (x) converges to f (x) as n — oo.
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The Bernstein polynomial (1) is a finite sum of a type corresponding to the integral (12). Both (1) and

(12) are special cases of singular Stieltjes integrals. (1) may be written in the form of a Stieltjes integral in
the variable ¢,

1
(Buf) () = | f(B)diK, (x,t)
/

with the kernel
n e
K, (x,t) = Z(k)xk(l —x)"F 0<t<1
k<nt
Kn (x/ 0) =

which is constant in any interval k/n <t < (k+1) /n,k=0,1,..,n—-1.
We can write the difference between (NB,, f) (x) and f (x) as a singular Stieltjes integral as follows;

;Pn’k (xf(g)) -f()
= Lowomr(X))-ro

1
_ f Hy (f () diKoy (x,5) = £ ()
0

(NB,.f) (x) - f (x)

1

1

_ f [H, (F (1) - F (O] diK, (5, 8) + f LFO - £ W] diKy (x,)
0 0

@+ L ().

Firstly, we consider

1

I () = f [0 - £ (] dik (x, ). 13)

0

Since f (t) € DBV [0, 1], we can rewrite (13) as follows

X 1
Lip(x) = [f (O = f]dK (x, ) + | [f (#) = f ()] diKy (x, 1)
/ /
X X 1 t
= - " (w)du|dK, (x,t) + I £ (u)du|diK, (x, t)
il I
= Loy (0) + 122 (%),
where
Lipy (x) = f' () du|diK, (x,t) (14)
il
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and

1

Laat = [ f £ () du

X

diKy, (x, 1) . (15)

For any f () € DBV [0, 1], we decompose f’ (t) into four parts by using (7) as

gy = LEIOD gy LEDZTOD g
+5,(1) [f'(x) - W]
where

1 , x=t
6"(t):{0 x#t°

If we use this equality in (14) and (15), we have the following expressions.

~l o Fe4) = f(x)
Lot () = S (F o) + £ (=) + £ ) + L T s — )
{3 z
#0u0) [ £ @) = 3 (/o0 + 1)} ik )
and
1 t
o2 (¥) = f { f %(f'(x+)+ F=) + fL ) + stgn(u_x)

+5,(11) [ Fx) - % (F(x+) + f’(x—))] du} 4K, (1)

Firstly, we evaluate I, 51 (x).

Lar(y = [T [, [ l | £t
0 0 t

X

dtKn (x/ t)

LD [ ha e

2
0
f Ox(u)du

t

X

frx+) +f’(x—)]f

+ [f "(x) = > diKy, (x, 1)

0

It is obvious that f Ox(u)du = 0. From this fact that, we get
t

Pl + flom) [ [ -
hor () = OO ik - [ @
; Of Of f

—fw f (x — ) diK, (%, 1) . (16)
0

dtKn (x/ t)
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Using a similar method, for evaluating I,, » » (x), we find that

Loa(x) = M[t— V4K, (x, t)+f ffv(u)du

—fw f (t—x)diK, (x, 1) . (17)

dtK (x t)

Combining (16) and (17), we get

1
a0+ b2z 0 = LD [, o +
0

1 x X 1 t
) - Fx) [ , [ ,
ST ik - [ 2wdulax, o+ [| o
3 Jﬂ J‘J‘ J“J‘

From the last expression, we can rewrite (13) as follows.

In,2 (x) = M[(t dtK (x t) Mf”_xth (x t)

flffx(u)du diKy (x, t)+flffx(u)du

On the other hand, since

diKy, (x, ).

dtKn (x t) (18)

f £~ 21Ky (5, 6) = By (1 - 21;)
0
and
1
f(t—x)dfmx,t):Bn (- x);),
0

by using these equalities in (18) and taking the absolute value, we can re-expressed (18) as follows;

P L i, - w0

2
—fx{fxfé(u)du fl[ftfé(u)du

Using Lebesgue-Stieltjes integration, and according to (5), we obtain

Jbﬁww

|2 ()] <

—x;x)| +

diKy (x, H)| + diKy, (x, 1)) . (19)

diK, (x, )= | fi (1) Ay (x, t)dt.
/
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Thus

fies

diK,, (x,1)| < L) A (x, D) it

and

=R

K, (x, 1)] < (t)' Au (x, t) dt +

- [ o

t

BE

Since f/ (x) = 0and A, (x,t) <1, one has

() - £ )] A (D fV(fx)dt

X

L(B)] A (x, t) dt =

x— \im x— ﬁ x— ‘—
By the change of variables t = x — \f’ we obtain

f V(fx)dt< \/(fx) f it

x_i
x,i

Besides from (10), we can write

X=X x——

Y d
(O] A (D i

IA

JORSME: )|

%
x(1-x) Yoo dt
=y Of Vo

By the change of variables t = x — 3 again, we have

Y_i

i f\/(fx i x“n‘x’fyx(f;)

IA
=
2|
&
><<
—~
N
~

and hence we obtain

i . RERAL
- { [ rraaar,wo| < 2\ ¢+ DYV (1)
0 ; \/ﬁx—ﬁ n k=1 x-%
Since
x o\ N 2X [l =
7V <fx>s;; %(fx)

<

L) A (x, 1) dt.

149
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it follows that

a-p & o B aaon B
\FVUX =Y NV < =Y N+ =——=3Y V®
= k=1 x-% k=1 x-% k=1 x-%
[Vi] «
< 2Y N\,
k=1 x-%

Therefore

[l

Using a similar method for estimating, then we have

d:iK,; (x, )

<—ZV(fr

k=1 x-%

e e
flffxw)du el < ==\ (N (0
k=1 «x

Furthermore, since

._.
5l
2
=
p—a
+

| &
gl
<_
|

N
’:
35,
M
<
S
:IQ
<

x k=1 «x n k=1 k=1 «x
o [Tt
< =Y V.
k=1 «x
Thus we get
o [l
[ () du| diK (x, )] < ;Z; V@

Collecting the estimates, we get (8), i.e.,

[Vir] s
2] < HED2NN (5,
k=1 x-%
and
1 1 1
|1 ()] = Of [H, (f () = f (D] diKy (x, 1) < Of |H,, (f () = f (O] diK, @

holds for sufficiently large n.
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This completes the proof of the theorem.
Proof of Theorem 3.2. We can write the difference between (NB,,f) (x) and f (x) as a singular Stieltjes
integral as follows;

|(NB..f) () - f ()] =

1
f H, (f (0) diKo (6, - £ ()
0

1

[Hu (f () = Hu (f ()] diKs (x, 1) + f [Hi (f () = f (0] diKi (x, 1)

0

IA

1
1
|Hy (f (8) = Hy (f ()| diK (x, 1) + f |Hy (f () = f ()| diKo (x, )
0

/
I
J

IN

1
|F (f () = f (0| diK (x, D) + f P(|f O = f @)])deKs (x, )
0

In,l (x) + In,z (x) .

Note that for a concave function

—v(f®O-f@l)<p(fel)-v(rwl)

holds. Firstly, we consider

1
L@ = [0(FO-F@)dk, @, 20)
0

Since (1/1 o | f |) (t) € DBV [0, 1], we can rewrite (20) as follows:

0 x
L) < f [ (If @) = (IF @])]diKa (60 + f [ (1f @) = ¢ (If )] ik .0
X 1
X X 1 X
= (¢°|f|), (u) du|diK, (x,t) + I (ll)o )f|), (w) du|diK, (x,t)
f I
= L1 (%) =22 (%)
where
Iz (%) = (o lf]) (w du|diK, (x, ) (21)
il
and
1 t
Inoa () = f { f (v |A]) @ duldik, (). 22)
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For any (1/) o | f () (f) € DBV[0, 1], we decompose (1,b ) | f ’) (f) into four parts by using (7) as

, Yolf /(x+)+ volf I(x—)
el - Eeenrbellie

(wolfl) = (polfl) -
+ > S

polf]) @

gn (f — x)

p ° ’(x ) o /(x—)
+6x(t)[(¢o|f|) G Z(w 1)

where
1 , x=t
6X(t):{ 0 x#t’

If we use this equality in (21) and (22), we have the following expressions.

(][ @el) en+(vel) o) :
o+ J{Ee sy,
(pelfl) o) . (volrl) )
w5, () [(4» o) - ol & i (volrl) <x—>] du} s
and
Inoo(x) =

j{f polf]) ) + (1P ) - (¢o|f));(u)
X

yolfl) ) - (w Ifb) (x-)

sgn (1 — x)

+0y (u) [(gb o |f})/ (x) - (l)b i |f’) o J2r (l/’ - |f|) (x_)} du} diK,, (x, 1)

Firstly, we evaluate I, 51 (x).

(wold) o +(wold) & f (= ) diKy (3, 1)

Lip1(x) = 2

+flf(¢o|f‘);(u)du

0 t

(el (x”;(‘/”"f ) &) [ e-na

ety EME NN FI s

dtKVl (x/ t)

den (x/ t) .
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X
It is obvious that f Ox (u) du = 0. From this fact that, we get
t

(¥olfl) (x”;(l“'f ) & f (x = 1) diK, (x, 1)

+fxlfx(¢o|f();(u)du

0 t

_(¢o|f|) (X+);(¢°|f)) (x_)f(x_t)dtKn(x,t)-

Lipi(x) =

dtKn (x/ t)

0

Using a similar method, for evaluating I,, » » (x), we find that

’ ’ 1
In,2,2 (X) = (IIJ - }f|) (x+) ;_ (lp - |f|) (x_) f(t - X) dtKn (x/ t)

+f1lf(¢o|f1);(u)du

, ’ 1
_(¢o|f|) (x+);(¢°|f)) (x_)f(t_x)dtKn(x,t)-

dtKn (x/ t)

Combining (23) and (24), we get

(x+) + (x-) ;
Lnpi () = Lipp(x) = (]’b |f|) 2(1!} m ft x) diKy; (x, 1)
0
-)

(wolfl) @ - (wold) o=
2

oot

t

|t — x| d:K,, (x,t)
0

X

+J

0

X X

On the other hand, note that

1
flt—xl diK,, (x,t) = B, (It — x| ; x) < (Bn (t—x)2) (x) = X(ln— x)
0

and

f (t =X diKy (5, 8) = By () () =
0

diK, (x, ) — j [ f (yol f|); () du

153

(23)

(24)
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Therefore we can estimate [, 21 (x) — I;;22 (x) as follows;

(wolfl) e -(wolfl) o) [xa—m
2 n

X x 1 t

+f f( o|f). (w)du|diK, (x, t)—f f(¢o1f|);(u)du diKy (x, ).

0 t X x

Lig1 (x) = Lipo(x) <

Using Lebesgue-Stieltjes integration, and according to (5), we obtain

x X x—% X
jﬁfmeMWMummwﬁ=Lf@mmxmmwﬁw+jw¢qmgmumﬂﬂ
0 t 0 x—%

By using the method in the proof of the previous Theorem 1, one has

[z o 1]
ff(lpom)x(u)dudt xt)<_;v polf]).,

and

X

11 ¢ ” [va] *+ 7
_f[ff;(u)du dtKn(x,t)sZkZ_: \/ (wolf]).-

In conclusion we obtain

wolf]) n) = (wolf) &) - [vi] e ,
Ly (x) < (=17 2( A ) /x(ln xh% (wolf]).-

Since

1
1
Ly () = | [Ha(F (1) = f(O|diKy (x, 1) < ——
Of u (n)

holds for sufficiently large n, the proof of the Theorem 2 is now complete.
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