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Abstract. In the paper, the authors discover the best constants α1, α2, β1, and β2 for the double inequalities

α1C(a, b) + (1 − α1)A(a, b) < T(a, b) < β1C(a, b) + (1 − β1)A(a, b)

and

α2

A(a, b)
+

1 − α2

C(a, b)
<

1
T(a, b)

<
β2

A(a, b)
+

1 − β2

C(a, b)

to be valid for all a, b > 0 with a , b, where

C(a, b) =
2(a2 + ab + b2)

3(a + b)
, A(a, b) =

a + b
2

, and T(a, b) =
2
π

∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ

are respectively the centroidal, arithmetic, and Toader means of two positive numbers a and b. As an
application of the above inequalities, the authors also find some new bounds for the complete elliptic
integral of the second kind.

1. Introduction

In [24], Toader introduced a mean

T(a, b) =
2
π

∫ π/2

0

√
a2 cos2 θ + b2 sin2 θ dθ =



2a
π
E

(√
1 −

(b
a

)2 )
, a > b,

2b
π
E

(√
1 −

(b
a

)2 )
, a < b,

a, a = b,
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where

E = E(r) =

∫ π/2

0

√
1 − r2 sin2 θ dθ

for r ∈ [0, 1] is the complete elliptic integral of the second kind. The quantities

C(a, b) =
2(a2 + ab + b2)

3(a + b)
, A(a, b) =

a + b
2
, S(a, b) =

√
a2 + b2

2

are called in the literature the centroidal, arithmetic, and quadratic means of two positive real numbers a
and b with a , b. For p ∈ R and a, b > 0 with a , b, the p-th power mean Mp(a, b) is defined by

Mp(a, b) =


(ap + ap

2

)1/p

, p , 0,
√

ab , p = 0.
(1.1)

It is well known that

M−1(a, b) < A(a, b) = M1(a, b) < C(a, b) < S(a, b) = M2(a, b)

for all a, b > 0 with a , b.
In [25], Vuorinen conjectured that

M3/2(a, b) < T(a, b) (1.2)

for all a, b > 0 with a , b. This conjecture was verified by Qiu and Shen [23] and by Barnard, Pearce, and
Richards [7]. In [1], Alzer and Qiu presented that

T(a, b) < M(ln 2)/ ln(π/2)(a, b) (1.3)

for all a, b > 0 with a , b, which gives a best possible upper bound for Toader mean in terms of the power
mean. From (1.2) and (1.3), one concludes that

A(a, b) < T(a, b) < S(a, b) (1.4)

for all a, b > 0 with a , b. In [12], the authors demonstrated that the double inequality

αS(a, b) + (1 − α)A(a, b) < T(a, b) < βS(a, b) + (1 − β)A(a, b) (1.5)

holds for all a, b > 0 with a , b if and only if α ≤ 1
2 and β ≥ 4−π

(
√

2−1)π
.

Motivated by the double inequality (1.5), we naturally ask a question: What are the best constants
α1, α2, β1, β2 ∈ (0, 1) such that the double inequalities

α1C(a, b) + (1 − α1)A(a, b) < T(a, b) < β1C(a, b) + (1 − β1)A(a, b) (1.6)

and

α2

A(a, b)
+

1 − α2

C(a, b)
<

1
T(a, b)

<
β2

A(a, b)
+

1 − β2

C(a, b)
(1.7)

hold for all a, b > 0 with a , b?
The main aim of this paper is to affirmatively answer the above question.

Theorem 1.1. The double inequality (1.6) holds for all a, b > 0 with a , b if and only if α1 ≤
3
4 and β1 ≥

12
π − 3.
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Theorem 1.2. The double inequality (1.7) holds for all a, b > 0 with a , b if and only if α1 ≤ π − 3 and β1 ≥
1
4 .

As an immediate applications of Theorem 1.1, we will derive a new bounds in terms of elementary
functions for the complete elliptic integral of the second kind.

Theorem 1.3. For r ∈ (0, 1) and r′ =
√

1 − r2 , we have

π
2

[1 + r′ + (r′)2

2(1 + r′)
+

1 + r′

8

]
< E(r) <

π
2

[( 8
π
− 2

)1 + r′ + (r′)2

1 + r′
+

(
2 −

6
π

)
(1 + r′)

]
. (1.8)

In Section 4 we will compare the above main results with some well-known ones.
Remark 1.1. Some estimates for the three kinds of complete elliptic integrals were established in [1–3, 5, 7,
10, 13, 19, 20, 22, 25–27]. and there is a short review and survey in [21, pp. 40–46] for these estimates.

2. Lemmas

For proving our main results, we need the following lemmas.
For 0 < r < 1, denote r′ =

√

1 − r2 . It is known that Legendre’s complete elliptic integrals of the first
and second kind are defined respectively by

K = K (r) =

∫ π/2

0

1
√

1 − r2 sin2 θ
dθ,

K
′ = K ′(r) = K (r′),

K (0) =
π
2
,

K (1) = ∞

and


E = E(r) =

∫ π/2

0

√
1 − r2 sin2 θ dθ,

E
′ = E′(r) = E(r′),

E(0) =
π
2
,

E(1) = 1.

See [9, 11]. For 0 < r < 1, the following formulas were presented in [3, Appendix E, pp. 474–475]:

dK
d r

=
E − (r′)2

K

r(r′)2 ,
dE
d r

=
E −K

r
,

d(E − (r′)2
K )

d r
= rK ,

d(K − E)
d r

=
rE

(r′)2 , E
(2
√

r
1 + r

)
=

2E − (r′)2
K

1 + r
.

Lemma 2.1 ([3, Theorem 3.21]). The function E−(r′)2
K

r2 is strictly increasing from (0, 1) onto
(
π
4 , 1

)
.

Lemma 2.2. The function 5E(r) − 3(r′)2
K (r) is positive and strictly increasing on (0, 1).

Proof. Let f (r) = 5E(r) − 3(r′)2
K (r) for r ∈ (0, 1) and r′ =

√

1 − r2 . A simple computation leads to

f ′(r) =
2E(r) − 2K (r) + 3r2

K (r)
r

,
1(r)

r
.

A direct differentiation yields 1′(r) =
r(E(r))+3(r′)2

K (r)
(r′)2 > 0 for all r ∈ (0, 1), that is, the function 1(r) is strictly

increasing on (0, 1). Hence, it is derived that 1(r) > 1(0) = 0, that f ′(r) > 0, that f (r) is increasing on (0, 1),
and that f (x) > f (0) = π > 0.

Lemma 2.3 ([3, Theorem 1.25]). For −∞ < a < b < ∞, let f , 1 : [a, b] → R be continuous on [a, b], differentiable
on (a, b), and 1′(x) , 0 on (a, b). If f ′(x)

1′(x) is increasing (or decreasing respectively) on (a, b), so are

f (x) − f (a)
1(x) − 1(a)

and
f (x) − f (b)
1(x) − 1(b)

.

Remark 2.1. Lemma 2.3 and its variants have been extensively applied in, for example, [6, 15, 18, 22] and
many references listed in [21], and have been generalized in, for example, [14, Lemma 2.2] and [15] and
closely related references therein. For more information, please read the first sentence after [6, p. 582,
Lemma 2.1], the references [4, 8, 16, 17] and [18, Remark 2.2]
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3. Proofs of Main Results

Now we are in a position to prove our main results.

Proof. [Proof of Theorem 1.1] Without loss of generality, we assume that a > b. Let t = b
a ∈ (0, 1) and r = 1−t

1+t .
Then

T(a, b) − A(a, b)

C(a, b) − A(a, b)
=

π
2E
′(t) − 1+t

2
2
3

1+t+t2

1+t −
1+t

2

=

2
πE

(
2
√

r
1+r

)
−

1
1+r

1
3

r2

1+r

= 3
2
π [2E − (r′)2

K ] − 1

r2 .

Let f1(r) = 2
π [2E − (r′)2

K ] − 1, f2(r) = r2, and f (r) = 3 f1(r)
f2(r) = 3

2
π [2E−(r′)2

K ]−1
r2 . Simple computations lead to

f1(0) = f2(0) = 0, f ′1(r) =
2
π

E − (r′)2
K

r
, f ′2(r) = 2r,

f ′1(r)
f ′2(r)

=
1
π

E − (r′)2
K

r2 .

Combining this with Lemmas 2.1 and 2.3 reveals that the function f (r) is strictly increasing on (0, 1).
Further making use of L’Hôpital’s rule gives limr→0+ f (r) = 3

4 and limr→1− f (r) = 12
π − 3. Theorem 1.1 is thus

proved.

Proof. [Proof of Theorem 1.2] Without loss of generality, we assume that a > b. Let t = b
a ∈ (0, 1) and r = 1−t

1+t .
Then

1/T(a, b) − 1/C(a, b)

1/A(a, b) − 1/C(a, b)
=

1 − T(a, b)/C(a, b)

T(a, b)
[

1
A(a,b) −

1
C(a,b)

] =
1 − 2

πE
′(t)

/
2
3

1+t+t2

1+t

2
πE
′(t)

[
2

1+t −
3(1+t)

2(1+t+t2)

] =
3 + r2

−
6
π [2E − (r′)2

K ]
2
π r2[2E − (r′)2K ]

.

Let f1(r) = 3 + r2
−

6
π [2E − (r′)2

K ], f2(r) = 2
π r2[2E − (r′)2

K ], and f (r) =
f1(r)
f2(r) =

3+r2
−

6
π [2E−(r′)2

K ]
2
π r2[2E−(r′)2K ]

. Simple
computations lead to

f1(0) = f2(0) = 0, f ′1(r) = 2r−
6
π

E − (r′)2
K

r
, f ′2(r) =

2
π

[5E−3(r′)2]Kr, and
f ′1(r)
f ′2(r)

=
2 − 6

π
[E−(r′)2

K ]
r2

2
π [5E − 3(r′)2K ]

.

Combining this with Lemmas 2.1, 2.2, and 2.3 yields that the function f (r) is strictly decreasing on (0, 1).
Making use of L’Hôpital’s rule shows that limr→0+ f (r) = 1

4 and limr→1− f (r) = π − 3. Thus, Theorem 1.2 is
proved.

Proof. [Proof of Theorem 1.3] Without loss of generality, assume that a > b. Substituting r′ = b
a , α1 = 3

4 , and
β1 = 12

π − 3 into Theorem 1.1 produces Thorem 1.3.

4. Comparisons with some Known Results

In [12], it was obtained that

π
2

[1
2

√
1 + (r′)2

2
+

1 + r′

4

]
< E(r) <

π
2

[
4 − π

(
√

2 − 1)π

√
1 + (r′)2

2
+

(
√

2π − 4)(1 + r′)

2(
√

2 − 1)π

]
(4.1)

for all r ∈ (0, 1) and r′ =
√

1 − r2 . Guo and Qi proved in [13] that

π
2
−

1
2

ln
(1 + r)1−r

(1 − r)1+r < E(r) <
π − 1

2
+

1 − r2

4r
ln

1 + r
1 − r

(4.2)
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for all r ∈ (0, 1). It was pointed out in [12] that the bounds in (4.1) for E(r) are better than those in (4.2) for
some r ∈ (0, 1). Very recently, Yin and Qi obtained in [27] that

π
2

√
6 + 2

√

1 − r2 − 3r2

2
√

2
≤ E(r) ≤

π
2

√
10 − 2

√

1 − r2 − 5r2

2
√

2
. (4.3)

Let

1(x) =
1 + x + x2

2(1 + x)
+

1 + x
8
−

(1
2

√
1 + x2

2
+

1 + x
4

)
for x ∈ (0, 1). Then a simplification leads to

1(x) =
3x2 + 2x + 3 − 2(1 + x)

√
2(1 + x2)

8(1 + x)
.

Since (
3x2 + 2x + 3

)2
−

[
2(1 + x)

√
2(1 + x2)

]2
= (1 − x)4 > 0,

the lower bound in (1.8) for E(r) is better than the one in (4.1).
Since

1 + x + x2

2(1 + x)
+

1 + x
8

>

√
6 + 2x − 3(1 − x2)

2
√

2

is equivalent to(
5x2 + 6x + 5

)2
> 8(x + 1)2

(
3x2 + 2x + 3

)
and (x − 1)4 > 0, the lower bound in (1.8) for E(r) is better than the one in (4.3).

Let

J(r) =
π
2

[( 8
π
− 2

)1 + r′ + (r′)2

1 + r′
+

(
2 −

6
π

)
(1 + r′)

]
, Q(r) =

π − 1
2

+
1 − r2

4r
ln

1 + r
1 − r

,

D(r) =
π
2

[ 4 − π(√
2 − 1

)
π

√
1 + (r′)2

2
+

(
√

2π − 4)(1 + r′)

2
(√

2 − 1
)
π

]
, Y(r) =

π
2

√
10 − 2

√

1 − r2 − 5r2

2
√

2
.

The values of these functions at points 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 can be numerical computed
and listed in Table 1. This implies that the upper bound in (1.8) for E(r) are better than those in (4.1), (4.2),
and (4.3) for some r ∈ (0, 1).

In conclusion, the double inequality (1.8) is better than some known results in [12, 13, 27] somewhere.
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