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Almost Increasing Sequences and Their New Applications II
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Abstract. In this paper, we generalize a known theorem dealing with | C, α |k summability factors to the
| C, α, β; δ |k summability factors of infinite series. This theorem also includes some known and new results.

1. Introduction

A positive sequence (bn) is said to be an almost increasing sequence sequence if there exists a positive
increasing sequence (cn) and two positive constants A and B such that Acn ≤ bn ≤ Bcn (see [1]). Let

∑
an be a

given infinite series with the sequence of partial sums (sn). We denote by tα,βn the nth Cesàro mean of order
(α, β), with α + β > −1, of the sequence (nan), that is (see [5])

tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav, (1)

where

Aα+β
n = O(nα+β), Aα+β

0 = 1 and Aα+β
−n = 0 f or n > 0. (2)

The series
∑

an is said to be summable | C, α, β ; δ |k, k ≥ 1 and δ ≥ 0, if (see [3])

∞∑
n=1

nδk−1
| tα,βn |

k< ∞. (3)

If we take δ = 0, then | C, α, β ; δ |k summability reduces to | C, α, β |k summability (see [6]). If we set β = 0
and δ = 0, then | C, α, β δ |k summability reduces to | C, α |k summability (see [7]).
Also, if we take β = 0, then we get | C, α; δ |k summability (see [8]).

2. Known result

The following theorems are known dealing with an application of almost increasing sequences.
Theorem 2.1[11] Let (ϕn) be a positive sequence and (Xn) be an almost increasing
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sequence. If the conditions

∞∑
n=1

n
∣∣∣∆2λn

∣∣∣ Xn < ∞, (4)

|λn|Xn = O(1) as n→∞, (5)

ϕn = O(1) as n→∞, (6)

n∆ϕn = O(1) as n→∞, (7)

n∑
v=1

|tv|
k

vXk−1
v

= O(Xn) as n→∞, (8)

are satisfied, then the series
∑

anλnϕn is summable |C, 1|k, k ≥ 1.
Theorem 2.2 [4] Let (ϕn) be a positive sequence and let (Xn) be an almost increasing sequence.
If the conditions (4), (5), (6) and (7) are satisfied and the sequence (wα

n) defined by (see [10])

wα
n =

{ ∣∣∣tαn ∣∣∣ , α = 1,
max1≤v≤n

∣∣∣tαv ∣∣∣ , 0 < α < 1,
(9)

satisfies the condition
n∑

v=1

(wα
v )k

vXk−1
v

= O(Xn) as n→∞, (10)

then the series
∑

anλnϕn is summable | C, α |k, 0 < α ≤ 1, (α − 1)k > −1 and k ≥ 1.
Remark 2.3 It should be noted that if we take α = 1, then we get Theorem 2.1. In this case, condition (10)
reduces to condition (8) and the condition ’(α − 1)k > −1’ is trivial.

3. The main result

The aim of this paper is to generalize Theorem 2. 2 in the following form ;
Theorem 3.1 Let (ϕn) be a positive sequence and let (Xn) be an almost increasing sequence. If the conditions
(4), (5), (6) and (7) are satisfied and the sequence (wα,β

n ) defined by

(wα,β
n ) =


∣∣∣∣tα,βn

∣∣∣∣ , α = 1, β > −1

max1≤v≤n

∣∣∣∣tα,βv

∣∣∣∣ , 0 < α < 1, β > −1
(11)

satisfies the condition
n∑

v=1

vδk (wα,β
v )k

vXk−1
v

= O(Xn), as n→∞, (12)

then the series
∑

anλnϕn is summable | C, α, β; δ |k, 0 < α ≤ 1, δ ≥ 0, (α + β − δ − 1)k > −1,
and k ≥ 1.
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We need the following lemmas for the proof of our theorem.
Lemma 3.2 [2]) If 0 < α ≤ 1, β > −1 and 1 ≤ v ≤ n, then∣∣∣∣∣∣∣∣

v∑
p=0

Aα−1
n−pAβ

pap

∣∣∣∣∣∣∣∣ ≤ max
1≤m≤v

∣∣∣∣∣∣∣∣
m∑

p=0

Aα−1
m−pAβ

pap

∣∣∣∣∣∣∣∣ . (13)

Lemma 3.3 [9]) Under the conditions (4) and (5), we have that

nXn |∆λn| = O(1) as n→∞, (14)

∞∑
n=1

Xn |∆λn| < ∞. (15)

4. Proof of Theorem 3.1 Let (Tα,βn ) be the nth (C, α, β) mean, with 0 < α ≤ 1
and β > −1, of the sequence (nanλnϕn). Then, by (1), we have that

Tα,βn =
1

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvavλvϕn. (16)

Thus, applying Abel’s transformation first and then using Lemma 3.2, we have that

Tα,βn =
1

Aα+β
n

n−1∑
v=1

∆(λvϕn)
v∑

p=1

Aα−1
n−pAβ

ppap +
λnϕn

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav,

=
1

Aα+β
n

n−1∑
v=1

(λv∆ϕv + ϕv+1∆λv)
v∑

p=1

Aα−1
n−pAβ

ppap +
λnϕn

Aα+β
n

n∑
v=1

Aα−1
n−vAβ

vvav.

|Tα+β
n | ≤

1

Aα+β
n

n−1∑
v=1

|λv∆ϕv||

v∑
p=1

Aα−1
n−pAβ

pp ap| +
1

Aα+β
n

n−1∑
v=1

|ϕv+1∆λv||

v∑
p=1

Aα−1
n−pAβ

pp ap|

+
|λnϕn|

Aα+β
n

|

v∑
v=1

Aα−1
n−vAβ

vvav|

≤
1

Aα+β
n

n−1∑
v=1

Aα+β
v wα,β

v |λv||∆ϕv| +
1

Aα+β
n

n−1∑
v=1

Aα+β
v wα,β

v |ϕv+1||∆λv| + |λn||ϕn|w
α,β
n

= Tα,βn,1 + Tα,βn,2 + Tα,βn,3 .

To complete the proof of the theorem, by Minkowski’s inequality, it is sufficient to show that

∞∑
n=1

n−1
|Tα,βn,r |

k < ∞, f or r = 1, 2, 3.



Hüseyin Bor / Filomat 28:3 (2014), 435–439 438

When k > 1, we can apply Hölder’s inequality with indices k and k′, where 1
k + 1

k′ = 1, we get

m+1∑
n=2

nδk−1
|Tα,βn,1 |

k
≤

m+1∑
n=2

nδk−1(Aα+β
n )−k

n−1∑
v=1

Aα+β
v wα,β

v |∆ϕv||λv|


k

= O(1)
m+1∑
n=2

1
n1+(α+β−δ)k

n−1∑
v=1

(vα+β)k(wα,β
v )k
|∆ϕv|

k
|λv|

k

n−1∑
v=1

1


k−1

= O(1)
m+1∑
n=2

1
n2+(α+β−δ−1)k

n−1∑
v=1

v(α+β)k(wα,β
v )k
|λv|

k 1
vk

= O(1)
m∑

v=1

v(α+β)k(wα,β
v )kv−k

|λv|
k

m+1∑
n=v+1

1
n2+(α+β−δ−1)k

= O(1)
m∑

v=1

v(α+β)k(wα,β
v )kv−k

|λv|
k
∫
∞

v

dx
x2+(α+β−δ−1)k

= O(1)
m∑

v=1

(wα,β
v )k
|λv||λv|

k−1vδk 1
v

= O(1)
m∑

v=1

vδk (wα,β
v )k
|λv|

v Xk−1
v

= O(1)
m−1∑
v=1

∆|λv|

v∑
r=1

rδk (wα,β
r )k

r Xk−1
r

+ O(1)|λm|

m∑
v=1

vδk (wα,β
v )k

v Xk−1
v

= O(1)
m∑

v=1

|∆λv|Xv + O(1)|λm|Xm = O(1), m→∞

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Again, we get that

m+1∑
n=2

nδk−1
|Tα,βn,2 |

k
≤

m+1∑
n=2

nδk−1(Aα+β
n )−k

n−1∑
v=1

Aα+β
v wα,β

v |ϕv+1||∆λv|


k

= O(1)
m+1∑
n=2

1
n1+(α+β−δ)k

n−1∑
v=1

vα+β(wα,β
v )|∆λv|


k

= O(1)
m+1∑
n=2

1
n1+(α+β−δ)k

n−1∑
v=1

v(α+β)k(wα,β
v )k
|∆λv|

Xk−1
v

n−1∑
v=1

Xv|∆λv|


k−1

= O(1)
m+1∑
n=2

1
n1+(α+β−δ)k

n−1∑
v=1

v(α+β)k(wα,β
v )k
|∆λv|

Xk−1
v

= O(1)
m∑

v=1

v(α+β)k(wα,β
v )k
|∆λv|

Xk−1
v

m+1∑
n=v+1

1
n1+(α+β−δ)k
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= O(1)
m∑

v=1

v(α+β)k(wα,β
v )k
|∆λv|

Xk−1
v

∫
∞

v

dx
x1+(α+β−δ)k

= O(1)
m∑

v=1

v|∆λv|vδk (wα,β
v )k

vXk−1
v

= O(1)
m∑

v=1

∆ (v|∆λv|)
v∑

r=1

rδk (wα,β
r )k

rXk−1
r

+ O(1)m|∆λm|

m∑
v=1

vδk (wα,β
v )k

vXk−1
v

= O(1)
m−1∑
v=1

v|∆2λv|Xv + O(1)
m−1∑
v=1

Xv|∆λv| + O(1)m|∆λm|Xm

= O(1), as m→∞,

by hypotheses of Theorem 3.1 and Lemma 3.3. Finally, as in Tα,βn,1 , we have that

m∑
n=1

nδk−1
|Tα,βn,3 |

k =

m∑
n=1

nδk−1
|λn ϕn wα,β

n |
k

= O(1)
m∑

n=1

nδk (wα,β
n )k
|λn|

nXk−1
n

= O(1), as m→∞.

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. This completes the proof of Theorem 3.1. It
should be noted that, if we take β=0, δ=0 and α=1, then we get Theorem 2. 1. If we set δ=0, then we get
a result concerning the | C, α, β |k summability factors of infinite series. Also, if we take β=0 and δ=0 , then
we obtain Theorem 2. 2. Finally, if we take k = 1, δ=0 and β = 0, then we get a new result dealing with the
| C, α | summability factors of infinite series.
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