Almost Increasing Sequences and Their New Applications II

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In this paper, we generalize a known theorem dealing with $|C, \alpha|_{k}$ summability factors to the $|C, \alpha, \beta ; \delta|_{k}$ summability factors of infinite series. This theorem also includes some known and new results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence sequence if there exists a positive increasing sequence (c_{n}) and two positive constants A and B such that $A c_{n} \leq b_{n} \leq B c_{n}$ (see [1]). Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left(s_{n}\right)$. We denote by $t_{n}^{\alpha, \beta}$ the nth Cesàro mean of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(n a_{n}\right)$, that is (see [5])

$$
\begin{equation*}
t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}, \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } n>0 \tag{2}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $|C, \alpha, \beta ; \delta|_{k}, k \geq 1$ and $\delta \geq 0$, if (see [3])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{\delta k-1}\left|t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

If we take $\delta=0$, then $|C, \alpha, \beta ; \delta|_{k}$ summability reduces to $|C, \alpha, \beta|_{k}$ summability (see [6]). If we set $\beta=0$ and $\delta=0$, then $|C, \alpha, \beta \delta|_{k}$ summability reduces to $|C, \alpha|_{k}$ summability (see [7]). Also, if we take $\beta=0$, then we get $|C, \alpha ; \delta|_{k}$ summability (see [8]).

2. Known result

The following theorems are known dealing with an application of almost increasing sequences.
Theorem 2.1[11] Let $\left(\varphi_{n}\right)$ be a positive sequence and $\left(X_{n}\right)$ be an almost increasing

[^0]sequence. If the conditions
\[

$$
\begin{align*}
& \sum_{n=1}^{\infty} n\left|\Delta^{2} \lambda_{n}\right| X_{n}<\infty \tag{4}\\
& \left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty \tag{5}\\
& \varphi_{n}=O(1) \text { as } n \rightarrow \infty, \tag{6}\\
& n \Delta \varphi_{n}=O(1) \text { as } n \rightarrow \infty, \tag{7}\\
& \sum_{v=1}^{n} \frac{\left|t_{v}\right|^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \text { as } n \rightarrow \infty, \tag{8}
\end{align*}
$$
\]

are satisfied, then the series $\sum a_{n} \lambda_{n} \varphi_{n}$ is summable $|C, 1|_{k}, \mathrm{k} \geq 1$.
Theorem 2.2 [4] Let $\left(\varphi_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be an almost increasing sequence.
If the conditions (4), (5), (6) and (7) are satisfied and the sequence $\left(w_{n}^{\alpha}\right)$ defined by (see [10])

$$
w_{n}^{\alpha}=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha}\right|, & \alpha=1 \tag{9}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha}\right|, & 0<\alpha<1
\end{array}\right.
$$

satisfies the condition

$$
\begin{equation*}
\sum_{v=1}^{n} \frac{\left(w_{v}^{\alpha}\right)^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right) \text { as } n \rightarrow \infty \tag{10}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n} \varphi_{n}$ is summable $|C, \alpha|_{k}, 0<\alpha \leq 1,(\alpha-1) \mathrm{k}>-1$ and $\mathrm{k} \geq 1$.
Remark 2.3 It should be noted that if we take $\alpha=1$, then we get Theorem 2.1. In this case, condition (10) reduces to condition (8) and the condition ' $(\alpha-1) \mathrm{k}>-1^{\prime}$ is trivial.

3. The main result

The aim of this paper is to generalize Theorem 2. 2 in the following form ;
Theorem 3.1 Let $\left(\varphi_{n}\right)$ be a positive sequence and let $\left(X_{n}\right)$ be an almost increasing sequence. If the conditions (4), (5), (6) and (7) are satisfied and the sequence $\left(w_{n}^{\alpha, \beta}\right)$ defined by

$$
\left(w_{n}^{\alpha, \beta}\right)=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha, \beta}\right|, & \alpha=1, \beta>-1 \tag{11}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & 0<\alpha<1, \beta>-1
\end{array}\right.
$$

satisfies the condition

$$
\begin{equation*}
\sum_{v=1}^{n} v^{\delta k} \frac{\left(w_{v}^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}}=O\left(X_{n}\right), \text { as } n \rightarrow \infty \tag{12}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n} \varphi_{n}$ is summable $|C, \alpha, \beta ; \delta|_{k^{\prime}} 0<\alpha \leq 1, \delta \geq 0,(\alpha+\beta-\delta-1) k>-1$, and $k \geq 1$.

We need the following lemmas for the proof of our theorem.
Lemma 3.2 [2]) If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{13}
\end{equation*}
$$

Lemma 3.3 [9]) Under the conditions (4) and (5), we have that

$$
\begin{align*}
& n X_{n}\left|\Delta \lambda_{n}\right|=O(1) \text { as } n \rightarrow \infty \tag{14}\\
& \sum_{n=1}^{\infty} X_{n}\left|\Delta \lambda_{n}\right|<\infty \tag{15}
\end{align*}
$$

4. Proof of Theorem 3.1 Let $\left(T_{n}^{\alpha, \beta}\right)$ be the nth (C, α, β) mean, with $0<\alpha \leq 1$
and $\beta>-1$, of the sequence $\left(n a_{n} \lambda_{n} \varphi_{n}\right)$. Then, by (1), we have that

$$
\begin{equation*}
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v} \varphi_{n} \tag{16}
\end{equation*}
$$

Thus, applying Abel's transformation first and then using Lemma 3.2, we have that

$$
\begin{aligned}
T_{n}^{\alpha, \beta}= & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta\left(\lambda_{v} \varphi_{n}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n} \varphi_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}, \\
= & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left(\lambda_{v} \Delta \varphi_{v}+\varphi_{v+1} \Delta \lambda_{v}\right) \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n} \varphi_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} . \\
\left|T_{n}^{\alpha+\beta}\right| \leq & \left.\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\lambda_{v} \Delta \varphi_{v} \| \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\varphi_{v+1} \Delta \lambda_{v}\right| \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p} \right\rvert\, \\
& +\frac{\left|\lambda_{n} \varphi_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{v} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
\leq & \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha, \beta}\left|\lambda_{v}\left\|\Delta \varphi_{v}\left|+\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha, \beta}\right| \varphi_{v+1}\right\| \Delta \lambda_{v}\right|+\left|\lambda_{n} \| \varphi_{n}\right| w_{n}^{\alpha, \beta} \\
= & T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta}+T_{n, 3}^{\alpha, \beta} .
\end{aligned}
$$

To complete the proof of the theorem, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-1}\left|T_{n, r}^{\alpha, \beta}\right|^{k}<\infty, \text { for } r=1,2,3
$$

When $k>1$, we can apply Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 1}^{\alpha, \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{\delta k-1}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha, \beta}\left|\Delta \varphi_{v}\right| \| \lambda_{v} \mid\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}} \sum_{v=1}^{n-1}\left(v^{\alpha+\beta}\right)^{k}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\Delta \varphi_{v}\right|^{k}\left|\lambda_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{2+(\alpha+\beta-\delta-1) k}} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\lambda_{v}\right|^{k} \frac{1}{v^{k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{2+(\alpha+\beta-\delta-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k} v^{-k}\left|\lambda_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{2+(\alpha+\beta-\delta-1) k}} \\
& =O(1) \sum_{v=1}^{m}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\lambda_{v}\right|\left|\lambda_{v}\right|^{k-1} v^{\delta k} \frac{1}{v} \\
& =O(1) \sum_{v=1}^{m} v^{\delta k} \frac{\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\lambda_{v}\right|}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left|\lambda_{v}\right| \sum_{r=1}^{v} r^{\delta k} \frac{\left(w_{r}^{\alpha, \beta}\right)^{k}}{r X_{r}^{k-1}}+O(1)\left|\lambda_{v}\right| \sum_{v=1}^{m} v^{\delta k} \frac{\left.\left(w_{v}+O\right)^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1)\left|\lambda_{m}\right| X_{m}=O(1), m \rightarrow \infty
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. Again, we get that

$$
\begin{aligned}
\sum_{n=2}^{m+1} n^{\delta k-1}\left|T_{n, 2}^{\alpha, \beta}\right|^{k} & \leq \sum_{n=2}^{m+1} n^{\delta k-1}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} w_{v}^{\alpha, \beta}\left|\varphi_{v+1}\right|\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}}\left\{\sum_{v=1}^{n-1} v^{\alpha+\beta}\left(w_{v}^{\alpha, \beta}\right)\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}} \sum_{v=1}^{n-1} \frac{v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}}\left\{\sum_{v=1}^{n-1} X_{v}\left|\Delta \lambda_{v}\right|\right\}^{k-1} \\
& =O(1) \sum_{n=2}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}} \sum_{v=1}^{n-1} \frac{v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m} \frac{v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta-\delta) k}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{v=1}^{m} \frac{v^{(\alpha+\beta) k}\left(w_{v}^{\alpha, \beta}\right)^{k}\left|\Delta \lambda_{v}\right|}{X_{v}^{k-1}} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta-\delta) k}} \\
& =O(1) \sum_{v=1}^{m} v\left|\Delta \lambda_{v}\right| v^{\delta k} \frac{\left(w_{v}^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m} \Delta\left(v\left|\Delta \lambda_{v}\right|\right) \sum_{r=1}^{v} r^{\delta k} \frac{\left(w_{r}^{\alpha, \beta}\right)^{k}}{r X_{r}^{k-1}}+O(1) m\left|\Delta \lambda_{m}\right| \sum_{v=1}^{m} v^{\delta k} \frac{\left(w_{v}^{\alpha, \beta}\right)^{k}}{v X_{v}^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta^{2} \lambda_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1} X_{v}\left|\Delta \lambda_{v}\right|+O(1) m\left|\Delta \lambda_{m}\right| X_{m} \\
& =O(1), \text { as } m \rightarrow \infty,
\end{aligned}
$$

by hypotheses of Theorem 3.1 and Lemma 3.3. Finally, as in $T_{n, 1}^{\alpha, \beta}$, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\delta k-1}\left|T_{n, 3}^{\alpha, \beta}\right|^{k} & =\sum_{n=1}^{m} n^{\delta k-1}\left|\lambda_{n} \varphi_{n} w_{n}^{\alpha, \beta}\right|^{k} \\
& =O(1) \sum_{n=1}^{m} n^{\delta k} \frac{\left(w_{n}^{\alpha, \beta}\right)^{k}\left|\lambda_{n}\right|}{n X_{n}^{k-1}}=O(1), \text { as } m \rightarrow \infty .
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.3. This completes the proof of Theorem 3.1. It should be noted that, if we take $\beta=0, \delta=0$ and $\alpha=1$, then we get Theorem 2. 1. If we set $\delta=0$, then we get a result concerning the $|C, \alpha, \beta|_{k}$ summability factors of infinite series. Also, if we take $\beta=0$ and $\delta=0$, then we obtain Theorem 2. 2. Finally, if we take $k=1, \delta=0$ and $\beta=0$, then we get a new result dealing with the $|C, \alpha|$ summability factors of infinite series.

References

[1] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obš č. 5 (1956) 483-522 (Russian)
[2] H. Bor, On a new application of power increasing sequences, Proc. Est. Acad. Sci. 57 (2008) 205-209
[3] H. Bor, An application of almost increasing sequences, Appl. Math. Lett. 24 (2011) 289-301
[4] H. Bor, Almost increasing sequences and their new applications, J. Inequal. Appl. 2013. 2013: 207
[5] D. Borwein, Theorems on some methods of summability, Quart. J. Math., Oxford, Ser. (2) 9 (1958) 310-316
[6] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc. 67 (1970) 321-326
[7] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141
[8] T.M. Flett, Some more theorems concerning the absolute summability of Fourier series and power series, Proc. London Math. Soc. 7 (1958) 357-387
[9] S. M. Mazhar, Absolute summability factors of infinite series, Kyungpook Math. J. 39 (1999) 67-73
[10] T. Pati, The summability factors of infinite series, Duke Math. J. 21 (1954) 271-284
[11] W. T. Sulaiman, On a new application of almost increasing sequences, Bull. Math. Anal. Appl. 4(3) (2012) 29-33

[^0]: 2010 Mathematics Subject Classification. 40D15, 40F05; 26D15, 40G05
 Keywords. Almost increasing sequences; Cesàro mean; absolute summability; infinite series; Hölder inequality; Minkowski inequality.

 Received: 08 May 2013; Accepted: 15 May 2013
 Communicated by Dragan S. Djordjević
 Email address: hbor33@gmail.com (Hüseyin Bor)

