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Abstract. In this paper, we investigate the generalized Hyers-Ulam stability of a general cubic functional
equation:

f (x + ky) − k f (x + y) + k f (x − y) − f (x − ky) = 2k(k2
− 1) f (y)

for fixed k ∈ Z+ with k ≥ 2 in random normed spaces.

1. Introduction

A basic question in the theory of functional equations is as follows:

When is it true that a function that approximately satisfies a functional equation must be close to an exact solution
of the equation?

If the problem accepts a solution, we say that the equation is stable. The first stability problem concerning
of group homomorphisms was introduced by Ulam [20] in 1940. The famous Ulam stability problem
was partially solved by Hyers [12] for linear functional equation of Banach spaces. Hyers theorem was
generalized by Aoki [3] for additive mappings and by Rassias [17] for linear mappings by considering an
unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Gǎvruta [10] by
replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias approach.
Cădariu and Radu [5] applied the fixed point method to investigation of the Jensen functional equation. They
could present a short and a simple proof (different from the direct method initiated by Hyers in 1941) for
the generalized Hyers-Ulam stability of Jensen functional equation and for quadratic functional equation.
Their methods are a powerful tool for studying the stability of several functional equations.
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The theory of random normed spaces (briefly, RN-spaces) is important as a generalization of determin-
istic result of normed spaces (see [1]) and also in the study of random operator equations. The notion of
an RN-space corresponds to the situations when we do not know exactly the norm of the point and we
know only probabilities of passible values of this norm. The RN-spaces may provide us the appropriate
tools to study the geometry of nuclear physics and have usefully application in quantum particle physics.
A number of papers and research monographs have been published on generalizations of the stability of
different functional equations in RN-spaces [4, 7, 14–16, 22].

In the sequel, we use the definitions and notations of a random normed space as in [2, 18, 19]. A function
F : R ∪ {−∞,+∞} → [0, 1] is called a distribution function if it is nondecreasing and left-continuous, with
F(0) = 0 and F(+∞) = 1. The class of all probability distribution functions F is denoted by Λ. D+ is a subset
of Λ consisting of all functions F ∈ Λ for which l−F(+∞) = 1, where l−F(x) = limt→x− F(t). The space Λ is
partially ordered by the usual pointwise ordering of functions, that is, F ≤ G if and only if F(t) ≤ G(t) for all
t ∈ R. For any a ≥ 0, εa is the element of D+, which is defined by

εa(t) =

0 if t ≤ a,
1 if t > a.

Definition 1.1. ([18]) A function T : [0, 1]× [0, 1]→ [0, 1] is a continuous triangular norm (briefly, a continuous
t-norm) if T satisfies the following conditions:

(1) T is commutative and associative;
(2) T is continuous;
(3) T(a, 1) = a for all a ∈ [0, 1];
(4) T(a, b) ≤ T(c, d) whenever a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Three typical examples of continuous t-norms are as follows:

T(a, b) = ab, T(a, b) = max(a + b − 1, 0), T(a, b) = min(a, b).

Recall that, if T is a t-norm and {xn} is a sequence of numbers in [0, 1], then Tn
i=1xi is defined recurrently

by

T1
i=1xi = x1, Tn

i=1xi = T(Tn−1
i=1 xi, xn) = T(x1, · · · , xn)

for all n ≥ 2, where T∞i=nxi is defined as T∞i=1xn+i ([11]).

Definition 1.2. ([19]) Let X be a real linear space, µ be a mapping from X into D+ (for any x ∈ X, µ(x) is
denoted by µx) and T be a continuous t-norm. The triple (X, µ,T) is called a random normed space (briefly,
RN-space) if µ satisfies the following conditions:

(RN1) µx(t) = εo(t) for all t > 0 if and only if x = 0;
(RN2) µαx(t) = µx( t

|α| ) for all x ∈ X, α , 0 and t ≥ 0;
(RN3) µx+y(t + s) ≥ T(µx(t), µy(s)) for all x, y ∈ X and t, s ≥ 0.

Every normed space (X, ‖ · ‖) defines a random normed space (X, µ,TM), where

µx(t) =
t

t + ‖x‖

for all x ∈ X, t > 0 and TM is the minimum continuous t-norm. This space is called the induced random
normed space.
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Definition 1.3. Let (X, µ,T) be an RN-space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if, for all t > 0 and λ > 0, there exists a
positive integer N such that

µxn−x(t) > 1 − λ

whenever n ≥ N. In this case, x is called the limit of the sequence {xn}, which is denoted by limn→∞ µxn−x = 1.
(2) A sequence {xn} in X is called a Cauchy sequence if, for all t > 0 and λ > 0, there exists a positive

integer N such that

µxn−xm (t) > 1 − λ

whenever n ≥ m ≥ N.
(3) The RN-space (X, µ,T) is said to be complete if every Cauchy sequence in X is convergent to a point

in X.

Theorem 1.4. ([18]) If (X, µ,T) is an RN-space and {xn} is a sequence of X such that xn → x, then limn→∞ µxn (t) =
µx(t).

Now, we consider a mapping f : X→ Y satisfying the following functional equation:

f (x + ky) − k f (x + y) + k f (x − y) − f (x − ky) = 2k(k2
− 1) f (y) (1)

for fixed k ∈ Z+ with k ≥ 3. Then the equation (1) is called the general cubic functional equation since the
function f (x) = x3 is its solution. Every solution of the cubic functional equation is called a cubic mapping.

Note that, if we put x = 0 and y = x in the equation (1), then f (kx) = k3 f (x) and f (knx) = k3n f (x) for all
n ∈ Z+.

In the case k = 3, Wiwatwanich et al. [21] established the general solution and the general Hyers-Ulam-
Rassias stability of cubic functional equation on Banach spaces. The stability of the functional equation (1)
in quasi-β-normed spaces and fuzzy normed spaces were investigated by Eskandani et al. [9] and Javdian
et al. [13], respectively.

In this paper, using the direct and fixed point methods, we prove the generalized Hyers-Ulam stability
problem of the general cubic functional equation (1) in random normed spaces in the sense of Scherstnev
under the minimum continuous t-norm TM.

Throughout this paper, let X be a real linear space, (Z, µ′,TM) be an RN-space and (Y, µ,TM) be a complete
RN-space. For any mapping f : X→ Y, we define

∆ f (x, y) = f (x + ky) − k f (x + y) + k f (x − y) − f (x − ky) − 2k(k2
− 1) f (y)

for all x, y ∈ X and k ∈ Z+ with k ≥ 2.

2. Random Stability of Functional Equation (1)

In this section, we investigate the generalized Hyers-Ulam stability of the general cubic functional
equation ∆ f (x, y) = 0 in random spaces via direct and fixed point methods.

2.1 The direct Method
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Theorem 2.1. Let φ : X2
→ Z be an even function such that, for some 0 < α < k3,

µ′φ(kx,ky)(t) ≥ µ
′

αφ(x,y)(t) (2)

and limn→∞ µ′φ(knx,kn y)(k
3nt) = 1 for all x, y ∈ X and t > 0. If f : X→ Y is a mapping with f (0) = 0 such that

µ∆ f (x,y)(t) ≥ µ′φ(x,y)(t) (3)

for all x, y ∈ X and t > 0, then there exists a unique cubic mapping C : X→ Y such that

µ f (y)−C(y)(t) ≥ µ′φ(0,y)

(
2k(k2

− 1)(k3
− α)t

k3 + α

)
(4)

for all y ∈ X and t > 0.

Proof. Substituting x = 0 in (3), we have

µ∆ f (0,y)(t) ≥ µ′φ(0,y)(t) (5)

and replacing y = −y in (5), we have

µ∆ f (0,−y)(t) ≥ µ′φ(0,y)(t) (6)

for all y ∈ X and t > 0. It follows from (5) and (6) that

µ f (y)+ f (−y)(t) ≥ µ′φ(0,y)(k(k2
− 1)t).

Since µ2 f (ky)−2k3 f (y)(t) = µ f (ky)+ f (−ky)−k( f (y)+ f (−y))+∆ f (0,y)(t), we have

µ2 f (ky)−2k3 f (y)

(
k3 + α

k(k2 − 1)
t
)

≥ TM

(
µ f (ky)+ f (−ky)

( α

k(k2 − 1)
t
)
, µk( f (y)− f (−y))

( t
k2 − 1

)
, µ∆ f (0,y)(t)

)
≥ TM

(
µ′φ(0,ky)(αt), µ′φ(0,y)(t), µ

′

φ(0,y)(t)
)

= µ′φ(0,y)(t)

for all y ∈ X and t > 0. Thus we have

µ f (ky)
k3 − f (y)(t) ≥ µ

′

φ(0,y)

(2k4(k2
− 1)

k3 + α
t
)

(7)

for all y ∈ X and t > 0. Replacing y by kny in (7), we have

µ f (kn+1 y)

k3(n+1) −
f (kn y)
k3n

(t) ≥ µ′φ(0,y)

(2k4(k2
− 1)

k3 + α

(k3

α

)n
t
)

for all y ∈ X and t > 0. Since f (kn y)
k3n − f (y) =

∑n−1
j=0

( f (k j+1 y)
k3( j+1) −

f (k j y)
k3 j

)
, we have

µ f (kn y)
k3n − f (y)

( n−1∑
j=0

k3 + α

2k4(k2 − 1)

( α
k3

) j
t
)
≥ TM

n−1
j=0 (µ′φ(0,y)(t)) = µ′φ(0,y)(t) (8)
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for all y ∈ X and t > 0. Replacing y by kmy in (8), we obtain

µ f (kn+m y)

k3(n+m) −
f (km y)
k3m

(t) ≥ µ′φ(0,y)

 2k4(k2
− 1)t

(k3 + α)
∑n+m−1

j=m

(
α
k3

) j

 (9)

for all y ∈ X and m,n ∈ Z+ with n > m. Since α < k3, the sequence { f (kn y)
k3n } is a Cauchy sequence in a complete

RN-space (Y, µ,TM) and so it converges to some point C(y) ∈ Y. Fix y ∈ X and put m = 0 in (9). Then we
obtain

µ f (kn y)
k3n − f (y)(t) ≥ µ

′

φ(0,y)

 2k4(k2
− 1)t

(k3 + α)
∑n−1

j=0

(
α
k3

) j


and so, for any δ > 0, it follows that

µC(y)− f (y)(δ + t)

≥ TM

(
µC(y)− f (kn y)

k3n
(δ), µ f (kn y)

k3n − f (y)(t)
)

≥ TM

µC(y)− f (kn y)
k3n

(δ), µ′φ(0,y)

( 2k4(k2
− 1)t

(k3 + α)
∑n−1

j=0

(
α
k3

) j

)
(10)

for all y ∈ X and t > 0. Taking the limit as n→∞ in (10), we obtain

µC(y)− f (y)(δ + t) ≥ µ′φ(0,y)

(
2k(k2

− 1)(k3
− α)t

k3 + α

)
. (11)

Since δ is arbitrary, by taking δ→ 0 in (11), we have

µC(y)− f (y)(t) ≥ µ′φ(0,y)

(
2k(k2

− 1)(k3
− α)t

k3 + α

)
(12)

for all y ∈ X and t > 0. Therefore, we conclude that the condition (4) holds. Replacing x and y by knx and
kny in (3), respectively, we have

µ f (knx+kn+1 y)
k3n −

k f (knx+kn y)
k3n +

k f (knx−kn y)
k3n −

f (knx+kn+1 y)
k3n −

2k(k2−1) f (kn y)
k3n

(t)

≥ µ′φ(knx,kn y)(k
3nt)

for all x, y ∈ X and t > 0. Since limn→∞ µ′φ(knx,kn y)(k
3nt) = 1, it follows that C satisfies the equation (1), which

implies that C is a cubic mapping.
To prove the uniqueness of the cubic mapping C, let us assume that there exists another mapping

D : X → Y which satisfies (4). Fix y ∈ X. Then C(kny) = k3nC(y) and D(kny) = k3nD(y) for all n ∈ Z+. It
follows from (2.3) that

µC(y)−D(y)(t) = µ C(kn y)
k3n −

D(kn y)
k3n

(t)

≥ TM

(
µ C(kn y)

k3n −
f (kn y)
k3n

( t
2

)
, µ f (kn y)

k3n −
D(kn y)

k3n

( t
2

))
≥ µ′φ(0,y)

(
2k(k2

− 1)(k3
− α)k3nt

(k3 + α)αn

)
.

(13)

Since limn→∞
2k(k2

−1)(k3
−α)k3nt

(k3+α)αn = ∞, we have µC(y)−D(y)(t) = 1 for all t > 0. Thus the cubic mapping C is unique.
This completes the proof.
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Theorem 2.2. Let φ : X2
→ Z be an even function such that, for some 0 < k3 < α,

µ′
φ( x

k ,
y
k )

(t) ≥ µ′φ(x,y)(αt) (14)

and limn→∞ µ′k3nφ( x
kn ,

y
kn )

(t) = 1 for all x, y ∈ X and t > 0. If f : X→ Y is a mapping with f (0) = 0 which satisfies (3),

then there exists a unique cubic mapping C : X→ Y such that

µ f (y)−C(y)(t) ≥ µ′φ(0, y)
(

2k(k2
− 1)(α − k3)t
k3 + α

)
(15)

for all y ∈ X and t > 0.

Proof. It follows from (7) that

µ f (y)−k3 f ( y
k )(t) ≥ µ

′

φ(0,y)

(
2αk(k2

− 1)t
k3 + α

)
(16)

for all y ∈ X and t > 0. Applying the triangle inequality and (16), we have

µ f (y)−k3n f ( y
kn )(t) ≥ µ

′

φ(0,y)

 2αk(k2
− 1)t

(k3 + α)
∑n+m−1

j=m

(
k3

α

) j

 (17)

for all y ∈ X and m,n ∈ Z+ with n > m ≥ 0. Then the sequence {k3n f ( y
kn )} is a Cauchy sequence in a complete

RN-space (Y, µ,TM) and so it converges to some point C(y) ∈ Y. We can define a mapping C : X→ Y by

C(y) = lim
n→∞

k3n f (
y
kn )

for all y ∈ X. Then the mapping C satisfies (1) and (15). The remaining assertion goes through in the similar
method to the corresponding part of Theorem 2.1. This complete the proof.

Corollary 2.3. Let p ∈ R be positive real number with p , 3 and a fixed unit point of z0 ∈ Z. If f : X → Y is a
mapping with f (0) = 0 and satisfying

µ∆ f (x,y)(t) ≥ µ′(‖x‖p+‖y‖p)zo
(t) (18)

for all x, y ∈ X and t > 0, then there exists a unique cubic mapping C : X→ Y such that

µ f (y)−C(y)(t) ≥ µ′‖y‖pzo

(2k(k2
− 1)|k3

− k3p
|t

k3 + k3p

)
(19)

for all x, y ∈ X and t > 0.

Proof. Let φ : X2
→ Z be defined by φ(x, y) = (‖x‖p + ‖y‖p)zo. Then, by Theorem 2.1, we obtain the desired

result, where α = k3p.

Remark. (1) An example to illustrate that the functional equation (1) is not stable for p = 3 in Corollary 2.3
(see [13]).

(2) In Corollary 2.3, if we assume that

φ(x, y) = ‖x‖p‖y‖pz0

or

φ(x, y) = (‖x‖p‖y‖q + ‖x‖p+q + ‖y‖p+q)z0,

then we have the product stability of Ulam-Gavuta-Rassias and the mixed product-sum stability of Rassias,
respectively.
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Example 2.4. Let (X, ‖ · ‖) be a Banach normed space and

µx(t) =
t

t + ‖x‖

for all x ∈ X and t > 0. Then (X, µ,min) is a complete RN-space. Also, let

µ′φ(x,y)(t) =
t

t + ‖φ(x, y)‖

for all x, y ∈ X and t > 0. Then (X, µ′,min) is a RN-space.
Define a mapping f : X→ X by f (x) = x3 + ‖x‖z0, where z0 is a unit point in X. By a simple calculation,

we have

‖∆ f (x, y)‖

= ‖ f (x + ky) − k f (x + y) + k f (x − y) − f (x − ky) − 2k(k2
− 1) f (y)‖

≤ 2k(k2
− 1)‖y‖ ≤ 2k(k2

− 1)(‖x‖ + ‖y‖).

Then it follows that

µ∆ f (x,y)(t) ≥ µ′φ(x,y)(t)

for all x, y ∈ X and t > 0, where φ(x, y) = 2k(k2
− 1)(‖x‖ + ‖y‖). Also, we obtain

µ′φ(0,kn y)(k
3n(k3

− α)t) =
k3n(k3

− α)t
t + 2k(k2 − 1)kn‖y‖

,

where 0 < α < k3, and

lim
n→∞

µ′φ(0,kn y)(k
3n(k3

− α)t) = 1.

Thus all the conditions of Theorem 2.1 hold. Therefore, there exists a unique cubic mapping C : X → X
such that

µ f (y)−C(y)(t) ≥
(k3
− α)t

(k3 − α)t + (k3 + α)‖y‖

and C(y) = y3 for all y ∈ X and t > 0.

2.2 The fixed point method

Recall that a mapping d : X2
→ [0,+∞] is called a generalized metric on a nonempty set X if

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
A set X with the generalized metric d is called a generalized metric space.

The following fixed point theorem proved by Diaz and Margolis [8] plays an important role in proving
our theorem:

Theorem 2.5. ([8]) Suppose that (Ω, d) is a complete generalized metric space and J : Ω→ Ω is a strictly contractive
mapping with Lipshitz constant L < 1. Then, for each x ∈ Ω, either d(Jnx, Jn+1x) = ∞ for all nonnegative integers
n ≥ 0 or there exists a natural number n0 such that

(1) d(Jnx, Jn+1x) < ∞ for all n ≥ n0;
(2) the sequence {Jnx} is convergent to a fixed point y∗ of J;
(3) y∗ is the unique fixed point of J in the set Λ = {y ∈ Ω : d(Jn0 x, y) < ∞};
(4) d(y, y∗) ≤ 1

1−L d(y, Jy) for all y ∈ Λ.
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Theorem 2.6. Let ψ : X2
→ D+ (ψ(x, y) is denoted by ψx,y) be a even function such that, for some 0 < α < k3,

ψx,y(t) ≤ ψkx,ky(αt)

for all x, y ∈ X and t > 0. If f : X→ Y is a mapping with f (0) = 0 which satisfies

µ∆ f (x,y)(t) ≥ ψx,y(t) (20)

for all x, y ∈ X and t > 0, then there exists a unique cubic mapping C : X→ Y such that

µ f (y)−C(y)(t) ≥ ψ0,y

(
2k(k2

− 1)(k3
− α)t

k3 + α

)
(21)

for all y ∈ X and t > 0.

Proof. It follows from (20) and the similar methods in the proof of Theorem 2.1 that

µ f (ky)
k3 − f (y)(t) ≥ ψ0,y

(2k4(k2
− 1)t

k3 + α

)
. (22)

Let Ω be a set of all mappings from X into Y and introduce a generalized metric on Ω as follows:

d(1, h) = inf{c ∈ [0,∞) : µ1(y)−h(y)(ct) ≥ ψ0,y(t), ∀ y ∈ X}.

where, as usual, inf ∅ = −∞. It is easy to show that (Ω, d) is a generalized complete metric space ([6]).
Now, let us consider the mapping J : Ω→ Ω defined by

J1(y) =
1(ky)

k3

for all 1 ∈ Ω and y ∈ X. Let 1, h in Ω and c ∈ [0,∞) be an arbitrary constant with d(1, h) < c. Then we have

µ1(y)−h(y)(ct) ≥ ψ0,y(t)

for all y ∈ X and t > 0, whence

µJ1(y)−Jh(y)

( α
k3 ct

)
≥ ψ0,y(t) (23)

for all y ∈ X and t > 0 and so

d(J1, Jh) ≤
αc
k3 ≤

α

k3 d(1, h)

for all 1, h ∈ Ω. Then J is a strictly contractive self-mapping on Ω with the Lipschitz constant α
k3 < 1. It

follows from (22) that

d( f , J f ) ≤
k3 + α

2k4(k2 − 1)
.

Due to Theorem 2.5, there exists a mapping C : X → Y, which is a unique fixed point of J in the set
Ω1 = {1 ∈ Ω : d( f , 1) < ∞} such that

C(y) = lim
n→∞

f (kny)
k3n
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for all y ∈ X since limn→∞ d(Jn f ,C) = 0. Again, it follows from Theorem 2.5 that

d( f ,C) ≤
1

1 − L
d( f , J f ) ≤

k3 + α

2k4(k2 − 1)(1 − L)
.

Then we conclude

µ f (y)−C(y)(t) ≥ ψ0,y

(
2k(k2

− 1)(k3
− α)t

k3 + α

)
for all y ∈ X and t > 0, where L = α

k3 . The remaining assertion goes through in the similar method to the
corresponding part of Theorem 2.1. This completes the proof.

Theorem 2.7. Let ψ : X2
→ Z be an even function such that, for some 0 < k3 < α,

ψ x
k ,

y
k
(t) ≥ ψx,y(αt)

for all x, y ∈ X and t > 0. If f : X → Y is a mapping with f (0) = 0 which satisfies (20), then there exists a unique
cubic mapping C : X→ Y such that

µ f (y)−C(y)(t) ≥ ψ0,y

(
2k(k2

− 1)(α − k3)t
k3 + α

)
(24)

for all y ∈ X and t > 0.

Proof. It follows from (20) that

µ f (y)−k3 f ( y
k )(t) ≥ ψ0,y

(
2αk(k2

− 1)t
k3 + α

)
(25)

for all y ∈ X and t > 0. Let Ω and d be as in the proof of Theorem 2.6. Then (Ω, d) is a generalized complete
metric space ([6]) and we consider the mapping J : Ω→ Ω defined by

J1(y) = k31(
y
k

)

for all 1 ∈ Ω and y ∈ X. So, we have

d(J1, Jh) ≤
k3c
α
≤

k3

α
d(1, h)

for all 1, h ∈ Ω. Then J is a strictly contractive self-mapping on Ω with the Lipschitz constant k3

α < 1. It
follows from (25) that

d( f , J f ) ≤
k3 + α

α(2k(k2 − 1))
.

Due to Theorem 2.5, there exists a mapping C : X → Y, which is a unique fixed point of J in the set
Ω1 = {1 ∈ Ω : d( f , 1) < ∞}, such that

C(y) = lim
n→∞

k3n f (
y

kny
)

for all y ∈ X since limn→∞ d(Jn f ,C) = 0. Again, it follows from Theorem 2.5 that

d( f ,C) ≤
1

1 − L
d( f , J f ) ≤

k3 + α

2k(k2 − 1)(α − k3)

for all y ∈ X and t > 0, where L = k3

α . The remaining assertion goes through in the similar method to the
corresponding part of Theorem 2.2. This completes the proof.
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Now, we present a corollary that is an application of Theorem 2.6 in the classical case.

Corollary 2.8. Let X be a real normed space, θ ≥ 0 and p be a real number with 0 < p < 1. Assume that f : X→ X
is a mapping with f (0) = 0 which satisfies

µ∆ f (x,y)(t) ≥
t

t + θ(‖x‖p + ‖y‖p)

for all x, y ∈ X and t > 0. Then the limit C(x) = limn→0
f (kn y)

k3n exists for all y ∈ X and C : X → X is a unique cubic
mapping such that

µ f (y)−C(y)(t) ≥
2k(k2

− 1)(k3
− kp)t

2k(k2 − 1)(k3 − kp)t + θ(k3 + kp)‖y‖p

for all y ∈ X and t > 0.

Proof. Let ψx,y(t) = t
t+θ(‖x‖p+‖y‖p) for all x, y ∈ X and t > 0 and α = kp. Then we obtain the desired result.
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