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Abstract. We introduce modified Noor iterative method in a convex metric space and apply it to approx-
imate fixed points of quasi-contractive operators introduced by Berinde [6]. Our results generalize and
improve upon, among others, the corresponding results of Berinde [6], Bosede [9] and Phuengrattana and
Suantai [20]. We also compare the rate of convergence of proposed iterative method to the iterative methods
due to Noor [26], Ishikawa [14] and Mann [18]. It has been observed that the proposed method is faster than
the other three methods. Incidently the results obtained herein provide analogues of the corresponding
results of normed spaces and holds in CAT(0) spaces, simultaneously.

1. Introduction

Let C be a nonempty convex subset of a normed space E and T : C→ C be an operator. In 2005, Suantai
[23] introduced the following modified Noor iterative method with x1 = x ∈ C and

zn = anTxn + (1 − an) xn
yn = bnTzn + cnTxn + (1 − bn − cn) xn
xn+1 = αnTyn + βnTzn +

(
1 − αn − βn

)
xn, n ≥ 1

(1)

where 0 ≤ αn, βn, an, bn, cn ≤ 1.He used (1) (Replacing T by Tn) to approximate fixed points of asymptotically
nonexpansive operators in a uniformly convex Banach space. Moreover, (1) can be viewed as a generaliza-
tion of the iterative methods by Noor [19], Glowinski and Le Tallec [13], Xu and Noor [26], Ishikawa [14]
and Mann [18], simultaneously.

An extension of a linear version (usually in normed spaces) of a known result to metric fixed point theory
has its own importance. As (1) involves general convex combinations, we need some convex structure in
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a metric space to translate it on a nonlinear domain. A mapping W : X2
× [0, 1] → X is called a convex

structure on a metric space (X, d) [24] if

d
(
u,W

(
x, y, α

))
≤ αd(u, x) + (1 − α)d(u, y) (2)

for all x, y,u ∈ X and α ∈ [0, 1]. The triplet (X, d,W) is known as a convex metric space and will be denoted
simply by X. A nonempty subset C of a convex metric space X is convex if W(x, y, α) ∈ C for all x, y ∈ C and
α ∈ [0, 1]. An important and interesting example of convex metric spaces is a CAT (0) space . To get details
for CAT (0) spaces, we refer the reader to [10, 12, 16].

From the definition of convex structure W on X, it is obvious that

d
(
u,W

(
x, y, α

))
≥ (1 − α) d(u, y) − αd(u, x) (3)

for all x, y,u ∈ X and α ∈ [0, 1].
Let C be a nonempty convex subset of a convex metric space X and T : C→ C be an operator. Let {αn},

{βn}, {an}, {bn} and {cn} be appropriately chosen sequences in [0, 1].
Then for a given x1 ∈ C, we compute the sequence {xn} by

zn = W (Txn, xn, an) ,
yn = W

(
Tzn,W

(
Txn, xn,

cn
1−bn

)
, bn

)
,

xn+1 = W
(
Tyn,W

(
Tzn, xn,

βn

1−αn

)
, αn

)
, n ≥ 1.

(4)

Uusing ” W(x, y, 0) = y for any x, y in X ([25], Proposition 1.2(a))”, the iterative method (4) provides, in
convex metric spaces, analogues of:

Noor iterative sequence
{
x(3)

n

}
[26] (with cn = βn = 0)

z(3)
n = W

(
Tx(3)

n , x
(3)
n , an

)
,

y(3)
n = W

(
Tz(3)

n , x
(3)
n , bn

)
,

x(3)
n+1 = W

(
Ty(3)

n , x
(3)
n , αn

)
, n ≥ 1

(5)

Ishikawa iterative sequence
{
x(2)

n

}
[14] (with an = cn = βn = 0)

y(2)
n = W

(
Tx(2)

n , x
(2)
n , bn

)
x(2)

n+1 = W
(
Ty(2)

n , x
(2)
n , αn

)
, n ≥ 1

(6)

and Mann iterative sequence
{
x(1)

n

}
[18] (with an = bn = cn = βn = 0)

x(1)
n+1 = W

(
Tx(1)

n , x
(1)
n , αn

)
, n ≥ 1. (7)

If X is a normed space and W(x, y, α) = αx + (1 − α)y, then (4) coincides with (1).
Berinde [6] introduced a new class of quasi-contractive type operators and used Ishikawa iterative

method [14] to approximate fixed points of this new class of operators in a normed space. To appreciate
this class of operators, we recall some definitions.

An operator T : X→ X is (i) an a− contraction if

d(Tx,Ty) ≤ ad(x, y) for all x, y ∈ X, (8)

where 0 < a < 1,
(ii) Kannan operator [15] if there exists b ∈ (0, 1

2 ) such that

d(Tx,Ty) ≤ b[d(x,Tx) + d(y,Ty)] for all x, y ∈ X, (9)
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(iii) Chatterjea operator [11] if there exists c ∈ (0, 1
2 ) such that

d(Tx,Ty) ≤ c[d(x,Ty) + d(y,Tx)] for all x, y ∈ X. (10)

Combining the definitions (8)-(10), Zamfirescu [27] proved the following important result.

Theorem 1.1. Let X be a complete metric space and T : X → X be an operator for which there exist real numbers
a, b and c satisfying 0 < a < 1, b, c ∈ (0, 1

2 ) such that for x, y ∈ X, at least one of the follwing conditions holds:
(z1) d(Tx,Ty) ≤ ad(x, y)
(z2) d(Tx,Ty) ≤ b[d(x,Tx) + d(y,Ty)]
(z3) d(Tx,Ty) ≤ c[d(x,Ty) + d(y,Tx)].

Then T has a unique fixed point p and the Picard iteration {xn} defined by: x1 ∈ X, xn+1 = Txn,n ≥ 1, converges
to p.

An operator T satisfying the contractive conditions (z1) − (z3) is called Zamfirescu operator. The class
of Zamfirescu operators is one of the most studied class of contractive type operators. For this class of
operators, Mann iterative method [18] and Ishikawa iterative method [14] are known to converge to a
unique fixed point of T in a normed space.

An operator T on a metric space X is a quasi-contractive type [6] if

d
(
Tx,Ty

)
≤ δd

(
x, y

)
+ εd (Tx, x) (11)

for any x, y ∈ X , 0 < δ < 1 and ε ≥ 0.
Note that the contractive condition (8) includes T as a continuous operator on X while this is not the

case with the contractive conditions (9)-(11).
Berinde [6] proved that the class of operators satisfying the condition (11) is wider than the class of

Zamfirescu operators. He used Ishikawa iterative method [14] to approximate fixed points of this class of
operators in a normed space. Actually, he proved:

Theorem 1.2. Let C be a nonempty, bounded, closed and convex subset of a normed space E. Let T : C → C be an
operator satisfying (11). Let {xn} be defined by: x1 ∈ C, xn+1 = αnT

[
βnTxn +

(
1 − βn

)
xn

]
+ (1 − αn) xn where {αn}

and
{
βn

}
are real sequences in [0, 1] such that

∑
∞

n=1 αn = ∞. If F(T)(the set of fixed points of T) is nonempty, then {xn}

converges strongly to a fixed point of T.

In this paper, we prove a convergence therorem in a convex metric space for modified Noor iterative
method (4) of quasi-contractive type operator (11). As a consequence, our results generalize, improve and
unify a number of results including the results of Berinde [3, 6], Bosede [9] and Phuengrattana and Suantai
[20] in Banach spaces. We also compare the rate of convergence of our new iterative method (4) with
classical iterative methods in convex metric spaces.

2. Main Results

The main theorem of this paper goes as follows.

Theorem 2.1. Let C be a nonempty, closed and convex subset of a convex metric space X. Let T : C → C be an
operator satisfying (11). If F (T) , ∅ and {an}, {bn}, {cn}, {αn},

{
βn

}
, {bn + cn} and

{
αn + βn

}
are sequences in [0, 1] such

that
∑
∞

n=1
(
αn + βn

)
= ∞ , then {xn} in (4), converges to a unique fixed point p of T.

Proof. Applying inequality (2) to the sequences {zn} and
{
yn

}
in (4) with p ∈ F(T), we estimate

d
(
zn, p

)
= d

(
W (Txn, xn, an) , p

)
≤ and

(
Txn, p

)
+ (1 − an)d

(
xn, p

)
≤ anδd

(
xn, p

)
+ (1 − an)d

(
xn, p

)
≤ (1 − an(1 − δ)) d

(
xn, p

)
(12)
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and

d
(
yn, p

)
= d

(
W

(
Tzn,W

(
Txn, xn,

cn

1 − bn

)
, bn

)
, p

)
≤ bnd

(
Tzn, p

)
+ (1 − bn) d

(
W

(
Txn, xn,

cn

1 − bn

)
, p

)
≤ bnd

(
Tzn, p

)
+ (1 − bn)

( cn

1 − bn
d
(
Txn, p

)
+

(
1 −

cn

1 − bn

)
d
(
xn, p

))
= bnd

(
Tzn, p

)
+ cnd

(
Txn, p

)
+ (1 − bn − cn)d

(
xn, p

)
≤ bnδd

(
zn, p

)
+ cnδd

(
xn, p

)
+ (1 − bn − cn)d

(
xn, p

)
. (13)

Inserting (12) into (13), we get that

d
(
yn, p

)
≤ (bnδ (1 − an(1 − δ)) + cnδ + (1 − bn − cn)) d

(
xn, p

)
. (14)

Again applying inequality (2) to the sequence {xn} in (4), we obtain

d
(
xn+1, p

)
= d

(
W

(
Tyn,W

(
Tzn, xn,

βn

1 − αn

)
, αn

)
, p

)
≤ αnd

(
Tyn, p

)
+ (1 − αn) d

(
W

(
Tzn, xn,

βn

1 − αn

)
, p

)
≤ αnd

(
Tyn, p

)
+ (1 − αn)

(
βn

1 − αn
d
(
Tzn, p

)
+

(
1 −

βn

1 − αn

)
d
(
xn, p

))
= αnd

(
Tyn, p

)
+ βnd

(
Tzn, p

)
+ (1 − αn − βn)d

(
xn, p

)
≤ αnδd

(
yn, p

)
+ βnδd

(
zn, p

)
+ (1 − αn − βn)d

(
xn, p

)
.

(15)

Finally substituting (12) and (14) into (15) and simplifying, we get

d
(
xn+1, p

)
≤ αnd

(
Tyn, p

)
+ βnd

(
Tzn, p

)
+ (1 − αn − βn)d

(
xn, p

)
≤ αnδd

(
yn,w

)
+ βnδd

(
zn, p

)
+ (1 − αn − βn)d

(
xn, p

)
≤

{
αnδ [bnδ (1 − an(1 − δ)) + cnδ + (1 − bn − cn)]

+βnδ (1 − an(1 − δ)) + (1 − αn − βn)

}
d
(
xn, p

)
≤

{
1 − (1 − δ)αn [1 + anbn + (bn + cn) δ]

− (1 − δ) βn [1 + anδ]

}
d
(
xn, p

)
≤

(
1 − (1 − δ)αn − (1 − δ) βn

)
d
(
xn, p

)
=

(
1 − (1 − δ)

(
αn + βn

))
d
(
xn, p

)
.

.

.

≤

n∏
k=1

[
1 − (1 − δ)

(
αk + βk

)]
d
(
x1, p

)
.

That is,

d
(
xn+1, p

)
≤

n∏
k=1

[
1 − (1 − δ)

(
αk + βk

)]
d
(
x1, p

)
. (16)

In view of the fact that 1 + x ≤ ex for x ≥ 0, the inequality (16) reduces to

d
(
xn+1, p

)
≤

n∏
k=1

e−(1−δ)(αk+βk)d
(
x1, p

)
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= e
−(1−δ)

n∑
k=1

(αk+βk)
d
(
x1, p

)
=

1

e
(1−δ)

n∑
k=1

(αk+βk)
d
(
x1, p

)
.

Since
∑
∞

k=1
(
αk + βk

)
= ∞, therefore

d
(
xn+1, p

)
→ 0 as n→∞.

Consequently, xn → p ∈ F(T).
Next we show that F(T) =

{
p
}
. To prove this, we take p1, p2 ∈ F(T) and p1 , p2.

Using quasi-contractive condition (11), we have

d
(
p1, p2

)
= d

(
Tp1, p2

)
≤ δd

(
p1, p2

)
< d

(
p1, p2

)
,

a contradiction. Therefore F(T) =
{
p
}
.

The following results are the immediate consequences of Theorem 2.1.

Theorem 2.2. Let C be a nonempty, closed and convex subset of a convex metric space X. Let T : C → C be an
operator satisfying (11). If F (T) , ∅ and {αn}, {bn} and {an} are sequences in [0, 1] such that

∑
∞

n=1 αn = ∞ , then {x(3)
n }

in (5) with initial point x1, converges to a unique fixed point p of T.

Proof. Choose cn = 0 = βn in Theorem 2.1.

Theorem 2.3. Let C be a nonempty, closed and convex subset of a convex metric space X. Let T : C → C be an
operator satisfying (11). If F (T) , ∅ and {αn}, {bn} are sequences in [0, 1] such that

∑
∞

n=1 αn = ∞ , then {x(2)
n } in (6)

with initial point x1, converges to a unique fixed point p of T.

Proof. Take an = cn = βn = 0 in Theorem 2.1.

Theorem 2.4. Let C be a nonempty, closed and convex subset of a convex metric space X. Let T : C → C be an
operator satisfying (11). If F (T) , ∅ and {αn} is a sequence in [0, 1] such that

∑
∞

n=1 αn = ∞ , then {x(1)
n } in (7) with

initial point x1, converges to a unique fixed point p of T.

Proof. Set an = bn = cn = βn = 0 in Theorem 2.1.

In 2004, Berinde [4] gave the concept to compare the rate of convergence of different iteration methods,
see also [1, 2, 5, 7, 8, 17, 21, 22].

Let {an} and {bn} be two sequences of positive numbers that converge to a, b, respectively and

lim
n→∞

|an − a|
|bn − b|

= l.

If l = 0, then it is said that {an} converges to a faster than {bn} to b. If 0 < l < ∞, then we say that {an} and {bn}

have the same rate of convergence.
Suppose that for two fixed point iterative sequences {xn} and

{
yn

}
converging to the same fixed point z

of T, the error estimates d (xn, z) ≤ an and d
(
yn, z

)
≤ bn for all n ≥ 1, are available, where {an} and {bn} are two

sequences of positive real numbers (converging to zero). Then, in view of above definition, the following
concept appears to be very natural.

If {an} converges faster than {bn}, then we say that the fixed point iterative sequence {xn} converges faster
than the fixed point iterative sequence

{
yn

}
to z.

It has been observed that the comparison of the rate of convergence in the above definition depends
on the choice of sequences {an} and {bn} which are error bounds of {xn} and

{
yn

}
, respectively. This method

of comparing the rate of convergence of two fixed point iterative sequences seems to be unclear. In 2013,
Phuengrattana and Suantai [20] modified his concept as follows:
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If {xn} and
{
yn

}
are two iterative sequences converging to the same fixed point z of T, then we say that

{xn} converges faster than
{
yn

}
to z if

lim
n→∞

d (xn, z)
d
(
yn, z

) = 0.

The following result compares the rate of convergence of the proposed iterative method (4) with the
classical iterative methods due to Mann[18] , Ishikawa [14] and Noor [19] for quasi-contractive operators.

Theorem 2.5. Let C be a nonempty, closed and convex subset of a convex metric space X. Let T : C → C be an
operator satisfying (11). If F(T) , ∅ and {an}, {bn}, {cn}, {αn}, {βn}, {bn + cn} and

{
αn + βn

}
are sequences in [0, 1] which

satisfy the conditions:
(C1): 0 < η < αn + βn < 1
(C2): 0 < αn < 1

1+δ ,
∑
∞

n=1
(
αn + βn

)
= ∞ and limn→∞ αn = 0, then {xn} in (4), converges faster than Noor iterative

method (5), Ishikawa iterative method (6) and Mann iterative method (7), to a unique fixed point of T provided that
all the methods have the same initial guess x1.

Proof. By Theorems 2.1-2.4, the sequences {xn} ,
{
x(3)

n

}
,
{
x(2)

n

}
and

{
x(1)

n

}
generated by (4-7), respectively, con-

verges to a unique fixed point p of T.
Applying the inequality (3) to Noor iterations (5), we have

d
(
x(3)

n+1, p
)
≥ (1 − αn) d

(
x(3)

n , p
)
− αnd

(
Ty(3)

n , p
)

≥ (1 − αn) d
(
x(3)

n , p
)
− αnd

(
Ty(3)

n , p
)

≥ (1 − αn) d
(
x(3)

n , p
)
− αnδd

(
y(3)

n , p
)

= (1 − αn) d
(
x(3)

n , p
)
− αnδ

(
W

(
Tz(3)

n , x
(3)
n , bn

)
, p

)
≥ (1 − αn − αnδ (1 − bn)) d

(
x(3)

n , p
)

−αnbnδ
2 (1 − bn (1 − δ)) d

(
x(3)

n , p
)

≥ (1 − αn (1 + δ)) d
(
x(2)

n , p
)

.

.

.

≥

n∏
k=1

(1 − αk (1 + δ)) d
(
x, p

)
Similarly for Mann iterative sequence

{
x(1)

n

}
and Ishikawa iterative sequence

{
x(2)

n

}
, we can calculate that

d
(
x(i)

n+1, p
)
≥

n∏
k=1

(1 − αn (1 + δ)) d
(
x(i)

n , p
)

where i = 1, 2 (17)

Combining (17) with the similar inequality obtained for Noor iterations, we have

d
(
x(i)

n+1, p
)
≥ (1 − αn (1 + δ)) d

(
x(i)

n , p
)

where i = 1, 2, 3. (18)

It follows by (C1), (16) and (18) that

d
(
xn+1, p

)
d
(
x(i)

n+1, p
) ≤ (

1 − η (1 − δ)
)n

n∏
k=1

(1 − αk (1 + δ))
.
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Let θn =
(1−η(1−δ))n

n∏
k=1

(1−αk(1+δ))
. By the assumption in (C2), we obtain

lim
n→∞

θn+1

θn
= lim

n→∞

(
1 − η (1 − δ)

)n+1

n+1∏
k=1

(1 − αk (1 + δ)) d
(
x(2)

1 , p
) .

n∏
k=1

(1 − αk (1 + δ)) d
(
x(3)

1 , p
)

(
1 − η (1 − δ)

)n

= lim
n→∞

(
1 − η (1 − δ)

)
(1 − αn+1 (1 + δ))

=
(
1 − η (1 − δ)

)
< 1.

By the ratio test of real sequences, we conclude that
∑
∞

n=1 θn < ∞. That is, limn→∞ θn = 0.
Hence the sequence {xn} generated by (4) converges faster than all the three classical iterative methods,

namely, Noor iterations, Ishikawa iterations and Mann iterations.

Now approximation of unique fixed point of Zamfirescu operators by iterative method (4) in convex
metric spaces, can be formulated as follows.

Theorem 2.6. Let C be a nonempty, closed and convex subset of a complete convex metric space X. Let T : C → C
be a Zamfirescu operator. If {an}, {bn}, {cn}, {αn}, {βn} , {bn + cn} and

{
αn + βn

}
are sequences in [0, 1] such that∑

∞

n=1
(
αn + βn

)
= ∞, then {xn} in (4), converges to a unique fixed point of T.

Proof. The Zamfirescu operator T has a unique fixed point by Theorem 1.1 and satisfies the inequality (11).
Therefore the conclusion follows from Theorem 2.1.

The following result compares the rate of convergence of the proposed iterative method (4) and the
classical iterative methods of Mann[18], Ishikawa [14] and Noor [19] for Zamfirescu operator.

Theorem 2.7. Let C be a nonempty, closed and convex subset of a convex metric space X. Let T : C → C be a
Zamfirescu operator. If {an}, {bn}, {cn}, {αn}, {βn} , {bn + cn} and

{
αn + βn

}
are sequences in [0, 1] which satisfy the

conditions:
(C1): 0 < η < αn + βn < 1
(C2): 0 < αn < 1

1+δ ,
∑
∞

n=1
(
αn + βn

)
= ∞ and limn→∞ αn = 0, then {xn} in (4), converges faster than Noor iterative

method (5), Ishikawa iterative method (6) and Mann iterative method (7) to a unique fixed point of T provided that
all the methods have the same initial guess x1.

Proof. The Zamfirescu operator T has a unique fixed point by Theorem 1.1 and satisfies the inequality (11).
Therefore the conclusion follows from Theorem 2.1.

The following results in normed spaces, are immediate consequences of our theorems.

Theorem 2.8. ([20],Theorem 2.1). Let C be a nonempty, closed and convex subset of a Banach space. Let T : C→ C
be an operator satisfying (11). If {an}, {bn}, {cn}, {αn},

{
βn

}
, {bn + cn} and

{
αn + βn

}
are sequences in [0, 1] such that∑

∞

n=1
(
αn + βn

)
= ∞ , then {xn} in (1), converges to a unique fixed point p of T.

Theorem 2.9. ([20],Theorem 2.2). Let C be a nonempty, closed and convex subset of a Banach space. Let T : C→ C
be an operator satisfying (11). If {an}, {bn}, {αn} are sequences in [0, 1] such that

∑
∞

n=1 αn = ∞ , then Mann iterative
sequences {x(1)

n }, Ishikawa iterative sequence {x(2)
n } and Noor iterative sequence {x(3)

n } converge to a unique fixed point
p of T.

Theorem 2.10. ([20],Theorem 2.4). Let C be a nonempty, closed and convex subset of a Banach space. Let T : C→ C
be an operator satisfying (11). If {an}, {bn}, {αn} and {βn} are sequences in [0, 1] such that 0 ≤ bn + cn, αn + βn ≤ 1
which satisfy the conditions:
(C1): 0 < η < αn + βn < 1
(C2): 0 < αn < 1

1+δ ,
∑
∞

n=1
(
αn + βn

)
= ∞ and limn→∞ αn = 0, then {xn} in (4) with cn = 0, converges faster than

Noor iterative method (5), Ishikawa iterative method (6 and Mann iterative method (7) to a unique fixed point of T
provided that all the methods have the same initial guess x1.
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Theorem 2.11. ([9],Theorem 3.1). Let (E, ‖.‖) be a Banach space, T : E→ E a self mapping of E with a fixed point
p, satisfying the contractive condition:

∥∥∥Tx − p
∥∥∥ ≤ a

∥∥∥x − p
∥∥∥ for each x ∈ E and 0 ≤ a < 1. For x(3)

1 ∈ E, let {x(3)
n } be

the Noor iteration method in (5) where {αn}, {bn} and {an} are real sequences in [0, 1] such that
∑
∞

n=1 αn = ∞. Then
{x(3)

n } converges to p.

Theorem 2.12. ([3],Theorem 2).Let C be a nonempty closed convex subset of an arbitrary Banach space E and
T : C → C be a Zamfirescu operator. If {αn} and {bn} are sequences in [0, 1] such that

∑
∞

n=1 αn = ∞ , then {x(2)
n } in

(6), converges to a unique fixed point p of T.

Remark 2.13. CAT(0) space is a convex metric space by taking W(x, y, λ) = λx⊕ (1−λ)y, the geodesic path between
the points x and y in a CAT (0) space X, therefore our results also hold in CAT(0) spaces, simultaneously.
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