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® Ankara University, Faculty of Science, Department of Mathematics, Tandogan 06100, Ankara, Turkey.

Abstract. In this paper, we give a generalization of the integral type Jakimovski-Leviatan operators,
introduced by Ciupa [1]. Theorems on convergence and the rate of convergence of the operators by using
the first and second order modulus of continuity are established. We also study the convergence of these
operators in a weighted space of functions.

1. Introduction

The Favard-Szasz operators are important and have been studied intensively, because they play a very
important role in different branches of analysis, such as numerical analysis, approximation theory and so
on. Let f be real-valued functions on [0, ) and satisfy the property ( f (x)| < e for some finite constants

a, B > 0 and denote the set of functions that satisfy this inequality by E [0, o) . The Favard-Szasz operators
are defined as follows:

Su(f;x) = ™ ). (n;)kf(S), n>1, x €[0,0). 1.1)

The operator S,(f; x) convergence to f(x) at each point x > 0 as n — oo. This result was proved by Szész in
[10].

Later in 1969, Jakimovski and Leviatan [8] introduced a Favard-5zasz type operator by means of Appell

polynomials. Let g(u) = Z a,u" be an analytic function in the disc |u| < 7, (r > 1) with g(1) # 0 and the
n=0
i

k 1
Appell polynomials pi(x) = Z aih, (k € IN) are defined by the generating functions
i=0 ’

0o

g = Y pelot. 1.2)

k=0
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The Jakimovski-Leviatan operators P, associate to each function f € E [0, o)

Po(f;%) = % kzz()‘pk(nx)f(g), x>0 (1.3)

For all sufficiently large #, the operators P, are well-defined, since the infinite sum in (1.3) is convergent if
n > a/logr. Wood [12] proved that the operator P, is positive on [0, o) if and only if ﬁ >0forn € N. In

[8], Jakimovski and Leviatan established the analogue result of Szdsz and proved that, for all f € E [0, o),
lim Pu(f;) = f(x)
n—oo

the convergence being uniform in each compact subset of [0, o).
K

Note that, in the special case g(u) = 1in (1.3), we get pr(x) = L and we recover the well-known classical
Favard-Szasz operators defined by (1.1).

The generalized Favard-Szdsz type operators (see [6-11]) were defined with

Sulfsn, by x) = e Y (“’]’("‘) f(bﬁ) x€[0,00), neN (14)
k=0 "

where {a,} and {b,} are given increasing and unbounded sequences of positive numbers such that

.1 an 1
31_{1; - 0, b, 1 +O(bn)'
The case a, = b, = n yields the classical operators of (1.1). In [11], the author studied approximation
properties of the operators (1.4) in polynomial weighed spaces. In [6], the authors defined the weighted
modulus of continuity and obtained the rate of convergence of the operators (1.4) to f function on all
positive semi-axis.

Let f € L1 [0, 00). In [1], Ciupa introduced and studied the integral type operators, generalization of the
operators (1.3) as follows:

A+k+l

Lu(f;x) = ( 5 Zpk(n )m R £(t)dt. (1.5)

In case g(1) = 1 and A = 0, one can have the operators defined by Mazhar and Totik [9],

S* (f x) — nZ —n*c(nx) f —nt (nt) t)dt

k=0

In this paper, inspired by the operators (1.4), we define the generalization of (1.5) as follows

X b)\+k+1

Ly(f;x) = o) ZPk( an )m e P F (1)t (1.6)

where {a,} and {b,} are given increasing and unbounded sequences of positive numbers such that

lim = =0, 2 =1+ O(bl). 1.7)
n

n—oo by, ’ b,
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The purpose of this paper is to study the some approximation properties of the operators (1.6). Now,
we give some definitions in order to establish the next results.

By Cg[0, 00),we denote the class on real valued continuous bounded functions f(x) for x € [0, c0) with
the norm

||fHCB[O,oo) = XSFSEO) |f(x)|.

For 6 > 0, the first and second order modulus of continuity of f € Cg[0, o) are defined as

wl(f,9)= sup |fc+h) = f() (1.8)
x€[0,00)

and

wa(f,0) = sup |f(x+2h) = 2f(x + ) + f(x)] (1.9)
0<h<d
x€[0,00)

respectively. We also denote by C3[0, ) = {f € Cp[0,00) : f*, f”" € Cp[0, 00)} with the norm

”chg[o,oo) = ||f||CB[O,00) +|1f i

We consider the weighted spaces of the functions which are defined on the semi-axis [0, c0) and satisfy
the inequality ( f (x)| < Myp(x). Here p(x) = x* + 1 is a weight function and My is a constant depending
only on f. We denote the set of functions that satisfy this inequality by B, [0, ). By C, [0, o), we denote
the subspace of all continuous functions belonging to B, [0, ). Also let C;, [0, o) be the subspace of all

functions f € C, [0, ), for which lim,_,« %

Cg[0,00) }CB [0,00) ©

= ks < c0. Obviously C, [0, o) is a linear normed space with
the p—norm:

_ F)
Il = sue "

It is well-known that the modulus of continuity and smoothness given by (1.8) and (1.9) in general do not
tend to zero with 6 — 0 on [0, o), so we use following the weighted modulus of continuity [7]:

f)— f(x
SO BT |+f Et)— xﬁ] ﬂ(x)‘ (10
x,t€[0,00)
The following Lemma give some properties of Q.
Lemma 1.1 ([7]). Let f € C; [0, 00) .Then we have
i) }E%Q(f" 0)=0, (1.11)

foreach A >0
i) Q(f; A0) < 2(1 + A)(1 + 6H)Q(F; 6).

From this inequality, for x,t € [0, co0) we get

F() - F)| < 2(1 + % It — xl) (1 + &)1+ D)1+ (t - DDQUS; ). (1.12)
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2. Main Results

32

In this section, we will need the following lemma for proving our main results about convergence for

L; f operators.

Lemma 2.1. For all x > 0, we have

L(Lx) =1,
1 g'(1)
L(tX) —nx+a(A+1 (1))/
" %1 zan g'(1)
L (Psx) = R 2+ + 5 (/\ 424 (1))x

((A F1)A+2) + ( 7Q) g”(l)).

R g(1) g1

Proof. By using g(u)e** = Z pk(x)uk, we have
k=0

Y piax) = g1,
k=0

Y kpp(ann) = (7' (1) + ang(Dve™,
k=0

(o9

Z kzpk(anx) =(¢"(1) +2a,9 Vx+ g'(1) + a,9(1)x + aig(l)xz)ea"".

k=0

From (2.4) and definition of L;, , one can easily obtain L;,(1;x) = 1. Now let us calculate the L; (t; x) :

e nX A+k+1 P b kil
—byt fA+k+
9(1) 4 Zpk( n )1"()\+k+1) et

L (t;x)

_ ¥ —bt A+k+1
- g(l)Zpk<n>—r(A+k+l)f bty dt

k
_ g(l)zpk(anx)/\+ +1

A+1e @
= 7D Zm( 0 + - Z kpi(a, )

By using (2.4) and (2.5), we get the desired result. Similarly we can prove equality (2.3). [

.1)

2.2)

2.3)

2.4)

(2.5)

(2.6)

Theorem 2.2. Let {L;,} be the sequence of linear positive operators defined by (1.6). Then for each f € C[0, ) N

E[0, 00), we have

;}gn L,(f;x) = f(x), wuniformlyin x € [0, A].

Proof. From Lemma 2.1, we have lim,,_,« ”L;(ti,‘ xX) — xi” oA = 0, i=0,1,2 and the result follows from the

well-known Bohman-Korovkin theorem. [
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For g(u) = " and g(#) = u, comparison of the convergence of L;(f;x)(red) defined by (1.6) and
L. (f; x)(blue) defined by (1.5) to f(x) = vxe *(black) is illustrated in Fig.1. and Fig.2., respectively where
n=10anda, =n+ \n,b, =n+3.

0.3
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Figure 1: The convergence of L;,(f;x) and L,(f;x) to f(x) Figure 2: The convergence of L;,(f;x) and L,(f;x) to f(x)
(9(u) = €"). (9(u) = u).

Using the first and the second modulus of continuity we have the following approximation results.

Theorem 2.3. If f € C[0, c0), then the inequality

// 1/2
2x + — ((/\ +1)( (1) (1))] }w(f; L)

Li(f;x)— f(x)] <1+
(fi2) = f(0)| { PO N
is satisfied for a sufficiently large n.

Proof. From the definition of L;, and (1.8), we can write

e~ nX bA+k+1

Li(fi0) = f@) < g(l);manx)m eI () - f0) dt
. 0

o~ nX bﬂ+k+1

9(1) 4 Z pr(@nx) [1 + ém e bt AR | — | dt] w(f;0).

By using Cauchy- Schwarz inequality,

IA

f et MRy dE < f e otk f et AR — x)2 4t
0 0 0
T'(A+k+1)

P \/bz()t+k+1)()t+k+2)——()L+k+1)x+x2
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So we have

1 e ¥
< . =
< a)(f,é)(1+ 5 7

XZpk(anx)\/(A+1)(/\+2)+(2A+3)k+E_£(A )_zza_kaZJ'

b2 bz by

Now, if we use again Cauchy- Schwarz inequality we get
‘(. . 1 an\* 2 (2 g\ _2 g ()
Ly(fi0 - f@)| < a)(f,é){1+ 6[(1 bn) x (b2 (A r2e )= (e T )

AOIAC 12
+b_ ((/\ + 1)( (1) I )] .

n

one obtains desired result for sufficiently large n. O

1
From condition (1.7) and choosing 6 = —,
Vb,
Theorem 2.4. If f € C[0, A], then for any x € [0, A] we have

L - f0) < Al + 56+ (i

where
_ a,\* o (24, g\ 2 g'(1)
h = [(1—E)x+(g()\+2+ (1))_E(A+1+g(1)))x
1 g g"m)\"
E((/\+1)()\+2)+(2A+4) (1) a0 )]

h/2

Proof. Let f;, be the Steklov function defined by f,(x) = 4h~2 f (2f(x+u+v)— f(x+2u + 2v))dudv. From [5],
0

we have

h

3
”f_fh” < sz(f;h) and
Since L;,(1;x) = 1, we can write

Ly(f;0) - f| < 2||f = fil| +

Ly (fi x) = fu®)]. .7)

From [5] we have
- x)%x).

LG 05+ 5

|5, (fis %) = ful)] <
Using the results from [5] and [13], we get

+ %h’zwz( f;h).

1 ||fh“
By using this inequality and choosing & = +/L;,((t — x)?; x), one obtain

|L (fi ) - fh(x)|<—“f||h+—h wa(f;h) + cuz(fh)

2.8)
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and if we use (2.8) in (2.7), one get

L0 - £0] < 2+ 36+ Dyt

Now we calculate i = +/L},((t — x)2; x). From (2.1), (2.2) and (2.3), we have

et = (1= (B (o2 G- (101 )

by g(1)
+a ((A 1A +2) + AC) 9"(1))

g(1)  g(1)
and we obtain desired result. [

Theorem 2.5. For every function f € C3[0, o), we have

) 1 1 g1  g"'(Q)
L3050 - F)] < - (x +3 ((A FDA+2)+ QA+ + T )) Il
Proof. By using the Taylor expansion to the function f € C3[0, o)

L0 - @) = QL= x50 + 3 @L(( = 0%

From Lemma 2.1, we have

Lit—xx) = (2——1) (A+1 )

L;,((t = 2)%%)

, pe(tx). 2.9)

an \? 2a gy 2 g'(1)
(1_bn) X2+ (b2 (/\ +2+ (1))—b—(/\+1+ ))x

(1)
1 ACR )
(0 vara sars o T3).
By using these equalities and (2.9), we get
1 AN
[Li(Fi0) = fo] - < ((— “1)xe g (A o m)) e,

|- ) e (G (a2 25)- 2 (101 (1))))

T ((/\ + DA +2)+ (A + 4)&) (1))]

n

g(1) — g(1
For sufficiently large 1, we obtain

Li(fix) - f)] < l(M - m)

b, g(l) f,} Cs
1 1 g1)  g”"(1)
+E( ((A+1)()\+2) +(2A+4)W g(l) ))
1 g1 g'(Q) , ”
< b—n(x+§(()\+l)(/\+2) QA+ 4)W W))( o +lIf CB).
So the proof is completed. O
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Now we give a rate of convergence theorem for the operator L f in the weighted space. Note that
following Korovkin's type theorem and some important results in this space were proved by Gadzhiev in
[2-4].

Theorem 2.6. Let {T,} be the sequence of linear positive operators which are mappings from C, into B, satisfying
the conditions

lim ||T,(t"; x) — x”llp =0, v=0,1,2.
n—oo
Then, for any function f € C;,,

lim || T, f - f“ =0,

n—oo

and there exists a function f* € C,\C}, such that

lim ||T

n—oo

Theorem 2.7. Let {L;} be the sequence of linear positive operators defined by (1.6). Then for each function f € C;,

- f@|, =o.

lim

n—o0

Proof. From (2.1), clearly lim,, o

L(1;x) - 1||p = 0 and from (2.2), we get

L:(x) — x) 1 g1 1
——— < |—-1fs —A+1+ su .
b 1+ bn R 1+l b, g ok T+ 2
Hence we obtain
lim [|L;(t2) = |, = 0.
Also, by using (2.3) we can write
Ly (#5x) - 22| 2 2 a, g () x
sup ———— — +—=A+2+ su
wh 1+ bn ,ﬂ{j 1+2 12 g ok T+ 22
g (1) g”(1) 1
(1) g1) lyer, 1+ 22
So we have

lim ||L;, (% x) - 2?|| = 0.
n—00 p
Therefore, the desired result follows from Theorem 2.6. O

Theorem 2.8. If f € C, then the inequality

Ly(f;%) = () 1
W aey KU

is satisfied for a sufficiently large n, where K is a constant independent of a,, b,
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Proof. From (1.12), we write

—ayX

2(1 + 8)Q(f; 5,)(1 + 12)%

IN

|Li(f; %) = f(2)]

g(1)
A+k+1 P btk | | )
XZpk(a,,x)—r(A+k+1) eV 4 I (1 4 (¢ — X))t
o~ X R /\+k+1 P
2 - 7by,t Atk g
< 4Q(f; 6n)(1+x){1+ —(1)Zpk(an —F()\+k 5 PR | — x| dt

& A+k+1

—by,t Atkp _ .0\2
Zk(un /\+k+1) (- x)Pdt

9(1

1 e~ s bA+k+1

[ _n —but g Atk )y 2
+s g(l);)‘pk(anx)r(/\_'_k_'_l) e DR | — x| (¢ — x) dt}
- 0

for any 0, > 0. Applying Cauchy-Schwarz inequality , we get

Ly (f; %) = f()| < 4Q(f; 6,)(1 + x%) (1 + 53 Vo + 1+ 51 \/qblqbz) (2.10)

where ¢1 = Li((t — x)%;x) and ¢, = L;((t — x)*; x). By simple calculation, we have

3 2 ’
L (P x) = bg’ LT (/\ +3+ g(l))xz .11

b3 (1)
3a, AOR Q)
_((A+2)(A+3> 20+3) g(1) 9(1>)x

b3
bl3 ((A + 1A +2)(A+3)+3(A +2)(A + 3)—=

n

) g"() f%D)
o) I T T )

. ay 4, 4, g (1)
Li(thx) = bﬁx + b—4(/1 +4+ o) )x3 .
L o ( A+3)(A+4)
iy (A +3)( (1) g(l
4LZ ( ) //(1) /;/(1)
E ((/\ +2)(A +3)(A +4) +3(A + 3)(A +4) 0 +300+4)2 (1) 0 )x
+;(M+DM+%M+@M+@+«A+mm+am+@9é;

f“ﬁqufﬂhf”ﬂ

+6(A + 3)(A + 4) g(1) (1) g(1)
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and hence from (2.1)- (2.3) and (2.11), (2.12), we have the following central moments of the operators L;, :

R N ay \ 2ay, g\ 2 g (1)
¢ = Ln((t—x)z,x)—(l—a) xz+(b_2(A+2+g(1))_E(A+1 g(l)))x
+E(()\+1)(A+2)+(2/\+4)g ((11)) ((11)))
¢ =memﬁm=@—%ff

a, g'(1),  3a; g, 3a, AN AON
4 b4()\+4 ) b3 3+g(1))+ » A+2+g(1)) bn(/\+1+g(1))]x
a AONAONS
[ (1) i) ) ((/\+2)()L+3)
g@  g"Q) g@) "M -
+2( (1) (1)) ((/\+1)()\+2)+(2)\+4) (1) a0 )]x
y g (1) g'@ 9"
+4[—4((A+2)(A+3)(/\+4)+3( 70 +4) (1) ) )
__((/\ + 1A +2)(A+3)+3(A +2) AC) +3(A + ) N(l) w(l))} X
g(1) 9(1) 1)
+b_ (()\ + 1A +2)(A+3)(A +4) +4(A+2)(A+3)(A + 4)g (( ))
7' g7 ¢
+6(A + 3)(A + 4)—— ) +4(A + 4) I + Q)

Using condition (1.7), one has

¢1
0}

Substituting these equalities in (2.10) we get
L(fix) — f0] < 4Q(f;6,)(1 +2%)

X (1 + % A /O(bl—n)(x2 +X) + O(bl—n)(x2 +x) + cSl_nO(bl_,,) Vi + 23 + 22 + x)(x2 + )

for sufficiently large 1, we obtain desired result. [

O +)

O(bl)(x4 +x° + 2% +x).

and choosing 6, \F’
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