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Abstract. In this paper, without assumption of monotonicity and boundedness, we study existence results
for a solution and the convexity of the solution set to the symmetric vector equilibrium problem for set-
valued mappings in the setting of topological vector spaces. Our results improve the corresponding results
in [9, 18, 19, 22, 28, 33, 36, 37].

1. Introduction

In 1980, vector variational inequality was first introduced and studied by Giannessi [20, 21]. Later
on, vector variational inequality and its various extensions have been studied by Chen and Cheng [11],
Chen, Huang and Yang [12], Yang[35] and other authors. Inspired by the study of vector variational
inequalities, more general equilibrium problems (see [6, 7]) have been extended to the case of vector-valued
bifunctions, known as vector equilibrium problems. The equilibrium problem contains as special cases,
for instance, optimization problem, Nash equilibria problem, fixed point problem, variational inequalities,
and complementarity problem (see, for examples,[1, 2, 8, 13, 25, 26] and references therein). Ansari et
al. [3] introduced a system of vector equilibrium problems and established an existence result for a
solution of the system. Moreover, they applied their results to study the vector optimization problem and
the Nash equilibrium problem for vector-valued functions. The system of vector equilibrium problems
contain system of scalar equilibrium problems, systems of vector variational inequalities, system of vector
variational-like inequalities, system of optimization problems, fixed point problems and several related
topics as special cases (see, for examples, [3–5, 14, 15, 24, 27, 28, 30–32] and references therein). On the other
hand, the symmetric vector equilibrium problem is a generalization of the equilibrium problem which has
been studied by many authors. A main topic of the current research is to establish existence theorems for a
solution of the symmetric vector equilibrium problem(see, for examples, [17–19, 23]) and some important
properties of the solution set to the symmetric vector equilibrium problem.

Recently, Zhong et al. [37] studied the connectedness and path-connectedness of the solution set of
the symmetric vector equilibrium problem in the setting of locally convex topological vector spaces. It
is worth noting that their results generalized the well known results of Chen et al. [10] and Lee et al.
[29] ( the connectedness of weak efficient solutions set for single-valued vector variational inequalities in
finite dimensional Euclidean space) Lee and Bu [28]( the connectedness of the solution sets for affine vector
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Email address: faraj1348@yahoo.com (A. P. Farajzadeh)



A.P. Farajzadeh / Filomat 29:9 (2015), 2097–2105 2098

variational inequalities with noncompact polyhedral constraint sets and positive semidefinite (or monotone)
matrices) Gong [22]( the connectedness and path-connectedness of various solution sets for single-valued
vector equilibrium problems in a real locally convex Hausdorff topological vector space) Gong [22] ( the
connectedness of the set of efficient solutions for the generalized system with monotone bifunctions in real
locally convex Hausdorff topological vector spaces) and Chen et al. [10] (the existence, connectedness,
and the compactness of the weak efficient solutions set for set-valued vector equilibrium problems and the
set-valued vector Hartman-Stampacchia variational inequalities in normed linear spaces). However, to the
best of our knowledge, there is only one paper dealing with the connectedness and path-connectedness
of the solution set for the symmetric vector equilibrium problem in the setting of locally convex spaces (
see, [37]). So by considering this fact and the works mentioned in the above ( especially [37]) the author of
this paper is interested to extend the results obtained in [37] from locally convex topological vector spaces
to topological vector spaces with mild assumptions as well as we investigate suitable conditions which
guarantee the convexity of the solution set of symmetric vector equilibrium problem.

2. Preliminaries

Throughout the paper, let X,Y,E and Z be real Hausdorff topological vector spaces. Let A ⊆ X and B ⊆ E
be nonempty closed convex sets, F : A×B×A→ 2Y and G : A×B×A→ 2Z be two set-valued mappings. Let
C ⊂ Y and P ⊂ Z be two closed convex pointed cones with nonempty interiors, i.e., intC , ∅ and intP , ∅.
Let Y∗ and Z∗ be the topological dual spaces of Y and Z, respectively. Let C∗ and P∗ be the dual cones of C
and P, respectively, that is,

C∗ = { f ∈ Y∗ : f (y) ≥ 0,∀y ∈ C},P∗ = {1 ∈ Z∗ : 1(y) ≥ 0,∀y ∈ P}

The symmetric vector equilibrium problem ( for short, SVEP) is the problem of finding (x, y) ∈ A × B
such that

(2.1)
{

F(x, y,u) ∩ (−intC) = ∅,∀u ∈ A,
G(x, y, v) ∩ (−intP) = ∅,∀u ∈ B.

Remark 2.1. Special cases:
(i) If we take C = P, f : A × B→ Y and 1 : A × B→ Z are two single-valued mappings,

F(x, y,u) = { f (u, y) − f (x, y)},∀(x, y,u) ∈ A × B × A

and
G(x, y, v) = {1(x, v) − 1(x, y)},∀(x, y, v) ∈ A × B × B,

then (2.1) reduces to a single-valued symmetric vector equilibrium problem considered in [17–19].

(ii) If G = 0,F(x, y,u) = { f (x,u)}, for any (x, y,u) ∈ A × B × A, then (2.1) is the equilibrium problem which was
considered and studied by many authors (see, for example, [1, 2, 6, 8, 13, 21, 25, 26] and the references therein).

(iii) If G = 0 and T : A→ L(X,Y) is a mapping, where L(X,Y) denotes the space of all continuous linear operators
from X to Y, and F(x, y,u) = T(x)(u − x) = 〈Tx,u − x〉 for any (x, y,u) ∈ A × B × A, then (2.1) is the classic vector
variational inequality problem which was introduced by Giannessi [21].

For any ( f , 1) ∈ (C∗\{0})× (P∗\{0}),we also consider the following problem scalar symmetric equilibrium
problem ( for short, (SSEP) f ,1)) which consists of finding (x, y) ∈ A × B, such that{

f (F(x, y,u)) ≥ 0,∀u ∈ A,
1(G(x, y, v)) ≥ 0,∀u ∈ B.

We denote the solution sets of SVEP and (SSEP) f ,1 by S(F,G) and S( f , 1), respectively.

Definition 2.2. Let X and Y be two topological spaces. A set-valued mapping T : X→ 2Y is said to be
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(i) Closed if its graph, that is
GraphT = {(x, y) ∈ X × Y : y ∈ T(x)},

is closed in X × Y.

(ii) Compact if the closure of the range T, i.e., T(X), is compact, where

T(X) =
⋃
x∈X

T(x).

(iii) Upper semicontinuous( u.s.c.) if, for every x ∈ X and every open set V satisfying T(x) ⊆ V, there exists a
neighborhood U of x such that

T(U) =
⋃
y∈U

T(y) ⊆ V.

(iv) Lower semicontinuous( l.s.c.) if, for any x ∈ X, y ∈ T(x) and any neighborhood N(y) of y, there exists a
neighborhood N(x) of x such that

T(z) ∩N(y) , ∅,∀z ∈ N(x).

(v) Continuous if, for any x ∈ X, it is at the same time u.s.c. and l.s.c. on X.

Remark 2.3. ([34]) Let X and Y be two topological spaces. A set-valued mapping T : X→ 2Y. T is l.s.c. at x ∈ X if
and only if for any y ∈ T(x), and any net {xα}, xα → x, there is a net {yα} such that yα ∈ T(xα) and yα → y.

Definition 2.4. ([37]) Let T : A × B × D → 2Y be a set valued mapping, where D is a convex set. For any fixed
(x, y) ∈ A × B the mapping z→ T(x, y, z) is said to be

(i) C-convex if, for every z1, z2 ∈ D and t ∈ [0, 1],

tT(x, y, z1) + (1 − t)T(x, y, z2) ⊆ T(x, y, tz1 + (1 − t)z2) + C.

(ii) C-quasiconvex if, for every z1, z2 ∈ D and t ∈ [0, 1], either

T(x, y, z1) ⊆ T(x, y, tz1 + (1 − t)z2) + C

or
T(x, y, z2) ⊆ T(x, y, tz1 + (1 − t)z2) + C.

Definition 2.5. A topological space X is said to be

(i) connected if, there exist no open subsets Vi ⊆ X with Vi , ∅, for i = 1, 2 such that V1∪V2 = X and V1∩V2 = ∅.

(ii) path-connected if, for each pair of points x and y in X, there exists a continuous mapping f : [0, 1] → X such
that f (0) = x and f (1) = y.

Definition 2.6. Let S be a nonempty subset of a real linear space X.

(a) The algebraic interior of S is denoted by cor(S) and is defined by

cor(S) = {x ∈ S|∀x ∈ X ∃a > 0; x + tx ∈ S, ∀t ∈ [0, a]},

(b) The set S with S = cor(S) is called algebraically open.

(c) The set of all elements of X which do not belong to cor(S) and cor(X\S) is called the algebraic boundary of S.

(d) An element x ∈ X is called linearly accessible from S, if there is an x ∈ S, x , x, with the property

tx + (1 − t)x ∈ S, ∀t ∈ (0, 1].
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Remark 2.7. It is easy to verify that if S is convex then cor(S) is a convex set. Also if S is a subset of a topological
vector space then intS ⊆ cor(S). The following example shows that it is possible that intS = ∅ and cor(S) , ∅.

Example 2.8. Let X = C00 be the space of all real sequences which have finite support, that is,

X = C00 = {x = {xn} : the set {n ∈ N; xn , 0} is finite }

with ||x|| = maxn∈N |xn|. Let

S = {x = (x(n)) ∈ C00 : (∀n), x(n) ≤
1
n
}.

It is easy to check that intS = ∅ and

{xn}n∈N = {x1 = 1, x2 = 0, x3 = 0, ...} ∈ cor(S).

Now, we can extend the SVEP ( that is, the problem defined by 2.1) from topological vector spaces to
vector spaces as follows:

The symmetric vector equilibrium problem, in the setting of vector spaces, is the problem of finding
(x, y) ∈ A × B such that

(2.1)
′

{
F(x, y,u) ∩ (−core(C)) = ∅,∀u ∈ A,
G(x, y, v) ∩ (−core(P)) = ∅,∀u ∈ B.

Similarly, the scalar SVEP with respect to ( f , 1) ∈ (C′\{0})× (P′\{0}) consists of finding (x, y) ∈ A×B, such
that {

f (F(x, y,u)) ≥ 0,∀u ∈ A,
1(G(x, y, v)) ≥ 0,∀u ∈ B.

where
C
′

= {x
′

∈ X
′

: x
′

(c) ≥ 0, ∀c ∈ C}, P
′

= {z
′

∈ Z
′

: z
′

(p) ≥ 0, ∀p ∈ P},

and X′

and Z′ denote all the linear mappings from X into the real line and all the linear mappings from Z
into the real line ,respectively.

We need the following lemma in the sequel.

Lemma 2.9. Let A and B be nonempty convex subsets of a real linear space X. If cor(A) , ∅ then cor(A) ∩ B = ∅ if
and only if there are a linear functional l ∈ X′\{0X′ } and a real number a with

l(s) ≤ a ≤ l(t), ∀s ∈ A, ∀t ∈ B,

and
l(s) < a, ∀s ∈ cor(A).

One can deduce the following result as a consequence of the Lemma 2.9.

Corollary 2.10. Let A and B be nonempty, disjoint, convex subsets of a topological vector space X. If A is open, then
there exist continuous linear mapping x′ ∈ X∗ = L(X,R) and c ∈ R such that

x′(x) = 〈x′, x〉 < cx′(y) =< x′, y >,∀(x, y) ∈ A × B.

Definition 2.11. ([16]) Let K be a subset of a topological vector space E. A set-valued mapping F : K→ 2E is said to

be a KKM-mapping, if for any {x1, x2, . . . , xn} ⊂ K, co{x1, x2, . . . , xn} ⊂
n⋃

i=1
F(xi), where 2E

\{∅} denotes the family of

all nonempty subsets of E.
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3. Main Results

In this section, we first present sufficient conditions which guarantee the equality of the solution sets of
(SVEP) and the scalar (SVEP) .

Theorem 3.1. Suppose that cor(C) , ∅ and cor(P) , ∅. Let ,for each (x, y) ∈ A × B, the sets F(x, y,A) + C and
G(x, y,B) + P be convex. Then

S(F,G) =
⋃

( f ,1)∈((C′ \{0})×(P′ \{0}))

S( f , 1).

Proof. Let (x, y) ∈
⋃

( f ,1)∈((C′ \{0})×(P′ \{0})) S( f , 1). Then, for some ( f , 1) ∈ (C′\{0}) × (P′\{0}), we have{
f (F(x, y,u)) ≥ 0,∀u ∈ A,
1(G(x, y, v)) ≥ 0,∀u ∈ B.

If (x, y) < S(F,G) then either there exists w1 ∈ A such that F(x, y,w1) ∩ −core(C) , ∅ or w2 ∈ B such that
F(x, y,w2) ∩ −core(P) , ∅ and so either f (F(x, y,w1) ∩ (−∞, 0) , ∅ or 1(F(x, y,w2) ∩ (−∞, 0) , ∅ which is a
contraction. This proves one side the theorem. To see the opposite side of the theorem, let (x, y) ∈ S(F,G).
Then {

F(x, y,u)) ∩ −cor(C) = ∅,∀u ∈ A,
G(x, y, v) ∩ −cor(P) = ∅,∀v ∈ B.

So {
F(x, y,A)) ∩ −cor(C) = ∅,
G(x, y,B) ∩ −cor(P) = ∅.

Therefore, note C ∩ (−cor(C)) = ∅ and P ∩ −cor(P) = ∅, we get{
(F(x, y,A) + C) ∩ −cor(C) = ∅,
(G(x, y,B) + P) ∩ −cor(P) = ∅.

Hence it follows from Lemma 2.8 that there exist (x′ , y′ ) ∈ Y′ × Z′ , and real numbers a, b such that

x
′

(s) ≤ a ≤ x
′

(t), ∀s ∈ C, ∀t ∈ −F(x, y,A) − C, (3.1)

x
′

(s) < a, ∀s ∈ cor(C),

and
y
′

(s) ≤ b ≤ x
′

(t), ∀s ∈ P, ∀t ∈ −F(x, y,B) − P, (3.2)

x
′

(s) < b, ∀s ∈ cor(P).

Hence, by taking s = 0 in (3.1) and (3.2) we get that a and b are nonnegative. Also by taking f = −x′ , 1 = −y′ ,
it follows from (3.1), (3.2), F(x, y,A) ⊂ F(x, y,A) + C and G(x, y,P) ⊂ G(x, y,B) + P that f (F(x, y,A) ≥ 0 and
1(G(x, y,B)) ≥ 0. This completes the proof.

As an application of Theorem 3.1, we give the next result which extends the result given in Lemma 2.1
of [37] from locally convex spaces to topological vector spaces.

Corollary 3.2. Suppose that intC , ∅ and intP , ∅. If F(x, y,A) + C and G(x, y,B) + P are convex sets for each
(x, y) ∈ A × B, then

S(F,G) =
⋃

( f ,1)∈((C∗\{0})×(P∗\{0}))

S( f , 1).
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Proof. The proof follows directly from Theorem 3.1 and Corollary 2.9

The following lemma plays a key role in the next result.

Lemma 3.3. ([16]) Let K be a nonempty subset of a topological vector space X and F : K → 2X be a KKM mapping
with closed values in K. Assume that there exists a nonempty compact convex subset B of K such that

⋂
x∈B

F(x) is

compact . Then ⋂
x∈K

F(x) , ∅.

The following theorem is the main goal of this paper which guarantees the convexity of the solution set
of SVEP ( note that each convex set is connected and path-connected) as well as an existence theorem for
a solution of the scalar symmetric equilibrium problem and symmetric vector equilibrium problem under
suitable assumptions. Moreover, the proof presented for the next result is different from those proofs given
in [37] for Lemma 2.3 and Theorem 3.1 by relaxing the boundedness assumption considered in [37].

Theorem 3.4. Let A ⊆ X and B ⊆ E be nonempty convex subsets, let C ⊂ Y and P ⊂ Z be closed convex pointed
cone with intC , ∅ and intP , ∅. Suppose F : A×B×A→ 2Y and G : A×B×B→ 2Z are two set-valued mappings
which satisfy the following conditions:

(i) for each (x, y) ∈ A × B, F(x, y, x)) ⊆ C,G(x, y, y)) ⊆ P;

(ii) for each (z,w) ∈ A×B, the set-valued mappings (x, y)→ F(x, y, z) and w→ G(x, y,w) are lower semicontinuous
on A × B;

(iii) for each (x, y) ∈ A × B, the set-valued mappings z → F(x, y, z) and w → G(x, y,w) are C-quasiconvex on A
and P-quasiconvex on B, respectively;

(iv) there exist nonempty compact convex set D1 × D2 ⊂ A × B and compact set M1 ×M2 ⊂ A × B such that
for each (x, y) ∈ (A × B)\(M1 ×M2), there exists (x1, y1) ∈ D1 × D2 such that F(x, y, x1) ∩ −intC , ∅ or
G(x, y, y1) ∩ −intP , ∅.

Then
S( f , 1) , ∅, ,∀( f , 1) ∈ (C∗\{0}) × (P∗\{0}).

Furthermore, the S( f , 1) is a compact subset of A × B and the solution set of the symmetric vector equilibrium prob-
lem (that is S(F,G)) is nonempty and compact when the sets F(x, y,A) + C and G(x, y,B) + P are convex, for each
(x, y) ∈ A × B. Also if the mappings (x, y) ∈ F(x, y, z) and (x, y)→ G(x, y,w) are C− convex and P− convex, respec-
tively, for all (z,w) ∈ A×B then the solution set of SVEP,i.e., S(F,G) is convex and so connected and path-connected.

Proof. Let ( f , 1) ∈ (C∗\{0}) × (P∗\{0}). Define a set-valued mapping Γ : A × B→ A × B by

Γ(z,w) = {(x, y) ∈ A × B : f (F(x, y, z)) ≤ 0, 1(G(x, y,w)) ≤ 0}.

It is obvious that the solution set of the scalar symmetric equilibrium problem equals to the intersection⋂
(x,y)∈A×B Γ(x, y).

We assert that the set-valued mapping Γ fulfils all the assumptions of Lemma 2.12. Indeed:

(a) Γ is a KKM mapping.

Otherwise, there exist a subset {(x1, y1), ...(xn, yn)} ⊂ A × B and (z,w) ∈ A × B such that

(z,w) ∈ co{(x1, y1), ...(xn, yn)}\
n⋃

i=1

Γ(xi, yi).
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Hence there exist nonnegative real numbers α1, α2, ...αn such that

n∑
i=1

αi = 1 and (z,w) =

n∑
i=1

αi(xi, yi),

and so z =
∑n

i=1 αixi, w =
∑n

i=1 αiyi. Consequently, for each i = 1, 2, ...,n. Then

f (F(z,w, xi)) < 0 or 1(G(z,w, yi)) < 0

which is contradicted by (iii) because it follows from (z,w) ∈ co{(x1, y1), ...(xn, yn)} and (iii) that , for each i =
1, 2, 3, ...,n,

F(z,w, xi) ⊆ F(z,w, z) + C

or
G(z,w, yi) ⊆ G(z,w,w) + P

and so
f (F(z,w, xi)) ⊆ f (F(z,w, z)) + f (C) ⊆ [0,∞) + [0,∞) = [0,∞)

or
1(G(z,w, yi)) ⊆ 1(G(z,w,w)) + 1(P) ⊆ [0,∞) + [0,∞) = [0,∞).

(b) For each (z,w) ∈ A × B, the set Γ(z,w) is closed.

To verify this, let (z,w) ∈ A × B and (zi,wi) ∈ Γ(z,w) be a convergent net to (z1,w2). Then

f (F(z,w, zi)) ≥ 0, 1(G(z,w,wi)) ≤ 0.

Now let (h1, h2) ∈ f (F(z,w, z1)) × 1(G(z,w,w2)). Hence there exists (z2,w3) ∈ F(z,w, z1) × G(z,w,w2) such that
(h1, h2) = ( f (z2), 1(w3)) and so it follows from (iii) and Remark 2.3 that there is net (ti, si) ∈ F(z,w, zi) × G(z,w,wi)
with (ti, si) → (z2,w3). Hence the continuity of the mappings f , 1 and f (ti) ≥ 0, 1(si) ≥ 0 we deduce that f (h1) ≥
0, 1(h2) ≥ 0. Consequently, the set-valued mapping Γ fulfills all the assumptions of Lemma 2.12 and so by using
Lemma 2.12 the intersection ⋂

(x,y)∈A×B

Γ(x, y)

is nonempty and so the solution set of the scalar symmetric equilibrium problem is nonempty.

Now, we want to prove that the the solution set of the scalar symmetric equilibrium problem is convex and hence
connected and path-connected.

It follows from (iv) that
(c)
⋂

(z,w)∈D1×D2
Γ(z,w) ⊆M1 ×M2,

and so it completes the proof of the first part of the theorem. The second part follows directly from Corollary 2.11.
Finally, the C− convexity and P− convexity of the mappings (x, y) ∈ F(x, y, z) and (x, y)→ G(x, y,w), respectively,
imply that for all (z,w) ∈ A×B the set Γ(z,w) is convex and so and the set S(F,G) =

⋂
(z,w)∈A×B Γ(z,w) , ∅ is convex

(the intersection of the convex sets is convex) and so is connected and path-connected. This completes the proof.

Remark 3.5. It is easy to verify that the result of the previous theorem is still valid if we replace condition (i) by

(i
′

) f (F(x, y, x)) ≥ 0, 1(G(x, y, y)) ≥ 0, ∀( f , 1) ∈ (C∗\{0}) × (P∗\{0}).

One can check that the condition (i) implies condition (i′ while the example Y = E = Lp(0, 1) ( all the measurable
functions) on [0, 1] with quasi-norm

∫
[0,1]

| f |p

1+| f |p ,where 0 < p < 1, shows that the converse may fail (note Y∗ = E∗ = 0).
It is worth noting that Lp(0, 1) is a topological vector space which is not a locally convex space. Also, we can replace
condition (ii) by the weaker assumption:
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(ii′ ) for each (z,w) ∈ A × B, ( f , 1) ∈ (C∗\{0}) × (P∗\{0}), the set-valued mappings (x, y) → f (F(x, y, z)) and
w→ 1(G(x, y,w)) are lower semicontinuous on A × B.

Further, it is straightforward to check that if T is C−quasiconvex and f ∈ C∗ then f oT ( the composition of f and
T) is [0,∞)− quasiconvex and so we can replace condition (iii) with the following weaker condition:

(iii′ ) for each (x, y) ∈ A × B, the set-valued mappings z → F(x, y, z) and w → G(x, y,w) are, respectively,
C-quasiconvex on A and P-quasiconvex on B, respectively.

Notice that the condition (iv) collapses to the condition (iv) of Lemma 2.3 and Theorem 3.1 of [37] when we take
D1 ×D2 = M1 ×M2.

Finally, if the mappings (x, y) ∈ F(x, y, z) and (x, y)→ G(x, y,w) are C-convex and P-convex,for all (z,w) ∈ A×B,
respectively, then the set

Γ(z,w) = {(x, y) ∈ A × B : f (F(x, y, z)) ≤ 0, 1(G(x, y,w)) ≤ 0}

is convex, for each ( f , 1) ∈ (C∗\{0}) × (P∗\{0}). While the simple example Y = Z = R ith the topology induced by the
semi-norm p(x) = 0, for all x ∈ R shows that the converse is not true in general. Hence, we can replace in Theorem
3.4 the following condition: The mappings (x, y)→ F(x, y, z) and (x, y)→ G(x, y,w) are C− convex and P− convex,
respectively, for all (z,w) ∈ A × B by the convexity of the set Γ(w, z) for all (w, z) ∈ Y × Z.
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