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Abstract. We introduce a concept of convergence of order α, with 0 < α ≤ 1, with respect to a summability
matrix method A for sequences (which generalizes the notion of statistical convergence of order α), taking
values in (`)-groups. Some main properties and differences with the classical A-convergence are investi-
gated. A Cauchy-type criterion and a closedness result for the space of convergent sequences according
our notion is proved.

1. Introduction

The notion of statistical convergence was introduced in [16, 24]. In the literature there are several
extensions of this concept: indeed, statistical convergence can be viewed as a particular case of convergence
with respect to a summability matrix method (see for example [21]) as well as ideal and filter convergence
(see for example [3, 19, 20]).

Several properties of summability matrices, matrix convergence and their various applications to ap-
proximation theory can be seen from [2] where many important references can be found.

For different works on the statistical and ideal convergences one can see, for example, [1, 10, 12, 13] where
many more references can be found. In [8] the notion of ideal convergence in (`)-groups was introduced
and the main properties were examined, while in [6–8] there are some versions of basic matrix theorems
and limit theorems for ideal pointwise convergent measures taking values in an (`)-group R.

In [4] (also independently in [11]) a natural extension of statistical convergence is presented, by replacing
n with a non linear term nα, 0 < α < 1, in the definition of asymptotic density. This is motivated by the
investigation of different kinds of densities, and by the problem of comparing them with the natural density.

Since the notion of A-density (density with respect to regular summability matrix A) is a natural
extension of asymptotic density, it seems natural to investigate different kinds of A-densities and associated
convergence in line of [4]. In this paper we precisely do that and extend the statistical convergence of order
α to convergence of order α with respect to matrix methods, and we deal with the (`)-group setting. One
must note that though our definition is very similar to the notion of A-statistical convergence with the rate
o(an) for a given sequence of non-increasing positive reals (an) [14], (from where also our inspiration came)
but it is not similar to that notion. We prove a Cauchy-type criterion, some main properties and some
fundamental differences of the behavior of this kind of convergence between the cases α = 1 and 0 < α < 1.
Furthermore we present a property of closedness for the space of sequences, converging according our
definition.
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2. Preliminaries

We begin with recalling some notions about densities and summability matrix methods, which will be
useful in the sequel.

Definitions 2.1. (a) Let N be the set of all natural numbers and B ⊂ N. If m, n ∈ N, m < n, we denote by
B(m,n) the cardinality of the set B ∩ {m,m + 1, . . . ,n}.

(b) Let 0 < α ≤ 1 be a real number. The lower and upper asymptotic density of order α of the set B are
defined by

dα(B) = lim inf
n

B(1,n)
nα

, d
α
(B) = lim sup

n

B(1,n)
nα

. (1)

If the limit lim
n

B(1,n)
nα

exists in R, then the common value in (1) is said to be the asymptotic density of the set
B of order α and is denoted by dα(B) ([11], [4]).

(c) If (xk)k is a sequence of real numbers, we say that (xk)k converges statistically of order α to x0 ∈ R (shortly,
Sα limk xk = x0) iff for each ε > 0 we have dα(A(ε)) = 0, where A(ε) := {k ∈N : |xk − x0| > ε} ([11], [4]).

(d) Let A := (a j,k) j,k be an infinite summability matrix. For a given sequence x = (xk)k inR, the A-transform
of x, denoted by (Ax) j, is given by

(Ax) j :=
∞∑

k=1

a j,k xk, (2)

provided that the series in (2) converges for each j ∈N (see [2]).
We say that A is regular iff lim j(Ax) j = L whenever limk xk = L with L ∈ R.

The following characterization of regularity of a matrix A is known in the literature as the Silverman-Toeplitz
conditions (see also [2, Theorem 1.6]).

Theorem 2.2. An infinite summability matrix A = (a j,k) j,k is regular if and only if the following conditions are
satisfied:

(i) sup
j

( ∞∑
k=1

|a j,k|
)
< +∞,

(ii) lim
j

a j,k = 0 for each k ∈N,

(iii) lim
j

( ∞∑
k=1

a j,k

)
= 1.

Using regular matrices, Freedman and Sember ([17]) extended the idea of the statistical convergence to
A-statistical convergence as follows.

Definitions 2.3. (a) Let A = (a j,k) j,k be a non-negative regular summability matrix. The A-density of a subset
K ⊂N is defined by

δA(K) := lim
j

∑
k∈K

a j,k, (3)

provided that the limit in (3) exists in R. Similarly it is possible to define the concepts of A-upper density
and A-lower density of K ⊂N as follows:

δA(K) := lim sup
j

∑
k∈K

a j,k, δA(K) := lim inf
j

∑
k∈K

a j,k

respectively.
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(b) A sequence (xk)k of real numbers is said to be A-convergent to x0 ∈ R if δA(A(ε)) = 0 or equivalently

lim
j

∑
k∈A(ε)

a j,k = 0,

where A(ε) is as in Definitions 2.1 (c). Note that, when A := C1 = (c j,k) j,k is the Cesàro matrix, defined by

c j,k :=
{ 1

j if 1 ≤ k ≤ j,
0 otherwise,

the A-density and A-convergence become the usual asymptotic density and statistical convergence respec-
tively.

In [14] the following notion was introduced.

Definition 2.4. Let A = (a j,k) j,k be a non-negative regular summability matrix and let a = (an) be a non-increasing
sequence of positive real numbers. We say that x = (xk) is A-statistically convergent to L with the rate of o(an) if for
each ε > 0,

lim
n

1
an

∑
k;|xk−L|≥ε

ank = 0

We now recall some concepts about (`)-groups (see for example [22]).
An (`)-group R is said to be Dedekind complete if every nonempty subset A ⊂ R, bounded from above,

has a supremum in R. A Dedekind complete (`)-group R is said to be super Dedekind complete if for any
nonempty set A ⊂ R, bounded from above, there exists a countable subset A∗ ⊂ A, such that sup A = sup A∗.

From now on, we always suppose that R is a Dedekind complete (`)-group.
An (O)-sequence (σp)p in R is a monotone decreasing sequence, such that

∧
p

σp = 0.

A (D)-sequence or regulator in R is a bounded double sequence (ai, j)i, j, such that for every i ∈ N the
sequence (ai, j) j is an (O)-sequence.

An (`)-group R is weakly σ-distributive if

∧
ϕ∈NN

 ∞∨
i=1

ai,ϕ(i)

 = 0 (4)

for every (D)-sequence (ai, j)i, j.
A sequence (xk)k in R is (O)-convergent to x ∈ R (and we write (O) limk xk = x) if there is an (O)-sequence

(σp)p such that for each p ∈N there exists k ∈N with

|xk − x| ≤ σp for all k ≥ k.

A sequence (xk)k in R is (O)-Cauchy if there exists an (O)-sequence (τp)p with the property that for every
p ∈N there is k ∈N such that

|xh − xk| ≤ τp whenever h, k ≥ k.

An (`)-group R is (O)-complete if every (O)-Cauchy sequence in R is (O)-convergent in R. Note that every
Dedekind complete (`)-group is (O)-complete.

We now fix an exponent 0 < α ≤ 1, and introduce the concepts of A-density and A-convergence of order
α for a summability matrix A = (a j,k) j,k.
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Definition 2.5. The A-density of order α of a subset K ⊂N is defined by

δαA(K) := lim
j

1
jα−1

∑
k∈K

a j,k, (5)

provided that the limit in (5) exists in R. Analogously we define the upper A-density of order α and lower
A-density of order α as follows:

δ
α

A(K) := lim sup
j

1
jα−1

∑
k∈K

a j,k, δαA(K) := lim inf
j

1
jα−1

∑
k∈K

a j,k,

respectively. Note that for A = C1, A-density of order α reduces to density of order α (see Definition 2.1 (b)).

Remark 2.6. At a first glance though it appears that Definition 2.5 is a special case of Definition 2.4 but
that is not the case. Because in our definition we have actually considered the sequence a = (an) where
an = nα−1 but it is a strictly increasing sequence whereas in Definition 2.4 the sequence a = (an) must be
non-increasing.

Remark 2.7. Observe that, if 0 < α < 1 and E ⊂ N is such that δαA(E) = 0, then δαA(N \ E) = +∞. Indeed we
get

lim
j

1
jα−1

∞∑
k=1

a j,k = lim
j

1
jα−1

∑
k∈E

a j,k + (6)

+ lim
j

1
jα−1

∑
k∈N\E

a j,k = δαA(E) + δαA(N \ E),

provided that the limits involved exist in [0,+∞]. Since δαA(E) = 0, from (6) and regularity of A we obtain

δαA(N \ E) = lim
j

1
jα−1

∞∑
k=1

a j,k = +∞. (7)

Definitions 2.8. (a) A sequence (xk)k in an (`)-group R is A-convergent of order α or Aα-convergent to x0 ∈ R
(shortly, Aα limk xk = x0) if there exists an (O)-sequence (σp)p such that, for every p ∈N, δαA(Bp) = 0, where

Bp := {k ∈N : |xk − x0| � σp}, (8)

or equivalently

lim
j

1
jα−1

∑
k∈Bp

a j,k = 0.

In this case we write Aα limn xn = x0.
(b) A sequence (xk)k in R is Aα-Cauchy if there is an (O)-sequence (τp)p such that for every p ∈ N there

exists n ∈N with
δαA({k ∈N : |xk − xn| � τp}) = 0.

Remark 2.9. For A = C1, the Cesàro matrix, Aα-convergence reduces to statistical convergence of order α
(see [4]). Furthermore, if (xk)k is A-convergent of order αwhen α = 1, we see simply that (xk)k is A-convergent.
The collection of all sequences in an (`)-group R which are A-convergent and Aα-convergent are denoted
by Am0 and Amα

0 respectively.
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3. The Main Results

We begin with a Cauchy-type criterion, which extends (see also [18]) [8, Proposition 2.13] to Aα-
convergence in the (`)-group setting.

Proposition 3.1. A sequence (xk)k in R is Aα-convergent if and only if it is Aα-Cauchy.

Proof. We begin with the sufficient part. Let (σp)p be an (O)-sequence, related with the Cauchy condition.
There is a sequence (np)p in N with δαA(N \ Fp) = 0 for all p ∈N, where

Fp := {k ∈N : |xk − xnp | ≤ σp}. (9)

We now claim that Fp ∩ Fq , ∅ whenever p , q. Otherwise we have Fp ⊂ N \ Fq. But δαA(N \ Fq) = 0, while
δαA(Fp) = +∞ or 1 according as 0 < α < 1 or α = 1 (see also (7) ). This is a contradiction, which proves the
claim.

Let now p , q. There exists kp,q ∈Nwith |xkp,q −xnp | ≤ σp and |xkp,q −xnq | ≤ σq. So we get |xnp −xnq | ≤ σp +σq,
and hence (xnp )p is an (O)-Cauchy sequence. As every Dedekind complete (`)-group is (O)-complete (see
[9]), there is y ∈ R with (O) lim

p
xnp = y. So for each p ∈N we get

{k ∈N : |xk − y| � 2 σp} ⊂ {k ∈N : |xk − xnp | + |xnp − y| � 2 σp}

⊂ {k ∈N : |xnp − y| � σp} ∪ {k ∈N : |xk − xnp | � σp},

and hence
δαA({k ∈N : |xk − y| � 2 σp}) = 0.

So, Aα lim
k

xk = y, which proves the sufficient part.

We now turn to the necessary part. We know that there exist an (O)-sequence (σp)p and y ∈ R with
dαA(Bp) = 0 for every p ∈N, where

Bp := {k ∈N : |xk − y| � σp}.

Observe that N \ Bp , ∅ for all p ∈N, because dαA(Bp) = +∞ or 1 according as 0 < α < 1 or α = 1 (see also (7)
). If k, n ∈N \ Bp, then

|xk − xn| ≤ |xk − y| + |xn − y| ≤ 2 σp. (10)

Let Vp := {k ∈ N : |xk − xn| � 2σp}, p ∈ N. From (10), for any p ∈ N we get Vp ⊂ Bp, and thus dαA(Vp) = 0,
since dαA(Bp) = 0. Thus the assertion of the necessary part follows. This concludes the proof.

We now prove uniqueness of the Aα-limit in the (`)-group setting.

Theorem 3.2. Let (xk)k be an Aα-convergent sequence. Then, its Aα-limit is unique.

Proof. Let (xk)k be a sequence in R, with Aα lim
k

xk = x0 and Aα lim
k

xk = y0. Then there are two (O)-sequences

(σp)p, (τp)p such that

δαA({k ∈N : |xk − x0| � σp}) = δαA({k ∈N : |xk − y0| � τp}) = 0 for all p ∈N.

Fix now p ∈N, and let

D1 := {k ∈N : |xk − x0| ≤ σp}, D2 := {k ∈N : |xk − x0| ≤ τp}.

If D1 ∩D2 = ∅, then D1 ⊂N \D2, and hence δ
α

A(D1) ≤ δ
α

A(N \D2), but δ
α

A(N \D2) = 0, while δ
α

A(D1) = +∞ or
1 according as 0 < α < 1 or α = 1 (see also (7) ), a contradiction. Hence, D1 ∩D2 , ∅. Let k ∈ D1 ∩D2, then

|x0 − y0| ≤ |x0 − xk| + |xk − y0| ≤ σp + τp.

Since (σp)p, (τp)p are (O)-sequences, by arbitrariness of p we get x0 = y0.
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The next result is a fundamental property of Aα-convergence in the case 0 < α < 1, and extends [4, Theorem
1] to the (`)-group context.

Theorem 3.3. Let A be a regular and lower triangular summability matrix. If a sequence (xk)k in R is Aα-convergent
to x0 (with 0 < α < 1), then there is a set C := {k1 < k2 < . . . < kn < . . .} ⊂Nwith δ

α

A(C) = +∞ and (O) lim
n

xkn = x0.

Proof. Suppose that (xn)n is Aα-convergent to x0. Then there exists an (O)-sequence (σp)p with δαA(Bp) = 0 for each
p ∈ N, where Bp is as in (8). Set Cp = N \ Bp. Since δαA(Bp) = 0, then δαA(Cp) = +∞ (see also 7) ). Moreover, it is
easy to see that the sequence (Cp)p is decreasing.

Let now (Gi)i be a strictly increasing sequence of positive real numbers. Choose arbitrarily v1 ∈ C1. Since
δαA(C2) = +∞, there is v2 ∈ C2, v2 > v1, with∑

k∈C2

a j,k > G2 · jα−1 for each j ≥ v2

In particular, we get ∑
k∈C2

av2,k > G2 · v2
α−1.

At the next step, since δαA(C3) = +∞, we can find an element v3 ∈ C3, v3 > v2, with∑
k∈C3

av3,k > G3 · v3
α−1.

Proceeding by induction, we construct a strictly increasing sequence (v j) j of positive integers, with v j ∈ C j and∑
k∈C j

av j,k > G j · v j
α−1 for all j ∈N.

Put now

C := [1, v1] ∪

 ∞⋃
j=2

([v j−1, v j] ∩ C j)

 .
Since A is lower triangular, we get

av j,k = 0 for all j ∈N and k > v j. (11)

As C ∩ [1, v j] ⊃ C j ∩ [1, v j] for every j ∈N, from (11) we get∑
k∈C

av j,k ≥
∑
k∈C j

av j,k > G j · v j
α−1,

that is
1

v j
α−1

∑
k∈C

av j,k > G j, for all j ∈N. (12)

From (12) it follows that

lim sup
j

1
v j
α−1

∑
k∈C

av j,k = +∞,

namely δ
α

A(C) = +∞.
Now, to show that the sequence (xk)k∈C (O)-converges to x0, it is sufficient to observe that for all j ∈N and k ≥ v j

we have |xk − x0| ≤ σ j, where (σ j) j is an (O)-sequence. This completes the proof.
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Remarks 3.4. (a) Some examples of lower triangular non-negative regular matrices, whoseC1 is a particular
case, are the matrices which generate the Erdős-Ulam ideals (see [15, Example 1.2.3 (d)]).

(b) Observe that, for α = 1, Aα-convergence reduces to A-convergence, that is the convergence generated
by the ideal of those subsets of N having A-density zero. From this (see [8, Proposition 2.8]) it follows that
in a Dedekind complete (`)-group R, a sequence (xk)k is A-convergent to x0 if and only if there is a subset
C ⊂N, C = {k1 < . . . < kn < . . .}, with δA(C) = 1 and (O) lim

n
xkn = x0.

(c) For 0 < α < 1, the converse of Theorem 3.3 is in general not true, as can be seen by taking

xk :=
{

(4, 4), if k = n2,n ∈N.
(0, 0), otherwise. (13)

Indeed, for α =
1
4

, δ
α

A(C) = +∞, where C = {n2 : n ∈N}, but it is not true that Aα limk xk = (4, 4).

From now on we do not require lower triangularity of the summability matrix involved, but only non-
negativity and regularity.

We now check the following inclusion, extending [4, Theorem 2].

Theorem 3.5. Let 0 < α ≤ β ≤ 1. Then Amα
0 ⊂ Amβ

0.

Proof. Let (xk)k ∈ Amα
0 and with Aα lim

k
xk = x0. Then there is an (O)-sequence (σp)p such that for all p ∈ N

we get δαA(Bp) = 0, namely

lim
j

1
jα−1

∑
k∈Bp

a j,k,

where Bp := {k ∈N : |xk − x0| � σp}. Since

0 ≤ lim sup
j

1
jβ−1

∑
k∈Bp

a j,k ≤ lim sup
j

1
jα−1

∑
k∈Bp

a j,k = 0,

then we get δβA(Bp) = 0, which shows that (xk)k ∈ Amβ
0.

If we take β = 1 in Theorem 3.5, then we obtain the following result.

Corollary 3.6. If a sequence (xk)k in R is Aα-convergent to x0 for some 0 < α ≤ 1, then it is A-convergent to x0, that
is Amα

0 ⊂ Am0.

We now prove a closedness property for the space of Aα-convergent sequences, extending [4, Theorem 3]
to the (`)-group setting.

Theorem 3.7. Let α ∈ (0, 1], (x(k))k be a sequence in Amα
0 , where x(k) = (x(k)

j ) j and for every k ∈ N (x(k)
j ) j is

Aα-convergent with respect to a common (O)-sequence (σp)p, independent of k. If x = (x j) j is such that

(O) lim
k

∨
j

|x(k)
j − x j|

 = 0, (14)

then x ∈ Amα
0 .

Proof. Let (x(k))k satisfy (14), where x(k)
∈ Am0 for all k ∈N. Suppose that

Aα lim
j

x(k)
j = yk for all k ∈N. (15)

By (15) there is an (O)-sequence (σp)p with

δαA({n ∈N : |x(k)
n − yk| � σp}) = 0 for all k, p ∈N.
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Fix now p ∈N, and put

Ek := {n ∈N : |x(k)
n − yk| ≤ σp} (16)

for all k ∈ N. If Ek ∩ Er = ∅, then Ek ⊂ N \ Er and hence δ
α

A(Ek) ≤ δ
α

A(N \ Er) = 0. But δ
α

A(Ek) = +∞ or 1
according as 0 < α < 1 or α = 1 (see also (7) ), and so we obtain a contradiction. Thus for every k, r ∈ N
there exists n ∈ Ek ∩ Er.

By (14) there is an (O)-sequence (τp)p such that for all p ∈N there is n0 = n0(p) ∈N with

∞∨
j=1

|x(k)
j − x j| ≤ τp for all k ≥ n0.

Then

|x(k)
j − x(r)

j | ≤ |x
(k)
j − x j| + |x

(r)
j − x j|

≤

∞∨
j=1

|x(k)
j − x j| +

∞∨
j=1

|x(r)
j − x j| ≤ 2 τp

for every j ∈N and k, r ≥ n0. Thus we get

|yk − yr| ≤ |yk − x(k)
n | + |x

(k)
n − x(r)

n | + |yk − x(k)
n |

≤ 2 σp +

∞∨
j=1

|x(k)
j − x j| +

∞∨
j=1

|x(r)
j − x j| ≤ 2 σp + 2 τp

whenever k, r ≥ n0. This shows that (yk)k is an (O)-Cauchy sequence in R. Since R is Dedekind complete,
then R is (O)-complete too (see also [9]), and so the sequence (yk)k is (O)-convergent to some element y ∈ R.
Hence there is an (O)-net (ηp)p such that for each p ∈N there exists n∗ = n∗(p) with

|yk − y| ≤ ηp for all k ≥ n∗.

Choose k ≥ max{n0,n∗}. Then for all j ∈N we have

|x j − y| ≤ |x j − x(k)
j | + |x

(k)
j − yk| + |yk − y|

≤ τp + ηp + |x(k)
j − yk|. (17)

Observe that, if Ek is as in (16) and j ∈ Ek, then |x j − y| ≤ wp, where wp = σp + τp + ηp. So (wp)p is an
(O)-sequence, and

E := { j ∈N : |x j − y| � wp} ⊂N \ Ek.

Since by hypothesis δαA(N \ Ek) = 0, we get also δαA(E) = 0, which completes the proof.

We now recall a condition, under which it is possible to replace a countable family of (O)-sequences with
one (O)-sequence ([5, Lemma 2.8]).

Lemma 3.8. Let R be a super Dedekind complete and weakly σ-distributive (`)-group. If (σ(k)
p )p is an equibounded

family of (O)-sequences, then there is an (O)-sequence (br)r with the property that for every k, r ∈ N there exists
p = p(k, r), with σ(k)

p ≤ br.
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Remark 3.9. Observe that, if R is a super Dedekind complete and weakly σ-distributive (`)-group and
(x(k)

j ) j, k ∈N, are as in Theorem 3.7, Aα-convergent for every k and order equibounded in R (namely with a

positive element u ∈ R with |x(k)
j | ≤ u for all j, k ∈ N), then the (x(k)

j ) j’s are Aα-convergent with respect to a
same (O)-sequence (br)r, independent of k. Indeed, let (yk)k be a sequence in R such that for all k ∈ N there
exists an (O)-sequence (σ(k)

p )p with δαA(B(k)
p ) = 0 for all k, p ∈N, where

B(k)
p := { j ∈N : |x(k)

j − yk| � σ
(k)
p }. (18)

Note that order equiboundedness of the double sequence (x(k)
j − yk) j,k is a consequence of order equibound-

edness of (x(k)
j ) j,k. So, without loss of generality, we can assume that σ(k)

p ≤ 2 u for each k, p ∈N.
By Lemma 3.8 there exists an (O)-sequence (br)r such that for every k, r ∈ N there exists p ∈ N with

σ(k)
p ≤ br. From this and (18) it follows that D(k)

r ⊂ B(k)
p , where D(k)

r := { j ∈ N : |x(k)
j − yk| � br}. Hence we get

δαA(D(k)
r ) = 0, since δαA(B(k)

p ) = 0. This proves the claim, by virtue of arbitrariness of r.
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