On Generalized Absolute Cesàro Summablity Factors

Hüseyin Bor ${ }^{\text {a }}$
${ }^{a}$ P. O. Box 121, TR-06502 Bahçelievler, Ankara, Turkey

Abstract

In this paper, we prove a known theorem dealing with $\varphi-|C, \alpha, \beta|_{k}$ summability factors under more weaker conditions. This theorem also includes several new results.

1. Introduction

A positive sequence $\left(b_{n}\right)$ is said to be an almost increasing sequence if there exists a positive increasing sequence (c_{n}) and two positive constants M and N such that $M c_{n} \leq b_{n} \leq N c_{n}$ (see [2]). A sequence (d_{n}) is said to be δ-quasi-monotone, if $d_{n} \rightarrow 0, d_{n}>0$ ultimately and $\Delta d_{n} \geq-\delta_{n}$, where $\Delta d_{n}=d_{n}-d_{n+1}$ and $\delta=\left(\delta_{n}\right)$ is a sequence of positive numbers (see [3]. A positive sequence $X=\left(X_{n}\right)$ is said to be a quasi-f-power increasing sequence, if there exists a constant $K=K(X, f) \geq 1$ such that $K f_{n} X_{n} \geq f_{m} X_{m}$ for all $n \geq m \geq 1$, where $f=\left(f_{n}\right)=\left\{n^{\eta}(\log n)^{\gamma}, \gamma \geq 0,0<\eta<1\right\}$ (see [14]). If we set $\gamma=0$, then we get a quasi- η-power increasing sequence (see [13]). Let $\sum a_{n}$ be a given infinite series. We denote by $t_{n}^{\alpha, \beta}$ the nth Cesàro mean of order (α, β), with $\alpha+\beta>-1$, of the sequence $\left(n a_{n}\right)$, that is (see [9])

$$
\begin{equation*}
t_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \tag{1}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}^{\alpha+\beta}=O\left(n^{\alpha+\beta}\right), \quad A_{0}^{\alpha+\beta}=1 \quad \text { and } \quad A_{-n}^{\alpha+\beta}=0 \quad \text { for } \quad n>0 . \tag{2}
\end{equation*}
$$

Let $\left(\varphi_{n}\right)$ be a sequence of complex numbers. The series $\sum a_{n}$ is said to be summable $\varphi-|C, \alpha, \beta|_{k}, k \geq 1$, if (see [5])

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} t_{n}^{\alpha, \beta}\right|^{k}<\infty \tag{3}
\end{equation*}
$$

In the special case when $\varphi_{n}=n^{1-\frac{1}{k}}, \varphi-|C, \alpha, \beta|_{k}$ summability is the same as $|C, \alpha, \beta|_{k}$ summability (see [10]). Also, if we take $\varphi_{n}=n^{\sigma+1-\frac{1}{k}}$), then $\varphi-|C, \alpha, \beta|_{k}$ summability reduces to $|C, \alpha, \beta ; \sigma|_{k}$ summability (see

[^0][6]. If we take $\beta=0$, then we have $\varphi-|C, \alpha|_{k}$ summability (see [1]). If we take $\varphi_{n}=n^{1-\frac{1}{k}}$ and $\beta=0$, then we get $|C, \alpha|_{k}$ summability (see [11]. Finally, if we take $\varphi_{n}=n^{\sigma+1-\frac{1}{k}}$ and $\beta=0$, then we obtain $|C, \alpha ; \sigma|_{k}$ summability (see [12]).

2. The known results

The following theorems are known dealing with $\varphi-|C, \alpha, \beta|_{k}$ summability factors of infinite series.
Theorem 2.1 [7] Let $\left(X_{n}\right)$ be an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right)$ and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(B_{n}\right)$ such that it is δ-quasi-monotone with $\sum n X_{n} \delta_{n}<\infty$, $\sum B_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\varepsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and if the sequence $\left(\theta_{n}^{\alpha, \beta}\right)$ defined by

$$
\theta_{n}^{\alpha, \beta}=\left\{\begin{array}{cc}
\left|t_{n}^{\alpha, \beta}\right|, & \alpha=1, \beta>-1 \tag{4}\\
\max _{1 \leq v \leq n}\left|t_{v}^{\alpha, \beta}\right|, & 0<\alpha<1, \beta>-1
\end{array}\right.
$$

satisfies the condition

$$
\begin{equation*}
\sum_{n=1}^{m} n^{-k}\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{5}
\end{equation*}
$$

then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha, \beta|_{k}, k \geq 1,0<\alpha \leq 1, \beta>-1$ and $(\alpha+\beta) k+\epsilon>1$.
Theorem 2.2 [8] Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(B_{n}\right)$ such that it is δ-quasi-monotone with $\Delta B_{n} \leq \delta_{n}, \sum n \delta_{n} X_{n}<\infty$, $\sum B_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\epsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and the condition (5) is satisfied, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha, \beta|_{k}, k \geq 1$, $0<\alpha \leq 1, \beta>-1$ and $(\alpha+\beta) k+\epsilon>1$.

3. The main result

The aim of this paper is to prove Theorem 2.2 under more weaker conditions. Now, we shall prove the following theorem.
Theorem 3.1 Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence and let $\lambda_{n} \rightarrow 0$ as $n \rightarrow \infty$. Suppose that there exists a sequence of numbers $\left(B_{n}\right)$ such that it is δ-quasi-monotone with $\Delta B_{n} \leq \delta_{n}, \sum n \delta_{n} X_{n}<\infty, \sum B_{n} X_{n}$ is convergent and $\left|\Delta \lambda_{n}\right| \leq\left|B_{n}\right|$ for all n. If there exists an $\epsilon>0$ such that the sequence $\left(n^{\varepsilon-k}\left|\varphi_{n}\right|^{k}\right)$ is non-increasing and the condition

$$
\begin{equation*}
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(X_{m}\right) \quad \text { as } \quad m \rightarrow \infty \tag{6}
\end{equation*}
$$

satisfies, then the series $\sum a_{n} \lambda_{n}$ is summable $\varphi-|C, \alpha, \beta|_{k}, k \geq 1,0<\alpha \leq 1, \beta>-1$ and $(\alpha+\beta-1) k+\epsilon>0$.
Remark 3.2 It should be noted that condition (6) is the same as condition (5) when $\mathrm{k}=1$. When $k>1$ condition (6) is weaker than condition (5), but the converse is not true. As in [15] we can show that if (5) is satisfied, then we get that

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k} X_{n}^{k-1}}=O\left(\frac{1}{X_{1}^{k-1}}\right) \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k}}=O\left(X_{m}\right)
$$

If (6) is satisfied, then for $k>1$ we obtain that

$$
\sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}}{n^{k}}=\sum_{n=1}^{m} X_{n}^{k-1} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}^{k-1}}=O\left(X_{m}^{k-1}\right) \sum_{n=1}^{m} \frac{\left(\left|\varphi_{n}\right| \theta_{n}^{\alpha, \beta}\right)^{k}}{n X_{n}^{k-1}}=O\left(X_{m}^{k}\right) \neq O\left(X_{m}\right)
$$

We need the following lemmas for the proof of our theorem.
Lemma 3.3 [4] If $0<\alpha \leq 1, \beta>-1$ and $1 \leq v \leq n$, then

$$
\begin{equation*}
\left|\sum_{p=0}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \leq \max _{1 \leq m \leq v}\left|\sum_{p=0}^{m} A_{m-p}^{\alpha-1} A_{p}^{\beta} a_{p}\right| \tag{7}
\end{equation*}
$$

Lemma 3.4 [8] Under the conditions regarding $\left(\lambda_{n}\right)$ and $\left(X_{n}\right)$ of Theorem 3.1, we have

$$
\begin{equation*}
\left|\lambda_{n}\right| X_{n}=O(1) \text { as } n \rightarrow \infty . \tag{8}
\end{equation*}
$$

Lemma 3.5 [8] Let $\left(X_{n}\right)$ be a quasi-f-power increasing sequence. If $\left(B_{n}\right)$ is a δ-quasi-monotone sequence with $\Delta B_{n} \leq \delta_{n}$ and $\sum n \delta_{n} X_{n}<\infty$, then

$$
\begin{equation*}
\sum_{n=1}^{\infty} n X_{n}\left|\Delta B_{n}\right|<\infty \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
n B_{n} X_{n}=O(1) \text { as } n \rightarrow \infty . \tag{10}
\end{equation*}
$$

4. Proof of Theorem 3.1 Let $\left(T_{n}^{\alpha, \beta}\right)$ be the nth (C, α, β) mean of the sequence $\left(n a_{n} \lambda_{n}\right)$. Then, by (1), we have

$$
T_{n}^{\alpha, \beta}=\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \lambda_{v}
$$

Applying Abel's transformation first and then using Lemma 3.3, we have that

$$
\begin{aligned}
T_{n}^{\alpha, \beta} & =\frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} \Delta \lambda_{v} \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}+\frac{\lambda_{n}}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v} \\
\left|T_{n}^{\alpha, \beta}\right| & \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1}\left|\Delta \lambda_{v} \| \sum_{p=1}^{v} A_{n-p}^{\alpha-1} A_{p}^{\beta} p a_{p}\right|+\frac{\left|\lambda_{n}\right|}{A_{n}^{\alpha+\beta}}\left|\sum_{v=1}^{n} A_{n-v}^{\alpha-1} A_{v}^{\beta} v a_{v}\right| \\
& \leq \frac{1}{A_{n}^{\alpha+\beta}} \sum_{v=1}^{n-1} A_{v}^{\alpha} A_{v}^{\beta} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|+\left|\lambda_{n}\right| \theta_{n}^{\alpha, \beta} \\
& =T_{n, 1}^{\alpha, \beta}+T_{n, 2}^{\alpha, \beta} .
\end{aligned}
$$

To complete the proof of Theorem 3.1, by Minkowski's inequality, it is sufficient to show that

$$
\sum_{n=1}^{\infty} n^{-k}\left|\varphi_{n} T_{n, r}^{\alpha, \beta}\right|^{k}<\infty \quad \text { for } \quad r=1,2
$$

Now, when $k>1$, applying Hölder's inequality with indices k and k^{\prime}, where $\frac{1}{k}+\frac{1}{k^{\prime}}=1$, we get that

$$
\begin{aligned}
& \sum_{n=2}^{m+2} n^{-k}\left|\varphi_{n} T_{n, 1}^{\alpha, \beta}\right|^{k} \leq \sum_{n=2}^{m+1} n^{-k}\left(A_{n}^{\alpha+\beta}\right)^{-k}\left|\varphi_{n}\right|^{k}\left\{\sum_{v=1}^{n-1} A_{v}^{\alpha+\beta} \theta_{v}^{\alpha, \beta}\left|\Delta \lambda_{v}\right|\right\}^{k} \\
& \leq \sum_{n=2}^{m+1} n^{-k} n^{-(\alpha+\beta) k}\left|\varphi_{n}\right|^{k} \sum_{v=1}^{n-1} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\left|B_{v}\right|^{k}\left\{\sum_{v=1}^{n-1} 1\right\}^{k-1} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\left|B_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{n^{-k}\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta-1) k}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\left|B_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{n^{\varepsilon-k}\left|\varphi_{n}\right|^{k}}{n^{1+(\alpha+\beta-1) k+\varepsilon}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha, \beta}\right)^{k}\left|B_{v}\right|^{k} v^{\varepsilon-k}\left|\varphi_{v}\right|^{k} \sum_{n=v+1}^{m+1} \frac{1}{n^{1+(\alpha+\beta-1) k+\varepsilon}} \\
& =O(1) \sum_{v=1}^{m} v^{(\alpha+\beta) k}\left(\theta_{v}^{\alpha, \beta}\right)^{k} v^{\epsilon-k}\left|\varphi_{v}\right|^{k}\left|B_{v}\right|^{k} \int_{v}^{\infty} \frac{d x}{x^{1+(\alpha+\beta-1) k+\varepsilon}} \\
& =O(1) \sum_{v=1}^{m}\left|B_{v} \| B_{v}\right|^{k-1}\left(\theta_{v}^{\alpha, \beta}\left|\varphi_{v}\right|\right)^{k} \\
& =O(1) \sum_{v=1}^{m}\left|B_{v}\right| \frac{1}{v^{k-1} X_{v}^{k-1}}\left(\theta_{v}^{\alpha, \beta}\left|\varphi_{v}\right|\right)^{k} \\
& =O(1) \sum_{v=1}^{m-1} \Delta\left(v\left|B_{v}\right|\right) \sum_{r=1}^{v} \frac{\left(\theta_{r}^{\alpha, \beta}\left|\varphi_{r}\right|\right)^{k}}{r^{k} X_{r}{ }^{k-1}}+O(1) m\left|B_{m}\right| \sum_{v=1}^{m} \frac{\left(\theta_{v}^{\alpha, \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}{ }^{k-1}} \\
& =O(1) \sum_{v=1}^{m-1}\left|\Delta\left(v\left|B_{v}\right|\right)\right| X_{v}+O(1) m\left|B_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1}|(v+1) \Delta| B_{v}\left|-\left|B_{v}\right|\right| X_{v}+O(1) m\left|B_{m}\right| X_{m} \\
& =O(1) \sum_{v=1}^{m-1} v\left|\Delta B_{v}\right| X_{v}+O(1) \sum_{v=1}^{m-1}\left|B_{v}\right| X_{v}+O(1) m\left|B_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty \text {, }
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.5. Finally, we have that

$$
\begin{aligned}
\sum_{n=1}^{m} n^{-k}\left|\varphi_{n} T_{n, 2}^{\alpha, \beta}\right|^{k} & =\sum_{n=1}^{m}\left|\lambda_{n}\right|\left|\lambda_{n}\right|^{k-1} n^{-k}\left(\theta_{n}^{\alpha, \beta}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m}\left|\lambda_{n}\right| \frac{1}{X_{n}{ }^{k-1}} n^{-k}\left(\theta_{n}^{\alpha, \beta}\left|\varphi_{n}\right|\right)^{k} \\
& =O(1) \sum_{n=1}^{m-1} \Delta\left|\lambda_{n}\right| \sum_{v=1}^{n} \frac{\left(\theta_{v}^{\alpha, \beta}\left|\varphi_{v}\right|\right)^{k}}{v^{k} X_{v}{ }^{k-1}}+O(1)\left|\lambda_{m}\right| \sum_{n=1}^{m} \frac{\left(\theta_{n}^{\alpha, \beta}\left|\varphi_{n}\right|\right)^{k}}{n^{k} X_{n}{ }^{k-1}}
\end{aligned}
$$

$$
\begin{aligned}
& =O(1) \sum_{n=1}^{m-1}\left|\Delta \lambda_{n}\right| X_{m}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \sum_{n=1}^{m-1}\left|B_{n}\right| X_{n}+O(1)\left|\lambda_{m}\right| X_{m} \\
& =O(1) \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of the hypotheses of Theorem 3.1 and Lemma 3.4. This completes the proof of Theorem 3.1. If we take $\left(X_{n}\right)$ as an almost increasing sequence such that $\left|\Delta X_{n}\right|=O\left(\frac{X_{n}}{n}\right)$, then we get Theorem 2.1. In this case the condition " $\Delta B_{n} \leq \delta_{n}$ " is not need. If we take $\epsilon=1$ and $\varphi_{n}=n^{1-\frac{1}{k}}$, then we obtain a new result for $|C, \alpha, \beta|_{k}$ summability. If we take $\epsilon=1, \beta=0$ and $\varphi_{n}=n^{\sigma+1-\frac{1}{k}}$, then we get a new result for $|C, \alpha ; \sigma|_{k}$ summability. Also, if we take $\beta=0$, then we get another new result dealing with $\varphi-|C, \alpha|_{k}$ summability factors. Finally if we take $\gamma=0$, then we get a new result dealing with quasi- η-power increasing sequences.

References

[1] M. Balcı, Absolute φ-summability factors, Comm. Fac. Sci. Univ. Ankara, Ser. A_{1}, 29 (1980) 63-80
[2] N. K. Bari and S. B. Stečkin, Best approximation and differential properties of two conjugate functions, Trudy. Moskov. Mat. Obšč. 5 (1956) 483-522 (in Russian)
[3] R. P. Boas, Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. Ser. A 14 (1965) 38-46
[4] H. Bor, On a new application of quasi power increasing sequences, Proc. Est. Acad. Sci. 57 (2008) 205-209
[5] H. Bor, A newer application of almost increasing sequences, Pac. J. Appl. Math. 2(3) (2009) 29-33
[6] H. Bor, An application of almost increasing sequences, Appl. Math. Lett. 24 (2011) 298-301
[7] H. Bor and D. S. Yu, A new application of almost increasing and quasi-monotone sequences, Appl. Math. Lett. 24 (2011) 1347-1350
[8] H. Bor, An application of a wider class of power increasing sequences to the factored infinite series, Preprint
[9] D. Borwein, Theorems on some methods of summability, Quart. J. Math. Oxford Ser. (2) 9 (1958) 310-316
[10] G. Das, A Tauberian theorem for absolute summability, Proc. Camb. Phil. Soc. 67 (1970) 32-326
[11] T. M. Flett, On an extension of absolute summability and some theorems of Littlewood and Paley, Proc. London Math. Soc. 7 (1957) 113-141
[12] T. M. Flett, Some more theorems concerning the absolute summability of Fourier series, Proc. London Math. Soc. 8 (1958) 357-387
[13] L. Leindler, A new application of quasi power increasing sequences, Publ. Math. Debrecen, 58 (2001) 791-796.
[14] W. T. Sulaiman, Extension on absolute summability factors of infinite series, J. Math. Anal. Appl. 322 (2006) 1224-1230
[15] W. T. Sulaiman, A note on $|A|_{k}$ summability factors of infinite series, Appl. Math. Comput. 216 (2010) 2645-2648

[^0]: 2010 Mathematics Subject Classification. 26D15, 40D15, 40F05, 40G05
 Keywords. Almost increasing sequences; monotone sequences; Cesàro mean; summability factors; infinite series; Hölder inequality; Minkowski inequality.

 Received: 07 May 2013; Accepted: 03 July 2013
 Communicated by Eberhard Malkowsky
 Email address: hbor33@gmail.com (Hüseyin Bor)

