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Abstract. In this paper we consider the number of dominating sets in cactus chains with triangular and
square blocks. We derive and solve the recurrences satisfied by those quantities and investigate their
asymptotic behavior. In triangular case we also refine the counting by computing the bivariate generating
function. As a corollary, we compute the expected size of a dominating set in a triangular cactus chain of a
given length.

1. Introduction

A dominating set of a graph G = (V,E) is any subset D of V such that every vertex not in D is adjacent
to at least one member of D. The domination number γ(G) is the cardinality of a smallest dominating
set in G. The domination number is one of the most thoroughly studied simple graph invariants. Several
books ([8, 9]) are written on this invariant alone, and some twenty years ago there were already hundreds
of papers concerned with domination in particular classes of graphs [11]. Also, the concept of domination
and related invariants have been generalized in many ways. Among the best know generalizations are
total, independent, and connected domination, each of them with the corresponding domination number;
see [7, 12] for a survey of recent results.

Most of the papers published so far deal with structural aspects of domination, trying to determine exact
expressions for γ(G) or some upper and/or lower bounds for it. The enumerative side of the problem is not
so well researched, although its roots can be traced back to a classical paper by Merrifield and Simmons
[17]. There they remarked that they were unable to obtain a recurrence for the number of dominating
sets (or the externally stable vertex sets, as they called them) for general graphs. Instead, they provided
a Fibonacci-like recurrence for paths and observed that the number of dominating sets seems to be odd
for all graphs. Almost thirty years passed before a proof of the observation was published by Brouwer,
Csorba and Schrijver [4]. Gradually, a number of papers appeared concerned with enumerating some
types of dominating sets in paths and cycles [22] and with an attempt to develop a theory of domination
polynomials analogous to the familiar matching and independence polynomials [1, 2]. One of the reasons
for the lack of results might be the fact that problems of this type are hard: For example, even in restricted
graph classes such as, e.g., split graphs and bipartite chordal graphs, counting the number of dominating
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sets is #P-complete [15]. Hence, it makes sense to look for classes of graphs where this problem can be
efficiently solved. As most of the difficulties stem from the fact that the recurrences for the number of
dominating sets are “less local” than the recurrences that appear in counting matchings and independent
sets, it is natural to look to the classes of graphs with simple connectivity patterns, for example cacti.

The goal of the present paper is to further contribute to the corpus of knowledge about the enumerative
aspects of domination by investigating the number of dominating sets in two classes of simple linear
polymers called cactus chains. Cactus graphs were first known as Husimi trees; they appeared in the
scientific literature some sixty years ago in papers by Husimi and Riddell concerned with cluster integrals
in the theory of condensation in statistical mechanics [10, 14, 18]. In the meantime, they also found
applications in chemistry [13, 21] and in the theory of electrical and communication networks [20], when it
turned out that some computationally difficult problems can be solved on cacti in polynomial time. We refer
the reader to papers [5, 16] for some aspects of domination in cactus graphs and to [6] for some enumerative
results on matchings and independent sets in chain cacti.

In the rest of the paper we study how the number of dominating sets depends on the connectivity
patterns in the chain. For simple connectivity patterns we derive linear recurrences that, in turn, yield
explicit formulas and the asymptotics. At the end, we investigate effects of introducing a defect in a chain
with a homogeneous connectivity pattern.

2. Definitions and Preliminaries

A cactus graph is a connected graph in which no edge lies in more than one cycle. Consequently, each
block of a cactus graph is either an edge or a cycle. If all blocks of a cactus G are cycles of the same size m,
the cactus is m-uniform.

A triangular cactus is a graph whose blocks are triangles, i.e., a 3-uniform cactus. A vertex shared
by two or more triangles is called a cut-vertex. If each triangle of a triangular cactus G has at most two
cut-vertices, and each cut-vertex is shared by exactly two triangles, we say that G is a chain triangular
cactus. The number of triangles in G is called the length of the chain. An example of a chain triangular
cactus is shown in Fig. 1. Obviously a chain triangular cactus of length n has 2n + 1 vertices and 3n edges.
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Figure 1: The chain triangular cactus of length 7.

Furthermore, any chain triangular cactus of length greater than one has exactly two triangles with only
one cut-vertex. Such triangles are called terminal triangles. Any remaining triangles are called internal
triangles. Obviously, all chain triangular cacti of the same length are isomorphic. Hence, we denote the
chain triangular cactus of length n by Tn.

By replacing triangles in the above definitions by cycles of length 4 we obtain cacti whose every block
is C4. We call such cacti square cacti. An example of a square cactus chain is shown in Fig. 2. We see
that the internal squares may differ in the way they connect to their neighbors. If their cut-vertices are
adjacent, we say that such a square is an ortho-square; if the cut-vertices are not adjacent, we call the square
a para-square. (The terminology is borrowed from the theory of benzenoid hydrocarbons; see [6] for more
details.) The set of all chain square cacti of length n will be denoted by Sn. The unique square cactus chain
of length n whose all internal squares are para-squares we denote by Qn, while the unique ortho-chain will
be denoted by Sn.

Chains Tn and Qn are among the simplest chain cacti; the only simpler chain cactus is the path Pn, whose
all blocks are single edges. Dominating sets in paths were counted in [22] and we refer the reader to this
reference for the proof of the following result.
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Figure 2: A chain square cactus of length 7.

Theorem A
Let us denote by dn the number of dominating sets in Pn. Then the numbers dn satisfy the following
recurrence for n ≥ 4:

dn = dn−1 + dn−2 + dn−3,

with the initial conditions d1 = 1, d2 = 3, d3 = 5.
Hence the enumerating sequence for dominating sets in Pn is the (shifted) Tribonacci sequence. Its

asymptotic behavior is given by dn ∼ 1.839286n for large n.

3. Counting Dominating Sets in Tn

Let us consider Tn labeled in the way shown in Fig. 1 and denote the number of dominating sets in Tn
by tn. Each dominating set in Tn either does or does not contain vertex un. Let us denote by t′n the number
of dominating sets that contain un, and by t′′n the number of dominating sets that do not contain un. Hence,
tn = t′n + t′′n . Obviously, t′n = 2tn−1, since each dominating set in Tn−1 can be extended to a dominating set in
Tn counted by t′n in exactly two ways. Now we consider the dominating sets counted by t′′n . If such a set
contains vn, then each dominating set in Tn−1 can be extended to a dominating set in Tn counted by t′′n . If
such a set does not contain vn, then it must contain un−1; if not, then un will not be dominated. Such sets are
counted by t′n−1 = 2tn−2. Hence, t′′n = tn−1 + 2tn−2. Now, from tn = t′n + t′′n we obtain the recurrence satisfied
by the numbers tn for n ≥ 3. The initial conditions t1 = 7 and t2 = 25 are easily verified by direct counting.
In fact, the recurrence remains valid even if we start from t0 = 2.

Theorem 1
The enumerating sequence (tn) for the number of dominating sets in Tn is given by the recurrence

tn = 3tn−1 + 2tn−2

for n ≥ 2 and the initial conditions t0 = 2, t1 = 7.
By a routine computation we can now obtain the generating function T(x) =

∑
∞

n=0 tnxn for tn.
Corollary 2

T(x) =
2 + x

1 − 3x − 2x2 .

Now we can use a version of Darboux theorem to deduce the asymptotic behavior of tn. We refer the
reader to any of standard books on generating functions, such as [3, 19] for more information on these
techniques.

Theorem B (Darboux)
Let f (x) =

∑
∞

n=0 anxn denote the generating function of a sequence (an). If f (x) can be written as

f (x) =
(
1 −

x
w

)α
1(x),
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where w is the smallest modulus singularity of f and 1 is analytic at w, then

an ∼
1(w)

Γ(−α)
w−nn−α−1.

Here Γ(x) denotes the gamma function.
Now by a routine computation we obtain the asymptotics for tn. We omit the details.
Corollary 3

tn ∼

(
1 +

4
√

17

) (
3 +
√

17
2

)n

.

Numerically, we have tn ∼ 1.9701425 · 3.5615528n.
Let us now refine our results by decomposing the number of dominating sets in Tn by their cardinality.

We denote by tn,k the number of dominating sets in Tn of cardinality k. If a dominating set of cardinality k
in Tn contains both of un and vn, then the rest of it is a dominating set of cardinality k − 2 in Tn−1, and there
are tn−1,k−2 such sets. This is the top case in the middle column in Fig. 3. If such a set contains only un or vn,
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Figure 3: Derivation of the recurrence for tn,k.

the rest of it is a dominating set of cardinality k − 1 in Tn−1; such sets are counted by tn−1,k−1. Finally, if such
a set contains none of un and vn, then we have the situation shown in the right column of Fig. 3. There are
two possibilities and they are counted by tn−2,k−1 and tn−2,k−2, respectively. By adding all contributions we
obtain the recurrence for tn,k. It is valid for n, k ≥ 3:

tn,k = 2tn−1,k−1 + tn−1,k−2 + tn−2,k−1 + tn−2,k−2.

The initial conditions are again obtained by direct counting.
The bivariate generating function T(x, y) =

∑
n,k≥0 tn,kxnyk can be obtained by a routine computation and

we omit the details.
Corollary 4

T(x, y) =
1 + y + xy

1 − xy(2 + x + y + xy)
.
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By computing ∂
∂y D(x, y)

∣∣∣y=1 and finding the asymptotic behavior of its coefficients we can compute
the expected size of a dominating set in Tn. Again, we refer the reader to standard books on generating
functions and omit the details.

Corollary 5
Let en denote the expected size of a dominating set in Tn. Then

en ∼
3
√

17 + 7

4
√

17
n ≈ 1.174437n.

Since the domination number of Tn is
⌈

n
2

⌉
, we see that the average dominating set in Tn is pretty

inefficient.
It is interesting to note that the recurrence for tn is shorter than the recurrence for the numbers dn from

theorem A, although Pn has simpler structure than Tn. It seems that the presence of the vertex vn prevents
the effects of un being included or not included from spreading too far down the chain.

Before we leave triangular cacti we mention a graph known as the windmill graph Wn. It is the triangular
cactus with n triangles that all share a single cut-vertex. An example is shown in Fig. 4. It is easily seen that
the number of dominating sets in Wn is equal to 4n + 3n for n ≥ 1. As the vertex set of Wn has 22n+1 = 2 · 4n

Figure 4: Windmill graph W4.

subsets, we see that about one half of all subsets are dominating sets, while the proportion of the subsets of
vertices of Tn that are also dominating sets is exponentially small, tending to zero as

(
3.56155

4

)n
.

4. Counting Dominating Sets in Chains of Squares

In this section we count dominating sets in two classes of chains with all internal squares of the same
type. We start with the para-chain.

4.1. Para-chain Qn

We consider a para-chain of length n, labeled as shown in Fig. 5. The number of dominating sets in
Qn is denoted by qn. As before, by q′n we denote the number of dominating sets that contain vn, and by q′′n
the number of dominating sets that do not contain vn. Again, qn = q′n + q′′n . In addition, we denote by q̃n
the number of sets that are not dominating in Qn but can be extended to a dominating set in Qn+1. Clearly,
such sets do not include vn, but they must include vn−1, since this vertex is necessary to dominate tn and bn.
Hence, they are counted by q′n−1 and we have q̃n = q′n−1.

Now we find three recurrences for q′n, q′′n and q̃n.
Each dominating set in Qn counted by q′n can be extended to a dominating set in Qn+1 counted by q′n+1

in exactly four ways. Further, a dominating set in Qn counted by q′′n can be extended to a dominating set
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Figure 5: The labeling of para-chain Qn.

in Qn+1 counted by q′n+1 also in four ways. Finally, a set counted by q̃n can be extended to a dominating set
counted by q′n+1 in exactly three ways. By adding all contributions we obtain the recurrence for q′n,

q′n+1 = 4q′n + 4q′′n + 3q̃n.

Now we need a recurrence for q′′n . Each dominating set in Qn that includes vn can be extended to a
dominating set in Qn+1 counted by q′′n+1 in three ways. Further, a dominating set counted by q′′n can be
extended to a dominating set in Qn+1 counted by q′′n+1 in only one way, by including both tn+1 and bn+1, and
the same is valid for the sets counted by q̃n. Hence,

q′′n+1 = 3q′n + q′′n + q̃n.

Finally, we have shown above that q̃n+1 = q′n, and this is our third recurrence. We have obtained the system

q′n+1 = 4q′n + 4q′′n + 3q̃n
q′′n+1 = 3q′n + q′′n + q̃n
q̃n+1 = q′n

with the initial conditions q′1 = 7, q′′1 = 4 and q̃1 = 1.
Now we introduce three generating functions, Q′(x) =

∑
n≥0 q′n+1xn, Q′′(x) =

∑
n≥0 q′′n+1xn and Q̃(x) =∑

n≥0 q̃n+1xn. By multiplying all equations in the above system through by xn and then summing over all
n ≥ 0, the system can be translated into a linear system for three unknown generating functions:

(1 − 4x)Q′(x) − 4xQ′′(x) − 3xQ̃(x) = 7
−3xQ′(x) + (1 − x)Q′′(x) − xQ̃(x) = 4
−xQ′(x) + Q̃(x) = 1

The system can be easily solved by using Cramer rule. We obtain

Q′(x) =
7 + 12x + x2

1 − 5x − 11x2 − x3 , Q′′(x) =
4 + 6x

1 − 5x − 11x2 − x3 , Q̃(x) =
1 + 2x + x2

1 − 5x − 11x2 − x3 .

Finally, by adding Q′(x) and Q′′(x) and multiplying the sum by x we obtain the generating function for the
sequence (qn).

Theorem 6

Q(x) =

∞∑
n=0

qnxn =
11x + 18x2 + x3

1 − 5x − 11x2 − x3 .

Since Q(x) is a rational function, we can conclude that the numbers qn satisfy a third order linear
recurrence with constant coefficients. The initial conditions can be verified by direct computations.

Corollary 7
The number qn of dominating sets in Qn is given by the recurrence

qn = 5qn−1 + 11qn−2 + qn−3
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for n ≥ 4 with the initial conditions q1 = 11, q2 = 73, and q3 = 487.
The equation 1− 5x− 11x2

− x3 = 0 has three real solutions. The smallest modulus one is approximately
0.1498954. Hence, the asymptotic behavior of qn is given by qn ∼ 6.671318n+1 for large n.

4.2. Ortho-chain Sn

Now we consider the ortho-chain Sn of length n labeled as shown in Fig. 6. The number of dominating

v v v v
0 2 n−1 n

1v v3

Figure 6: The labeling of ortho-chain Sn.

sets in Sn is denoted by sn, and the numbers of dominating sets containing and not containing vn, are
denoted by s′n and s′′n , respectively. Finally, by s̃n we denote the number of sets of vertices that are not
dominating in Sn, but can be extended to a dominating set in Sn+1.

By a reasoning completely analogous to the one employed for para-chains, we obtain the system of
recurrences for s′n, s′′n and s̃n:

s′n+1 = 4s′n + 3s′′n + 3s̃n
s′′n+1 = 3s′n + 2s′′n + s̃n
s̃n+1 = s′′n + s̃n

with the same initial conditions as for the para-chain. Again, we introduce the corresponding generating
functions S′(x) =

∑
n≥0 s′n+1xn, S′′(x) =

∑
n≥0 s′′n+1xn and S̃(x) =

∑
n≥0 s̃n+1xn and obtain a linear system for them

of the form
(1 − 4x)S′(x) − 3xS′′(x) − 3xS̃(x) = 7
−3xS′(x) + (1 − 2x)S′′(x) − xS̃(x) = 4

− xS′′(x) + (1 − x)S̃(x) = 1

Its solution is the triple

S′(x) =
7 − 6x + 4x2

1 − 7x + 4x2 − 4x3 , S′′(x) =
4 + 2x

1 − 7x + 4x2 − 4x3 , S̃(x) =
1 − 2x + 4x2

1 − 7x + 4x2 − 4x3 .

From there we obtain the generating function S(x) of the sequence (sn).
Theorem 8

S(x) =

∞∑
n=0

snxn =
11x − 4x2 + 4x3

1 − 7x + 4x2 − 4x3 .

Again, we conclude that the numbers sn satisfy a third-order linear recurrence with the same coefficients
as the polynomial in the denominator of S(x).

Corollary 9
The numbers sn satisfy the recurrence

sn = 7sn−1 − 4sn−2 + 4sn−3,

with the initial conditions s1 = 11, s2 = 73 and s3 = 471.
The smallest modulus root of equation 1 − 7x + 4x2

− 4x3 = 0 is approximately equal to 0.15437; hence
the asymptotic behavior of sn is given by sn ∼ 6.47783n+1. We see that the ortho-chain has fewer dominating
sets than the para-chain of the same length.
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5. Concluding Remarks

We have investigated here the number of dominating sets in several classes of uniform chain cacti. For
the triangular chains the problem is completely solved, since all chains of given length are isomorphic. For
square chains, however, some questions remain open. It would be interesting, for example, to show that
the para- and the ortho-chain are extremal with respect to the number of dominating sets. As a step in that
direction, we will investigate the effect of a single ortho-defect in a para-chain. The situation is shown in
Fig. 7. We denote this graph by Dmn and the number of dominating sets in it by dmn.

0

1

m

1

n

2 ....

....

u v

w z

Figure 7: A para-chain with a single ortho-defect.

In order to compute dmn, we must consider four cases: whether a dominating set contains both, one or
none of vertices u and v. The case of none is the simplest: if a dominating set in Dmn contains none of u, v,
then it must contain both of w and z, and there are exactly q′m · q′n such dominating sets.

Let us now look at the case when a dominating set in Dmn contains u but not v. There are q′n(qm + q̃m) such
sets containing z and qmq′′n +q′mq̃n such sets that do not contain z. Hence, there are altogether qmqn+q′nq̃m+q′mq̃n
dominating sets containing u but not v. By symmetry, there must be qnqm + q′mq̃n + q′nq̃m dominating sets
that contain v but not u. Finally, there are (qm + q̃m)(qn + q̃n) dominating sets in Dmn that contain both u and
v. By summing the above contributions we obtain the following result:

dmn = 3qmqn + q′mq′n + 2q′mq̃n + 2q′nq̃m + qmq̃n + qnq̃m + q̃mq̃n.

As an example, we take a para-chain of length p and perturb it by introducing a single ortho-defect at place
nd, where nd = 1, . . . , p − 2 denotes the position of the ortho-square among internal squares. The ratio rd

defined as rd = dmn
dp

, where m + n = p − 1 for p = 11 and p = 21 is shown in Fig. 8. We see that the effects are
strongest for defects near the ends of the chain. It is interesting to observe the role of parity of nd.

There are also another interesting questions. For example, how the connectivity pattern affects the
length of recurrences for the number of dominating sets in m-uniform chains for m ≥ 5? Finally, it would
be interesting to compare the extremality of such chains with the cases of matchings and independent sets
[6].
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Figure 8: Effects of a single ortho-defect in a para-chain of length 11 (left) and 21 (right).
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