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Abstract. The aim of this paper is to obtain some new common fixed point theorems for weakly compatible
mappings in symmetric spaces satisfying an implicit function. Some illustrative examples to highlight the
realized improvements are furnished. Our results generalize and extend some recent results contained
in Ali and Imdad [Sarajevo J. Math. 4(17)(2008), 269-285] to symmetric spaces and consequently a host
of metrical common fixed theorems are generalized and improved. We state an integral type fixed point
theorem in symmetric space. In the process, we also derive a fixed point result on common fixed point in
probabilistic symmetric spaces.

1. Introduction and Preliminaries

The celebrated Banach Contraction Principle is indeed the most fundamental result of metrical fixed
point theory which is very effectively utilized to establish the existence of solutions of nonlinear Volterra
integral equations, Fredholm integral equations, nonlinear integro-differential equations in Banach spaces
besides supporting the convergence of algorithms in Computational Mathematics. However, sometimes
one may come across situations wherein the full force of metric requirements are not used in the proofs
of certain metrical fixed point theorems. Motivated by this fact, Hicks and Rhoades [16] proved some
common fixed point theorems in symmetric spaces and showed that a general probabilistic structures
admits a compatible symmetric or semi-metric. In 2006, Miheţ [29] pointed out that Hicks and Rhoades
[16] have inadvertently used a triangle inequality in their results.

Jungck [24] generalized the idea of weakly commuting pair of mappings due to Sessa [40] by introducing
the notion of compatible mappings and showed that compatible pair of mappings commute on the set of
coincidence points of the involved mappings. The study of common fixed points for non-compatible
mappings is equally interesting due to Pant [32]. In 1996, Jungck [25] introduced the notion of weakly
compatible mappings in non-metric spaces. For more details on systematic comparisons and illustrations
of these described notions, we refer to Singh and Tomar [41] and Murthy [30]. The study of fixed points
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in metric spaces has been an area of vigorous research activity. To mention a few, we refer [3, 4, 36] and
references cited therein.

In 2002, Aamri and El Moutawakil [1] introduced the notion of property (E.A) which is a special case
of tangential property due to Sastry and Murthy [39]. The results contained in [31] are generalized and
improved by Sastry and Murthy [39]. Later on, Liu et al. [27] initiated the notion of common property
(E.A) for hybrid pairs of mappings which contained property (E.A). In this continuation, Imdad et al. [22]
and Soliman et al. [43] extended the results of Sastry et al. [39] and Pant [31] to symmetric spaces by
utilizing the weak compatible property with common property (E.A.). Since the notions of property (E.A)
and common property (E.A) always requires the completeness (or closedness) of underlying subspaces for
the existence of common fixed point, hence Sintunavarat and Kumam [42] coined the idea of ‘common limit
range property’ which relaxes the requirement of completeness (or closedness) of the underlying subspace.
Afterward, Imdad et al. [21] extended the notion of common limit range property to two pairs of self
mappings and proved some fixed point theorems in Menger and metric spaces. Most recently, Karapınar
et al. [26] utilized the notion of common limit range property and showed that the new notion buys certain
typical conditions utilized by Pant [31] upto a pair of mappings on the cast of a relatively more natural
absorbing property due to Gopal et al. [15].

In metric fixed point theory, implicit functions are generally utilized to cover several contraction con-
ditions in one go rather than proving a separate theorem for each contraction condition. The first ever
attempt to coin an implicit relation can be traced back to Popa [33–35]. In 2008, Ali and Imdad [3] intro-
duced a new class of implicit functions which covers several classes of contraction conditions such as: Ćirić
quasi-contractions, generalized contractions, φ-type contractions, rational inequalities and various others.
Thereafter, many researchers utilized various implicit relations to prove a number of fixed point theorems
in different settings.

In 2002, Branciari [8] firstly studied an integral analogue of Banach contraction principle for a pair of self
mappings. Since then, a number of fixed point theorems have been established by several mathematicians
employing different integral type contraction condition. For details, we refer the reader to [6, 7, 28, 37, 38, 46].
In an interesting paper of Suzuki [44], it is showed that a Meir-Keeler contraction of integral type is still a
Meir-Keeler contraction. Turkoglu and Altun [45] established a new class of implicit function and proved
an integral type fixed point theorem for weakly compatible mappings with property (E.A) in symmetric
spaces.

The object of this manuscript is to prove some common fixed point theorems for two pairs of non-
self weakly compatible mappings with common limit range property satisfying an implicit function in
symmetric spaces. We furnish some illustrative examples to highlight the superiority of our results over
several results existing in the literature. As an extension of our main result, we state some fixed point
theorems for five mappings, six mappings and four finite families of mappings in symmetric spaces by
using the notion of the pairwise commuting mappings which is studied by Imdad et al. [19]. We derive
an integral analogue of our main result. Inspired by the work of Hicks and Rhoades [16], we state a fixed
point theorem in probabilistic symmetric space.

The following definitions and results will be needed in the sequel.

Definition 1.1. A symmetric on a set X is a function d : X × X→ [0,∞) satisfying the following conditions:

1. d(x, y) = 0 if and only if x = y for x, y ∈ X,
2. d(x, y) = d(y, x) for all x, y ∈ X.

Let d be a symmetric on a set X. For x ∈ X and ε > 0, let B(x, ε) = {y ∈ X : d(x, y) < ε}. A topology τ(d)
on X is defined as follows: U ∈ τ(d) if and only if for each x ∈ U, there exists an ε > 0 such that B(x, ε) ⊂ U.
A subset S of X is a neighbourhood of x ∈ X if there exists U ∈ τ(d) such that x ∈ U ⊂ S. A symmetric
d is a semimetric if for each x ∈ X and each ε > 0, B(x, ε) is a neighbourhood of x in the topology τ(d).
A symmetric (resp., semimetric) space (X, d) is a topological space whose topology τ(d) on X is induced
by symmetric (resp., semi-metric) d. The difference of a symmetric and a metric comes from the triangle
inequality. Since a symmetric space is not essentially Hausdorff, therefore in order to prove fixed point
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theorems some additional axioms are required. The following axioms, which are available in Wilson [47],
Aliouche [5] and Imdad and Soliman [22], are relevant to this presentation.

From now on symmetric space will be denoted by (X, d) where as a non-empty arbitrary set will be
denoted by Y.

(W3) [47] Given {xn}, x and y in X, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, y) = 0 imply x = y.

(W4) [47] Given {xn}, {yn} and x in X, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(xn, yn) = 0 imply lim
n→∞

d(yn, x) = 0.

(HE) [5] Given {xn}, {yn} and x in X, lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, x) = 0 imply lim
n→∞

d(xn, yn) = 0.

(1C) [12] A symmetric d is said to be 1-continuous if lim
n→∞

d(xn, x) = 0 implies lim
n→∞

d(xn, y) = d(x, y) where
{xn} is a sequence in X and x, y ∈ X.

(CC) [12] A symmetric d is said to be continuous if lim
n→∞

d(xn, x) = 0 and lim
n→∞

d(yn, y) = 0 imply lim
n→∞

d(xn, yn) =

d(x, y) where {xn}, {yn} are sequences in X and x, y ∈ X.

Here, it is observed that (CC) =⇒ (1C), (W4) =⇒ (W3), and (1C) =⇒ (W3) but the converse implications
are not true. In general, all other possible implications amongst (W3), (1C), and (HE) are not true. For
detailed description, we refer an interesting note of Cho et al. [11] which contained some illustrative
examples. However, (CC) implies all the remaining four conditions namely: (W3), (W4), (HE) and (1C).
Employing these axioms, several authors proved common fixed point theorems in framework of symmetric
spaces (see [2, 10, 13, 14, 17, 18, 20, 26, 45]).

Let (A,S) be a pair of self mappings defined on a non-empty set X equipped with a symmetric d. Then
for the pair (A,S), we recall some relevant concepts as follows:

Definition 1.2. [24] A pair (A,S) of self mappings is said to be compatible if lim
n→∞

d(ASxn,SAxn) = 0 whenever {xn}

is a sequence in X such that lim
n→∞

Axn = lim
n→∞

Sxn = z for some z ∈ X.

Definition 1.3. [32] A pair (A,S) of self mappings is said to be non-compatible if there exists at least one sequence
{xn} in X such that lim

n→∞
Axn = lim

n→∞
Sxn = z for some z ∈ X but lim

n→∞
d(ASxn,SAxn) is either non-zero or non-existent.

Definition 1.4. [25] A pair (A,S) of self mappings is said to be weakly compatible (or partially commuting or
coincidentally commuting) if the pair commutes on the set of coincidence points, that is, Ax = Sx for some x ∈ X
implies ASx = SAx.

Definition 1.5. [2, 39] A pair (A,S) of self mappings is said to satisfy the property (E.A) if there exists a sequence
{xn} in X such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

for some z ∈ X.

Clearly a pair of non-compatible mappings satisfies the property (E.A).

Now we define the following definitions in non-self arena.

Definition 1.6. [27] Let Y be an arbitrary set and X be a non-empty set equipped with symmetric d. Then the pairs
(A,S) and (B,T) of mappings from Y into X are said to share the common property (E.A), if there exist two sequences
{xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

for some z ∈ X.
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Definition 1.7. [42] Let Y be an arbitrary set and X be a non-empty set equipped with symmetric d. Then the pair
(A,S) of mappings from Y into X is said to have the common limit range property with respect to the mapping S
(denoted by (CLRS)) if there exists a sequence {xn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = z,

where z ∈ S(Y).

Definition 1.8. [21] Let Y be an arbitrary set and X be a non-empty set equipped with symmetric d. Then the
pairs (A,S) and (B,T) of mappings from Y into X are said to have the common limit range property (with respect to
mappings S and T), often denoted by (CLRST) if there exist two sequences {xn} and {yn} in Y such that

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = z,

where z ∈ S(Y) ∩ T(Y).

Remark 1.9. 1. If A = B and S = T then Definition 1.8 implies (CLRS) property due to Sintunavarat and
Kumam [42].

2. It is clear that (CLRST) property implies the common property (E.A) but converse is not true. For this regard,
see the following example.

Example 1.10. Consider X = Y = [2, 11] equipped with the symmetric d(x, y) = (x − y)2 for all x, y ∈ X which also
satisfies (1C) and (HE). Define self mappings A,B,S and T on X as

A(x) =


3, if x = 2;
5, if 2 < x ≤ 7;
x+1

2 , if x > 7.
B(x) =


6, if x = 2;
x+6

2 , if 2 < x ≤ 7;
7, if x > 7.

S(x) =


3, if x = 2;
2, if 2 < x ≤ 7;
2x+6

5 , if x > 7.
T(x) =


7, if x = 2;
x + 2, if 2 < x ≤ 7;
8, if x > 7.

Then A(X) = {3} ∪
(
4, 6], B(X) =

(
4, 13

2

]
∪ {7}, S(X) = {2, 3} ∪

(
4, 28

5

]
and T(X) = (4, 9]. Now consider two

sequences {xn} = {7 + 1
n } and {yn} = {2 + 1

n } in X. Then clearly

lim
n→∞

Axn = lim
n→∞

Sxn = lim
n→∞

Byn = lim
n→∞

Tyn = 4 ∈ X,

It is noted here that 4 < S(X)∩ T(X). Hence the pairs (A,S) and (B,T) do not satisfy the (CLRST) property while
they satisfy the common property (E.A).

Definition 1.11. Two finite families of self mappings {Ai}
m
i=1 and {Sk}

n
k=1 of a non-empty set X are said to be pairwise

commuting if

1. AiA j = A jAi, i, j ∈ {1, 2, . . . ,m},
2. SkSl = SlSk, k, l ∈ {1, 2, . . . ,n},
3. AiSk = SkAi, i ∈ {1, 2, . . . ,m} and k ∈ {1, 2, . . . ,n}.

2. Implicit Function

In this section, we define an implicit function and furnish a variety of examples which include most of the
well known contractions of the existing literature besides admitting several new ones. Here it is fascinating
to note that some of the presented examples are of nonexpansive type and Lipschitzian type. Here, it may
be pointed out that most of the following examples do not meet the requirements of implicit function due to
Popa [35]. In order to describe our implicit function, let Ψ be the family of lower semi-continuous functions
ψ : R6

+ → R satisfying the following conditions:
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(ψ1) ψ(u, 0,u, 0, 0,u) > 0, for all u > 0;

(ψ2) ψ(u, 0, 0,u,u, 0) > 0, for all u > 0;

(ψ3) ψ(u,u, 0, 0,u,u) > 0, for all u > 0.

Example 2.1. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u1 − k max
{
u2,u3,u4,

u5 + u6

2

}
, (1)

where k ∈ [0, 1).

Example 2.2. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u2
1 − a max

u2
2,u

2
3,u

2
4,

u2
5 + u2

6

2

 − L min {u2u3,u3u4,u4u5,u5u6} , (2)

where L ≥ 0 and a ∈ [0, 1).

Example 2.3. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u1 − αu2 − βu3 − γu4 − η (u5 + u6) , (3)

where α, β, γ, η ≥ 0 and α + β + γ + 2η < 1.

Example 2.4. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u2
1 − αu2

2 − βu2u3 − γu2 (u4 + u5) − δu2u6, (4)

where α, β, γ, δ ≥ 0 and α + γ + δ < 1.

Example 2.5. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u3
1 − k max

{
u3

2,u
3
3,u

3
4,u

3
5,u

3
6

}
, (5)

where k ∈ [0, 1).

Example 2.6. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

1. ψ(u1,u2, . . . ,u6) = u1 − au2, where a ∈ [0, 1);
2. ψ(u1,u2, . . . ,u6) = u1 − b(u3 + u4), where b ∈ [0, 1);
3. ψ(u1,u2, . . . ,u6) = u1 − c(u5 + u6), where c ∈

[
0, 1

2

)
.

Example 2.7. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =

 u1 − a max
{
u3,u4,u2

[u5 + u6

u3 + u4

]}
, if u3 + u4 , 0;

u1, if u3 + u4 = 0,
(6)

where a ∈ [0, 1).

Example 2.8. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =

 u1 − αu2 − βu2
2

√
u4u6 + 1
u4 + u6

, if u4 + u6 , 0;

u1, if u4 + u6 = 0,
(7)

where α, β ≥ 0 and α + β < 1.
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Example 2.9. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =

 u1 − αu2 −
βu2u4 + γu5u6

u4 + u6
, if u4 + u6 , 0;

u1, if u4 + u6 = 0,
(8)

where α, β, γ ≥ 0 and α + γ < 1.

Example 2.10. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u3
1 − u2u3u4 − u3u4u5 − u4u5u6. (9)

Example 2.11. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u1 − α(u2 + u3) − β(u3 + u4) − γ(u4 + u5) − δ(u5 + u6), (10)

where α, β, γ, δ ≥ 0 with α + β + 2γ + 2δ < 1.

Example 2.12. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u2
1 − α(u2 + u3)u4 − β(u3 + u4)u5 − γ(u4 + u5)u6, (11)

where α ≥ 0 and β, γ ∈ [0, 1).

Example 2.13. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =

 u1 − αu2 − β
u3u6 + u4u5

u3 + u5
, if u3 + u5 , 0;

u1, if u3 + u5 = 0,
(12)

where α, β ∈ [0, 1).

Example 2.14. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u3
1 − k max{u2u3u4,u3u4u5,u4u5u6}, (13)

where k ∈ [0,∞).

Example 2.15. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) = u2
1 − φ (max {u2u3,u3u4,u4u5,u5u6}) , (14)

where φ : R+ → R is an upper semi-continuous function with φ(0) = 0 and φ(t) < t for all t > 0.

Example 2.16. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =


u2

1 −
u1u2u3 + u2u3u4 + u3u4u5 + u4u5u6

u2 + u3 + u4 + u5 + u6
,

if u2 + u3 + u4 + u5 + u6 , 0;
u1, if u2 + u3 + u4 + u5 + u6 = 0.

(15)

Example 2.17. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =

 u1 −
u3u5 + u4u6

1 + u2
− α

u2u3 + u4u5

u5 + u6
, if u5 + u6 , 0;

u1, if u5 + u6 = 0,
(16)

where α ∈ [0, 1).
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Example 2.18. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =


u1 − α

u2
2 + u2

3

u2 + u3
− β

u2
4 + u2

5

u4 + u5
− γu6,

if u2 + u3 , 0, u4 + u5 , 0;
u1, if u2 + u3 = 0, u4 + u5 = 0,

(17)

where α, β, γ ≥ 0 with α + β + γ < 1.

Example 2.19. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

ψ(u1,u2, . . . ,u6) =


u1 − ku2 −

u3u4 + u5u6

u3 + u4
−

u3u5 + u4u6

u5 + u6
,

if u3 + u4 , 0, u5 + u6 , 0;
u1, if u3 + u4 = 0, u5 + u6 = 0,

(18)

where 0 ≤ k < ∞.

Example 2.20. Define ψ(u1,u2,u3,u4,u5,u6) : R6
+ → R as

F(u1,u2, . . . ,u6) = u2
1 − φ

(
u2

2,u3(u4 + u5),u4(u5 + u6),u5(u4 + u6),u6(u3 + u5)
)
, (19)

where φ : R5
+ → R is an upper semi-continuous function such that

max{φ(0, 0, 0, 0, t), φ(0, 0, t, t, 0), φ(t, 0, 0, t, t)} < 0,

for each t > 0.

Since verification of requirements ψ1, ψ2 and ψ3 for Examples 2.1-2.20 are easy. Hence details are not
included. For more extensive collection of contraction conditions one can be referred to Ali and Imdad [3]
and references cited therein.

3. Results

A simple and natural way to unify and prove in a simple manner several metrical fixed point theorems
is to consider an implicit contraction type condition instead of the usual explicit contractive conditions.
Popa [33, 34] initiated this direction of research which produced so far a consistent literature (that cannot
be completely cited here) on fixed point, common fixed point, and coincidence point theorems, for both
single valued and multi-valued mappings, in various ambient spaces.

We begin with the following observation:

Lemma 3.1. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,B,S,T : Y→ X. Suppose that the following hypotheses hold:

1. the pair (A,S) satisfies the (CLRS) property
(
or the pair (B,T) satisfies the (CLRT) property

)
,

2. A(Y) ⊂ T(Y)
(
or B(Y) ⊂ S(Y)

)
,

3. T(Y)
(
or S(Y)

)
is a closed subset of X,

4. for all x, y ∈ Y and ψ ∈ Ψ

ψ
(
d(Ax,By), d(Sx,Ty), d(Ax,Sx), d(By,Ty), d(Sx,By), d(Ty,Ax)

)
≤ 0. (20)
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Then the pairs (A,S) and (B,T) share the (CLRST) property.

Proof. Since the pair (A,S) enjoys the (CLRS) property with respect to mapping S, there exists a sequence
{xn} in Y such that

lim
n→∞

d(Axn, z) = lim
n→∞

d(Sxn, z) = 0,

where z ∈ S(Y). Therefore, by (HE) we have lim
n→∞

d(Axn,Sxn) = 0. Since A(Y) ⊂ T(Y), for each sequence
{xn} there exists a sequence {yn} in Y such that Axn = Tyn. Therefore, due to closedness of T(Y), z ∈ S(Y)∩T(Y).
Thus in all, we have

lim
n→∞

d(Axn, z) = lim
n→∞

d(Sxn, z) = lim
n→∞

d(Tyn, z) = 0,

where z ∈ S(Y) ∩ T(Y). Hence by (1C), we have lim
n→∞

d(Sxn,Byn) = d(z, lim
n→∞

Byn) and lim
n→∞

d(Axn,Byn) =

d(z, lim
n→∞

Byn). Now, we show that lim
n→∞

d(Byn, z) = 0. If not, then using inequality (20) with x = xn, y = yn,
we have

ψ
(
d(Axn,Byn), d(Sxn,Tyn), d(Axn,Sxn), d(Byn,Tyn), d(Sxn,Byn), d(Tyn,Axn)

)
≤ 0,

which on making n→∞, reduces to

ψ
(
d(z, lim

n→∞
Byn), d(z, z), d(z, z), d( lim

n→∞
Byn, z), d(z, lim

n→∞
Byn), d(z, z)

)
≤ 0,

and so

ψ
(
d(z, lim

n→∞
Byn), 0, 0, d( lim

n→∞
Byn, z), d(z, lim

n→∞
Byn), 0

)
≤ 0,

a contradiction to (ψ2). Hence Byn → z as n → ∞. Hence the pairs (A,S) and (B,T) enjoy the (CLRST)
property. This concludes the proof.

In general, the converse of Lemma 3.1 is not true (see Example 3.3).

Theorem 3.2. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,B,S,T : Y → X. Suppose that the inequality (20) of Lemma 3.1 holds. If the pairs
(A,S) and (B,T) enjoy the (CLRST) property, then (A,S) and (B,T) have a coincidence point each. Moreover if Y = X,
then A,B,S and T have a unique common fixed point provided both the pairs (A,S) and (B,T) are weakly compatible.

Proof. If the pairs (A,S) and (B,T) enjoy the (CLRST) property, then there exist two sequences {xn} and {yn}

in Y such that

lim
n→∞

d(Axn, z) = lim
n→∞

d(Sxn, z) = lim
n→∞

d(Byn, z) = lim
n→∞

d(Tyn, z) = 0,

where z ∈ S(Y)∩T(Y). Since z ∈ S(Y), there exists a point w ∈ Y such that Sw = z. We assert that Aw = z.
If not, then using inequality (20) with x = w and y = yn, one obtains

ψ
(
d(Aw,Byn), d(Sw,Tyn), d(Aw,Sw), d(Byn,Tyn), d(Sw,Byn), d(Tyn,Aw)

)
≤ 0,

Taking limit as n→∞ and using property (1C) and (HE), we get

ψ (d(Aw, z), 0, d(Aw, z), 0, 0, d(z,Aw)) ≤ 0,

a contradiction to (ψ1). Then we have z = Aw = Sw which shows that w is a coincidence point of the
pair (A,S).
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Also z ∈ T(Y), there exists a point v ∈ Y such that Tv = z. We assert that Bv = z. If not, then using
inequality (20) with x = w, y = v, we get

ψ (d(Aw,Bv), d(Sw,Tv), d(Aw,Sw), d(Bv,Tv), d(Sw,Bv), d(Tv,Aw)) ≤ 0,

or, equivalently,

ψ (d(z,Bv), d(z, z), d(z, z), d(Bv, z), d(z,Bv), d(z, z)) ≤ 0,

which implies

ψ (d(z,Bv), 0, 0, d(Bv, z), d(z,Bv), 0) ≤ 0,

a contradiction to (ψ2). Hence z = Bv = Tv which shows that v is a coincidence point of the pair (B,T).
Thus we have Aw = Sw = Bv = Tv = z.

Now consider Y = X. Since the pair (A,S) is weakly compatible and Aw = Sw hence Az = ASw =
SAw = Sz. Now we prove that z is a common fixed point of the pair (A,S). Suppose that Az , z, then using
inequality (20) with x = z, y = v, we have

ψ (d(Az,Bv), d(Sz,Tv), d(Az,Sz), d(Bv,Tv), d(Sz,Bv), d(Tv,Az)) ≤ 0,

and so

ψ (d(Az, z), d(Az, z), d(Az,Az), d(z, z), d(Az, z), d(z,Az)) ≤ 0,

which implies

ψ (d(Az, z), d(Az, z), 0, 0, d(Az, z), d(z,Az)) ≤ 0,

a contradiction to (ψ3). Hence we have Az = z = Sz which shows that z is a common fixed point of the
pair (A,S).

Also the pair (B,T) is weakly compatible and Bv = Tv, then Bz = BTw = TBw = Tz. If not, then using
inequality (20) with x = w, y = z, we have

ψ (d(Aw,Bz), d(Sw,Tz), d(Aw,Sw), d(Bz,Tz), d(Sw,Bz), d(Tz,Aw)) ≤ 0,

which reduces it to

ψ (d(z,Bz), d(z,Bz), d(Au,Au), d(Bz,Bz), d(z,Bz), d(Bz, z)) ≤ 0,

that is,

ψ (d(z,Bz), d(z,Bz), 0, 0, d(z,Bz), d(Bz, z)) ≤ 0,

a contradiction. Therefore, Bz = z = Tz which shows that z is a common fixed point of the pair (B,T).
Hence z is a common fixed point of both the pairs (A,S) and (B,T).

For uniqueness, let us consider that z′ (, z) be another common fixed point of the mappings A,B,S and
T. Then using inequality (20) with x = z′ , y = z, we have

ψ
(
d(Az

′

,Bz), d(Sz
′

,Tz), d(Az
′

,Sz
′

), d(Bz,Tz), d(Sz
′

,Bz), d(Tz,Az
′

)
)
≤ 0,

and so

ψ
(
d(z

′

, z), d(z
′

, z), d(z
′

, z
′

), d(z, z), d(z
′

, z), d(z, z
′

)
)
≤ 0,

which reduces it to

ψ
(
d(z

′

, z), d(z
′

, z), 0, 0, d(z
′

, z), d(z, z
′

)
)
≤ 0,

a contradiction. Hence z′ = z. Thus all the involved mappings A,B,S and T have a unique common
fixed point.



M. Imdad et al. / Filomat 28:6 (2014), 1113–1132 1122

Now, we furnish an illustrative example which demonstrates the validity of the hypotheses and degree
of generality of our main result over comparable ones from the existing literature.

Example 3.3. Let X = Y = [2, 11) equipped with the symmetric d(x, y) = (x− y)2 for all x, y ∈ X which also satisfies
(1C) and (HE). Define the mappings A,B,S and T by

Ax =

{
2, if x ∈ {2} ∪ (7, 11);
8, if 2 < x ≤ 7. Bx =

{
2, if x ∈ {2} ∪ (7, 11);
10, if 2 < x ≤ 7.

Sx =


2, if x = 2;
6, if 2 < x ≤ 7;
x − 5, if 7 < x < 11.

Tx =


2, if x = 2;
9, if 2 < x ≤ 7;
x+1

4 , if 7 < x < 11.

Then we have A(X) = {2, 8} * [2, 3) ∪ {9} = T(X) and B(X) = {2, 10} * [2, 7) = S(X). Consider an implicit
function ψ(u1,u2,u3,u4,u5,u6) : R6

+ → R as

ψ(u1,u2, . . . ,u6) =


u1 − ku2 −

u3u4 + u5u6

u3 + u4
−

u3u5 + u4u6

u5 + u6
,

if u3 + u4 , 0, u5 + u6 , 0;
u1, if u3 + u4 = 0, u5 + u6 = 0,

where 0 ≤ k < ∞ and ψ ∈ Ψ. If we choose two sequences as {xn} =
{
7 + 1

n

}
n∈N

, {yn} = {2}
(
or {xn} = {2},

{yn} =
{
7 + 1

n

}
n∈N

)
, then both the pairs (A,S) and (B,T) enjoy the (CLRST) property:

lim
n→∞

d(Axn, 2) = lim
n→∞

d(Sxn, 2) = lim
n→∞

d(Byn, 2) = lim
n→∞

d(Tyn, 2) = 0,

where 2 ∈ S(X)∩T(X). Hence the subspaces S(X) and T(X) are not closed subspaces of X. By a routine calculation,
one can verify the inequality (20). Thus all the conditions of Theorem 3.2 are satisfied and 2 is a unique common fixed
point of the pairs (A,S) and (B,T) which also remains a point of coincidence as well. Here, one may notice that all the
involved mappings are discontinuous at their unique common fixed point 2.

Corollary 3.4. Let A,B,S and T be self mappings of a symmetric (semi-metric) space (X, d) satisfying (1C) and (HE).
Suppose that the conditions (1)-(4) of Lemma 3.1 hold then A,B,S and T have a unique common fixed point provided
both the pairs (A,S) and (B,T) are weakly compatible.

Proof. Owing to Lemma 3.1, it follows that the pairs (A,S) and (B,T) share the (CLRST) property. Hence,
the conditions of Theorem 3.2 are satisfied, and A,B,S and T have a unique common fixed point provided
both the pairs (A,S) and (B,T) are weakly compatible.

It is pointed out that Example 3.3 cannot be obtained using Corollary 3.8, since conditions (2) and (3) of
Lemma 3.1 are not fulfilled. We present another example, showing the situation where the conclusion can
be reached using Corollary 3.8.

Example 3.5. In the setting of Example 3.3, replace the mappings A,B,S and T by the following: besides retaining
the rest:

Ax =

{
2, if x ∈ {2} ∪ (7, 11);
15
2 , if 2 < x ≤ 7. Bx =

{
2, if x ∈ {2} ∪ (7, 11);
8, if 2 < x ≤ 7.

Sx =


2, if x = 2;
x + 1, if 2 < x ≤ 7;
x − 5, if 7 < x < 11.

Tx =


2, if x = 2;
x + 1

2 , if 2 < x ≤ 7;
x+1

4 , if 7 < x < 11,
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where A(X) =
{
2, 15

2

}
⊂

[
2, 15

2

]
= T(X) and B(X) = {2, 8} ⊂ [2, 8] = S(X). Here S(X) and T(X) are closed

subsets of X. Consider an implicit function as defined in Example 3.3. Consider two sequences as {xn} =
{
7 + 1

n

}
n∈N

,

{yn} = {2}
(
or {xn} = {2}, {yn} =

{
7 + 1

n

}
n∈N

)
, hence the pairs (A,S) and (B,T) satisfy the (CLRST) property:

lim
n→∞

d(Axn, 2) = lim
n→∞

d(Sxn, 2) = lim
n→∞

d(Byn, 2) = lim
n→∞

d(Tyn, 2) = 0,

where 2 ∈ S(X)∩T(X). Thus all the conditions of Corollary 3.4 are satisfied and 2 is a unique common fixed point
of the pairs (A,S) and (B,T) which also remains a point of coincidence as well.

Notice that Theorem 3.2 is not applicable to this example as both S(X), T(X) are closed subsets of X which
demonstrates the situational utility of Corollary 3.4 over Theorem 3.2.

Theorem 3.6. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,B,S,T : Y→ X. Suppose that the inequality (20) and the following hypotheses hold:

1. the pairs (A,S) and (B,T) satisfy the common property (E.A),
2. S(Y) and T(Y) are closed subsets of X.

Then (A,S) and (B,T) have a coincidence point each. Moreover if Y = X, then A,B,S and T have a unique
common fixed point provided both the pairs (A,S) and (B,T) are weakly compatible.

Proof. Since the pairs (A,S) and (B,T) enjoy the common property (E.A), there exist two sequences {xn} and
{yn} in Y such that

lim
n→∞

d(Axn, z) = lim
n→∞

d(Sxn, z) = lim
n→∞

d(Byn, z) = lim
n→∞

d(Tyn, z) = 0,

for some z ∈ X. Since S(Y) is closed, lim
n→∞

Sxn = z = Su for some u ∈ Y. Also T(Y) is closed, then
lim
n→∞

Tyn = z = Tv for some v ∈ Y. The rest of the proof runs on the lines of the proof of Theorem 3.2.

Example 3.7. In the setting of Example 3.3, replace the mappings S and T by the following: besides retaining the
rest:

Sx =


2, if x = 2;
x + 1, if 2 < x ≤ 7;
x − 5, if 7 < x < 11.

Tx =


2, if x = 2;
3, if 2 < x ≤ 7;
x+1

4 , if 7 < x < 11.

Consider two sequences {xn} and {yn} as in Example 3.3, one can obtain

lim
n→∞

d(Axn, 2) = lim
n→∞

d(Sxn, 2) = lim
n→∞

d(Byn, 2) = lim
n→∞

d(Tyn, 2) = 0,

where 2 ∈ X. Hence both the pairs (A,S) and (B,T) satisfy the common property (E.A). A(X) = {2, 8} * [2, 3] =
T(X) and B(X) = {2, 10} * [2, 8] = S(X), that is, the subspaces S(X) and T(X) are closed subspaces of X. By a routine
calculation, one can easily verify the inequality (20). Thus all the conditions of Theorem 3.6 are satisfied and 2 is a
unique common fixed point of the pairs (A,S) and (B,T) which also remains a point of coincidence as well. Also, one
may notice that all the involved mappings are discontinuous at their unique common fixed point 2.

Corollary 3.8. The conclusions of Theorem 3.6 remain true if condition (2) of Theorem 3.6 is replaced by the following:

(2)
′ A(Y) ⊂ T(Y) and B(Y) ⊂ S(Y),

where A(Y) and B(Y) denote the closure of ranges of the mappings A and B.

Corollary 3.9. The conclusions of Theorem 3.6 and Corollary 3.8 remain true if the conditions (2) and (2)
′ are

replaced by the following:

(2)
′′ A(Y) and B(Y) are closed subsets of X provided A(Y) ⊂ T(Y) and B(Y) ⊂ S(Y).



M. Imdad et al. / Filomat 28:6 (2014), 1113–1132 1124

Example 3.10. In the setting of Example 3.3, replace the mappings S and T by the following: besides retaining the
rest:

Sx =


2, if x = 2;
10, if 2 < x ≤ 7;
x − 5, if 7 < x < 11.

Tx =


2, if x = 2;
8, if 2 < x ≤ 7;
x+1

4 , if 7 < x < 11.

Clearly, assuming the sequences as defined in Example 3.3, both the pairs (A,S) and (B,T) enjoy the common
property (E.A). Also, A(X) = {2, 8} ⊂ [2, 3) ∪ {8} = T(X) and B(X) = {2, 10} ⊂ [2, 7) ∪ {10} = S(X). By a routine
calculation, one can verify the inequality (20). Thus all the conditions of Corollary 3.8 and Corollary 3.9 are satisfied
and 2 is a unique common fixed point of the pairs (A,S) and (B,T) which also remains a point of coincidence as well.
Here, it is worth noting that Theorem 3.6 cannot be used in the context of this example as S(X) and T(X) are not
closed subsets of X.

Corollary 3.11. The conclusions of Lemma 3.1, Theorem 3.2, Theorem 3.6, Corollary 3.4, Corollary 3.8 and Corollary
3.9 remain true if inequality (20) is replaced by one of the following contraction conditions: for all x, y ∈ X

d(Ax,By) ≤ k max
{

d(Sx,Ty), d(Ax,Sx), d(By,Ty),
d(Sx,By) + d(Ty,Ax)

2

}
, (21)

where k ∈ [0, 1).

d2(Ax,By) ≤ a max
{

d2(Sx,Ty), d2(Ax,Sx), d2(By,Ty),
d2(Sx,By) + d2(Ty,Ax)

2

}
−L min

{
d(Sx,Ty)d(Ax,Sx), d(Ax,Sx)d(By,Ty),
d(By,Ty)d(Sx,By), d(Sx,By)d(Ty,Ax)

}
, (22)

where L ≥ 0 and a ∈ [0, 1).

d(Ax,By) ≤ αd(Sx,Ty) − βd(Ax,Sx) − γd(By,Ty) − η(d(Sx,By) + d(Ty,Ax)), (23)

where α, β, γ, η ≥ 0 and α + β + γ + 2η < 1.

d2(Ax,By) ≤ αd2(Sx,Ty) − βd(Sx,Ty)d(Ax,Sx) − δd(Sx,Ty)d(Ty,Ax)
−γd(Sx,Ty)(d(By,Ty) + d(Sx,By)), (24)

where α, β, γ, δ ≥ 0 with α + γ + δ < 1.

d3(Ax,By) ≤ k max{d3(Sx,Ty), d3(Ax,Sx), d3(By,Ty), d3(Sx,By), d3(Ty,Ax)}, (25)

where k ∈ [0, 1).

1. d(Ax,By) ≤ ad(Sx,Ty), where a ∈ [0, 1),
2. d(Ax,By) ≤ b(d(Ax,Sx) + d(By,Ty)), where b ∈ [0, 1),
3. d(Ax,By) ≤ c(d(Sx,By) + d(Ty,Ax)), where c ∈

[
0, 1

2

)
.

d(Ax,By) ≤


a max

{ d(Ax,Sx), d(By,Ty),

d(Sx,Ty)
(

d(Sx,Ty) + d(Ty,Ax)
d(Ax,Sx) + d(By,Ty)

) }
,

if d(Ax,Sx) + d(By,Ty) , 0;
0, if d(Ax,Sx) + d(By,Ty) = 0,

(26)
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where a ∈ [0, 1).

d(Ax,By) ≤


αd(Sx,Ty) + βd2(Sx,Ty)

√
d(By,Ty)d(Ty,Ax) + 1
d(By,Ty) + d(Ty,Ax)

,

if d(By,Ty) + d(Ty,Ax) , 0;
0, if d(By,Ty) + d(Ty,Ax) = 0,

(27)

where α, β ≥ 0 and α + β < 1.

d(Ax,By) ≤


αd(Sx,Ty) +

βd(Sx,Ty)d(By,Ty) + γd(Sx,By)d(Ty,Ax)
d(By,Ty) + d(Ty,Ax)

,

if d(By,Ty) + d(Ty,Ax) , 0;
0, if d(By,Ty) + d(Ty,Ax) = 0,

(28)

where α, β, γ ≥ 0 and α + γ < 1.

d3(Ax,By) ≤ d(Sx,Ty)d(Ax,Sx)d(By,Ty) + d(Ax,Sx)d(By,Ty)d(Sx,By)
+d(By,Ty)d(Sx,By)d(Ty,Ax). (29)

d(Ax,By) ≤ α(d(Sx,Ty) + d(Ax,Sx)) + β(d(Ax,Sx) + d(By,Ty))
+γ(d(By,Ty) + d(Sx,By)) + δ(d(Sx,By) + d(Ty,Ax)) (30)

where α, β, γ, δ ≥ 0 with α + β + δ < 1, β + 2γ + δ < 1 and α + γ + 2δ < 1.

d2(Ax,By) ≤ α(d(Sx,Ty) + d(Ax,Sx))d(By,Ty) + β(d(Ax,Sx) + d(By,Ty))
d(Sx,By) + γ(d(By,Ty) + d(Sx,By))d(Ty,Ax), (31)

where α ≥ 0 and β, γ ∈ [0, 1).

d(Ax,By) ≤


αd(Sx,Ty) + β

d(Ax,Sx)d(Ty,Ax) + d(By,Ty)d(Sx,By)
d(Ax,Sx) + d(Sx,By)

,

if d(Ax,Sx) + d(Sx,By) , 0;
0, if d(Ax,Sx) + d(Sx,By) = 0,

(32)

d3(Ax,By) ≤ k max


d(Sx,Ty)d(Ax,Sx)d(By,Ty),
d(Ax,Sx)d(By,Ty)d(Sx,By),
d(By,Ty)d(Sx,By)d(Ty,Ax)

 , (33)

where 0 ≤ k < ∞.

d2(Ax,By) ≤ φ

(
max

{
d(Sx,Ty)d(Ax,Sx), d(Ax,Sx)d(By,Ty),
d(By,Ty)d(Sx,By), d(Sx,By)d(Ty,Ax)

})
(34)
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where φ : R+ → R is an upper semi-continuous function with φ(0) = 0 and φ(t) < t for all t > 0.
Let we denote P = d(Sx,Ty)+d(Ax,Sx)+d(By,Ty)+d(Sx,By)+d(Ty,Ax) in the following contraction condition:

d2(Ax,By) ≤



d( f x,By)d(Sx,Ty)d(Ax,Sx) + d(Sx,Ty)d(Ax,Sx)d(By,Ty)
d(Sx,Ty) + d(Ax,Sx) + d(By,Ty) + d(Sx,By) + d(Ty,Ax)

+
d(Ax,Sx)d(By,Ty)d(Sx,By) + d(By,Ty)d(Sx,By), d(Ty,Ax)
d(Sx,Ty) + d(Ax,Sx) + d(By,Ty) + d(Sx,By) + d(Ty,Ax)

,

if P , 0;
0, if P = 0.

(35)

Let we denote Q = d(Sx,By) + d(Ty,Ax) in the following contraction condition:

d(Ax,By) ≤



d(Ax,Sx)d(Sx,By) + d(By,Ty)d(Ty,Ax)
1 + d(Sx,Ty)

+

+α
d(Sx,Ty)d(Ax,Sx) + d(By,Ty)d(Sx,By)

d(Sx,By) + d(Ty,Ax)
,

if Q , 0;
0, if Q = 0.

(36)

Let we denote P1 = d(Sx,Ty) + d(Ax,Sx) and P2 = d(By,Ty) + d(Sx,By) in the following contraction condition:

d(Ax,By) ≤


α

d2(Sx,Ty) + d2(Ax,Sx)
d(Sx,Ty) + d(Ax,Sx)

+ β
d2(By,Ty)d2(Sx,By)
d(By,Ty) + d(Sx,By)

+ γd(Ty,Sx),

if P1 , 0, P2 , 0;
0, if P1 = 0, P2 = 0,

(37)

where α, β, γ ≥ 0 with α + β + γ < 1.
Let we denote Q1 = d(Ax,Sx)+d(By,Ty) and Q2 = d(Sx,By)+d(Ty,Ax) in the following contraction condition:

d(Ax,By) ≤



kd(Sx,Ty) +
d(Ax,Sx)d(By,Ty) + d(Sx,By)d(Ty,Ax)

d(Ax,Sx) + d(By,Ty)

+
d(Ax,Sx)d(Sx,By) + d(By,Ty)d(Ty,Ax)

d(Sx,By) + d(Ty,Ax)
,

if Q1 , 0, Q2 , 0;
0, if Q1 = 0,Q2 = 0,

(38)

where 0 ≤ k < ∞.

d2(Ax,By) ≤ φ


d2(Sx,Ty), d(Ax,Sx)(d(By,Ty) + d(Sx,By)),

d(By,Ty)(d(Sx,By) + d(Ty,Ax)),
d(Sx,By)(d(By,Ty) + d(Ty,Ax)),
d(Ty,Ax)(d(Ax,Sx) + d(Sx,By))

 (39)

where φ : R5
+ → R is an upper semi-continuous function such that

max{φ(0, 0, 0, 0, t), φ(0, 0, t, t, 0), φ(t, 0, 0, t, t)} < 0,

for each t > 0.
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Proof. The proof of each inequality (21)-(39) easily follows from Theorem 3.2 in view of Examples 2.1-
2.20.

Remark 3.12. Corollaries corresponding to contraction conditions (21) to (39) are new results as these never require
any condition on containment of ranges.

By choosing A,B,S and T suitably, we can deduce corollaries involving two as well as three self mappings.
For the sake of naturality, we only derive the following corollary involving a pair of self mappings:

Corollary 3.13. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,S : Y→ X. Suppose that the following hypotheses hold:

1. the pair (A,S) enjoys the (CLRS) property,
2. for all x, y ∈ Y and ψ ∈ Ψ

ψ
(
d(Ax,Ay), d(Sx,Sy), d(Ax,Sx), d(Ay,Sy), d(Sx,Ay), d(Sy,Ax)

)
≤ 0. (40)

Then (A,S) has a coincidence point. Moreover if Y = X, then A and S have a unique common fixed point provided
the pair (A,S) is weakly compatible.

As an application of Theorem 3.2, we have the following result for four finite families of self mappings.

Theorem 3.14. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set. Let {A1,A2, . . . ,Am}, {B1,B2, . . . ,Bp}, {S1,S2, . . . ,Sn} and {T1,T2, . . . ,Tq} be four finite
families with A = A1A2 . . .Am, B = B1B2 . . .Bp, S = S1S2, . . .Sn and T = T1T2 . . .Tq satisfying condition (20) and
the pairs (A,S) and (B,T) satisfy the (CLRST) property. Then the pairs (A,S) and (B,T) have a coincidence point
each.

Moreover, if Y = X, then {Ai}
m
i=1, {B j}

n
j=1, {Sk}

n
k=1 and {Tl}

q
l=1 have a unique common fixed point provided the

families ({Ai}, {Sk}) and ({B j}, {Tl}) commute pairwise wherein i ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . ,n}, j ∈ {1, 2, . . . , p} and
l ∈ {1, 2, . . . , q}.

Proof. The proof of this theorem can be completed on the lines of Theorem of Imdad et al. [18, Theorem
2.2].

Remark 3.15.

1. A result similar to Theorem 3.14 can be outlined in respect of Theorem 3.2.
2. Theorem 3.14 improves and extends the results of Gopal et al. [14] and Imdad and Ali [17].

Now, we indicate that Theorem 3.14 can be utilized to derive common fixed point theorems for any
finite number of mappings. As a sample for five mappings, we can derive the following by setting one
family of two members while the remaining three of single members:

Corollary 3.16. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,B,R,S,T : Y→ X. Suppose that the following hypotheses hold:

1. the pairs (A,SR) and (B,T) share the (CLR(SR)(T)) property,
2. for all x, y ∈ Y and ψ ∈ Ψ

ψ
(
d(Ax,By), d(SRx,Ty), d(Ax,SRx), d(By,Ty), d(SRx,By), d(Ty,Ax)

)
≤ 0. (41)

Then (A,SR) and (B,T) have a coincidence point each. Moreover, if Y = X, then A,B,R,S and T have a unique
common fixed point provided both the pairs (A,SR) and (B,T) commute pairwise, that is, AS = SA, AR = RA,
SR = RS, BT = TB.

Similarly, we can derive a common fixed point theorem for six mappings by setting two families of two
members while the rest two of single members:



M. Imdad et al. / Filomat 28:6 (2014), 1113–1132 1128

Corollary 3.17. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,B,H,R,S,T : Y→ X. Suppose that the following hypotheses hold:

1. the pairs (A,SR) and (B,TH) share the (CLR(SR)(TH)) property,
2. for all x, y ∈ Y and ψ ∈ Ψ

ψ
(
d(Ax,By), d(SRx,THy), d(Ax,SRx), d(By,THy), d(SRx,By), d(THy,Ax)

)
≤ 0. (42)

Then (A,SR) and (B,TH) have a coincidence point each. Moreover, if Y = X, then A,B,H,R,S and T have
a unique common fixed point provided both the pairs (A,SR) and (B,TH) commute pairwise, that is, AS = SA,
AR = RA, SR = RS, BT = TB, BH = HB and TH = HT.

By setting A1 = A2 = . . . = Am = A, B1 = B2 = . . . = Bp = B, S1 = S2 = . . . = Sn = S and T1 = T2 = . . . =
Tq = T in Theorem 3.14, we deduce the following:

Corollary 3.18. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be an
arbitrary non-empty set with A,B,S,T : Y→ X. Suppose that the following hypotheses hold:

1. the pairs (Am,Sn) and (Bp,Tq) share the (CLRSnTq ) property,
2. for all x, y ∈ Y and ψ ∈ Ψ

ψ

(
d(Amx,Bpy), d(Snx,Tqy), d(Amx,Snx),
d(Bpy,Tqy), d(Snx,Bpy), d(Tqy,Amx)

)
≤ 0, (43)

where m,n, p and q are fixed positive integers.

Moreover, if Y = X, then A,B,S and T have a unique common fixed point provided AS = SA and BT = TB.

Remark 3.19. Corollary 3.18 is a slight but partial generalization of Theorem 3.2 as the commutativity requirements
(that is, AS = SA and BT = TB) in this corollary are relatively stronger as compared to weak compatibility in Theorem
3.2.

Remark 3.20. Results similar to Corollary 3.18 can be derived from Theorem 3.2 and Corollary 3.11.

Now we state and prove an integral analogue of Theorem 3.2 as follows:

Theorem 3.21. Let (X, d) be a symmetric space wherein d satisfies the conditions (1C) and (HE) whereas Y be
an arbitrary non-empty set with A,B,S,T : Y → X. Assume that there exists a Lebesgue integrable function
ϕ : R → [0,∞) and a function G : R6

+ → R such that, for all x, y ∈ Y,∫ G(d(Ax,By),d(Sx,Ty),d(Ax,Sx),d(By,Ty),d(Sx,By),d(Ty,Ax))

0
ϕ(s)ds ≤ 0, (44)

and for all u > 0,∫ G(u,0,u,0,0,u)

0
ϕ(s)ds ≤ 0, (45)

∫ G(u,0,0,u,u,0)

0
ϕ(s)ds ≤ 0, (46)

∫ G(u,u,0,0,u,u)

0
ϕ(s)ds ≤ 0. (47)

Suppose that the pairs (A,S) and (B,T) satisfy the (CLRST) property. Then (A,S) and (B,T) have a coincidence
point each. Moreover if Y = X, then A,B,S and T have a unique common fixed point provided both the pairs (A,S)
and (B,T) are weakly compatible.
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Proof. The function ψ : R6
+ → R defined by

ψ(u1,u2,u3,u4,u5,u6) =

∫ G(u1,u2,u3,u4,u5,u6)

0
ϕ(s)ds (48)

belongs to Ψ for conditions (45)-(47) and so condition (44) is a special case of condition (20). Thus, the
result follows immediately from Theorem 3.2.

4. Fixed Point Results in Probabilistic Symmetric Spaces

A real valued function f on the set of real numbers is called a distribution function if it is nondecreasing,
left continuous with inf

t∈R
f (t) = 0 and sup

t∈R
f (t) = 1.

We denote by = the set of all distribution functions defined on the set of real numbers and by =+ = { f ∈
=, f (0) = 0}.

We shall use the Heaviside distribution function defined by

H(t) =

{
0, if t ≤ 0;
1, if t > 0.

In the sequel, we need the following definitions and results which are given in [16].

Definition 4.1. A probabilistic symmetric on a non-empty set X is a mapping F from X × X into =+ satisfying the
following conditions:

1. Fx,y(t) = H(t) iff x = y,
2. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R.

The pair (X,F) is a probabilistic symmetric space. Let F be a probabilistic symmetric on a set X and ε > 0,
we write B(x, ε) = {y ∈ X : Fx,y(ε) > 1 − ε}. A T1 topology τ(F) on X is obtained as follows: U ∈ τ(F) if for
each x ∈ U, there exists ε > 0 such that B(x, ε) ⊂ U. Now B(x, ε) may not be a τ(F) neighborhood of x. If it
is so, then τ(F) is said to be topological.

Definition 4.2. A probabilistic symmetric space (X,F) is complete if for every Cauchy sequence {xn} convergent in X,
that is, every sequence such that for all t > 0 n ≥ m, lim

n,m→∞
Fxn,xm (t) = 1, there exists some x ∈ X with lim

n→∞
Fxn,x(t) = 1

for all t > 0.

Hicks and Rhoades [16] proved that each probabilistic symmetric space (X,F) admits a compatible
symmetric d such that the probabilistic symmetric F is related to the symmetric d. To be precise:

Theorem 4.3. [16] Let (X,F) be a probabilistic symmetric space. Define d : X × X→ [0, 1) as

d(x, y) =

{
0, if y ∈ Ux(t, t) for all t > 0;
sup{t : y < Ux(t, t), 0 < t < 1}, otherwise.

Then

1. d(x, y) < t iff Fx,y(t) > 1 − t,
2. d is a compatible symmetric for τ(F),
3. (X,F) is complete iff (X, d) is S-complete,
4. if τ(F) is topological, d is a semi-metric.

The conditions (HE) and (1C) for compatible symmetric d are equivalent to the following conditions:

(PHE) [14] For all t > 0, Fxn,x(t)→ 1 and Fyn,x(t)→ 1 imply Fxn,yn (t)→ 1.
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(P1C) [14] For all t > 0, Fxn,x(t)→ 1 implies Fxn,y(t)→ Fx,y(t) for all y ∈ X.

Remark 4.4. Let (X,F) be a probabilistic symmetric space and d the compatible symmetric for τ(F). If (X,F) satisfies
the condition

1. (HE), then (X, d) satisfies the condition (HE);
2. (1C), then (X, d) also satisfies the condition (1C).

Following Imdad et al. [23], let Θ be the set of all continuous functions ζ(u1,u2, . . . ,u6) : [0, 1]6
→ R

satisfying the following conditions:

(ζ1) ζ (u, 1,u, 1, 1,u) < 0, for all u ∈ (0, 1),

(ζ2) ζ (u, 1, 1,u,u, 1) < 0, for all u ∈ (0, 1),

(ζ3) ζ (u,u, 1, 1,u,u) < 0, for all u ∈ (0, 1).

Example 4.5. [23] Define ζ (u1,u2, . . . ,u6) : [0, 1]6
→ R as

ζ (u1,u2, . . . ,u6) = u1 − σ (min{u2,u3,u4,u5,u6}) , (49)

where σ : [0, 1]→ [0, 1] is increasing and continuous function such that σ(t) > t for all t ∈ (0, 1). Notice that

(ζ1) ζ (u, 1,u, 1, 1,u) = u − σ(u) < 0, for all u ∈ (0, 1),

(ζ2) ζ (u, 1, 1,u,u, 1) = u − σ(u) < 0, for all u ∈ (0, 1),

(ζ3) ζ (u,u, 1, 1,u,u) = u − σ(u) < 0, for all u ∈ (0, 1).

Theorem 4.6. Let (X,F) be a probabilistic semi-metric space wherein F satisfies the conditions (1C) and (HE) whereas
Y be an arbitrary non-empty set with A,B,S,T : Y→ X. Suppose that the following hypotheses hold:

1. the pairs (A,S) and (B,T) satisfy the (CLRST) property,
2. for all x, y ∈ Y, t > 0 and ζ ∈ Θ

ζ
(
FAx,By(t),FSx,Ty(t),FAx,Sx(t),FBy,Ty(t),FSx,By(t),FTy,Ax(t)

)
≥ 0. (50)

Then (A,S) and (B,T) have a coincidence point each. Moreover if Y = X, then A,B,S and T have a unique
common fixed point provided both the pairs (A,S) and (B,T) are weakly compatible.

Proof. In view of Theorem 6 contained in Gopal et al. [14], one can show that Theorem 4.6 reduces to
Theorem 3.2. Hence the result follows.
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