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Abstract. In this paper, an extension of Darbo fixed point theorem is introduced. By applying our
extension, we obtain a coupled fixed point theorem and a solution for an integral equation. The proofs of
our results are based on the technique of measure of noncompactness.

1. Introduction

Recently many papers have been appeared about the notion of measure of noncompactness and its
applications where it was initiated by Kuratowski [12]. Darbo [11] applied the technique of measure
of noncompactness to the fixed point theory and extended Schauder fixed point theory to noncompact
operators. Some authors have used of Darbo fixed point theory to construct applications of measure of
noncompactness, see for example [1, 2, 8]. In this paper, first some essential concepts and results are recalled.
In the second section, an extension of Darbo fixed point theorem and some related results are presented,
while in the third section, we apply our extension to obtain a coupled fixed point. Finally, by applying our
extension, a solution of an integral equation is obtained.
Now some notions, definitions and results which will be used in sequel are recalled. Let (E, ‖.‖) be a Banach
space with the zero element θ. Denote by B(θ, r) the closed ball in E centered at θwith radius r. Assume Br

denote B(θ, r). If X be a subset of E, the closure and the closed convex hull of X will be denoted by X and
Conv(X), respectively. Moreover, we use the symbols ME and NE to indicate the family of all nonempty and
bounded subsets of E and the family of all nonempty and relatively compact sets, respectively.

Definition 1.1. [6] A mapping µ : ME −→ [0,∞) is called a measure of noncompactness if it satisfies the following
conditions:

(1) The family Kerµ = {X ∈ME : µ(X) = 0} is nonempty and Kerµ ⊆ NE.

(2) X ⊆ Y =⇒ µ(X) ≤ µ(Y).

(3) µ(X) = µ(X).

(4) µ(Conv(X)) = µ(X).
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(5) µ(λX + (1 − λ)Y) ≤ λµ(X) + (1 − λ)µ(Y) for λ ∈ [0, 1].

(6) If {Xn} is sequence of closed sets from ME such that Xn+1 ⊆ Xn for n = 1, 2, . . . and lim
n→∞

µ(Xn) = 0, then⋂
∞

n=1 Xn is nonempty.

Now we state Darbo and Schauder fixed point theorems of [3, 11] which are used in the main results.

Theorem 1.2. (Schauder) Let U be a nonempty, bounded, closed and convex subset of a Banach space E. Then every
continuous and compact map F : U −→ U has at least one fixed point in U.

Theorem 1.3. (Darbo) Let Q be a nonempty, closed, bounded and convex subset of the Banach space E and F : Q −→ Q
be a continuous function. Assume that there exists a constant k ∈ [0, 1) such that µ(FX) ≤ kµ(X) for any nonempty
subset X of Q. Then F has a fixed point in Q.

Aghajani et al. [1] generalized Darbo fixed point theorem as follows.

Theorem 1.4. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Assume T : Ω −→ Ω
be a continuous operator such that

ψ(µ(TX)) ≤ ψ(µ(X)) − ϕ(µ(X))

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncompactness and ϕ,ψ : [0,∞) −→ [0,∞)
are given functions such that ϕ is lower semicontinuous and ψ is continuous on [0,∞). Moreover, ϕ(0) = 0 and
ϕ(t) > 0 for t > 0. Then T has at least one fixed point in Ω.

Theorem 1.5. Let Ω be a nonempty, bounded, closed and convex subset of a Banach space E. Suppose T : Ω −→ Ω
be a continuous operator satisfying

µ(TX) ≤ ϕ(µ(X))

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncompactness and ϕ : [0,∞) −→ [0,∞) is
nondecreasing function such that lim

n→∞
ϕn(t) = 0 for each t ≥ 0. Then T has at least one fixed point in the set Ω.

The following definition, theorem and example are used to prove the main result.

Definition 1.6. ([7]) An element (x, y) ∈ X × X is called coupled fixed point of a mapping F : X × X −→ X if
F(x, y) = x and F(y, x) = y.

Theorem 1.7. ([6]) Assume µ1, µ2, . . . , µn be the measure of noncompactness in E1,E2, . . . ,En respectively. Suppose
F : [0,∞)n

−→ [0,∞) is convex and
F(x1, x2, . . . , xn) = 0 if and only if xi = 0 for i = 1, 2, . . . ,n. Then

µ(X) = F(µ1(X1), µ2(X2), . . . , µn(Xn))

defines a measure of noncompactness in E1 × E2 × · · · × En where Xi denote the natural projection of X into Ei for
i = 1, 2, . . . ,n.

Example 1.8. ([2]) Let µ be a measure of noncompactness and F(x, y) = x + y for (x, y) ∈ [0,∞)2. Then F has all the
existent properties in Theorem 1.7. Hence µ(X) = µ(X1) + µ(X2) is a measure of noncompactness in the space E × E
where Xi,i = 1, 2 denote the natural projections of X into E.
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2. Some Results Concerning the Darbo Fixed Point Theorem

Now motivated and inspired by Theorems 1.4, 1.5 and the existing contractive condition in [9], we state
the main result of this paper which extends and generalizes Darbo fixed point theorem.

Theorem 2.1. Let U be a nonempty, bounded, closed and convex subset of the Banach space E. Assume F : U −→ U
be a continuous operator satisfying

ψ(µ(F(X))) ≤ φ(ψ(µ(X)))ψ(µ(X)) (1)

for all nonempty subset X of U, where µ is an arbitrary measure of noncompactness defined in E, ψ : [0,∞) −→ [0,∞)
is nondecreasing such that ψ(t) = 0 if and only if t = 0 and φ : [0,∞) −→ [0, 1) with lim sup

t→r+

φ(t) < 1 for all r ≥ 0.

Then F has a fixed point in U.

Proof. Let us define a sequence {Un} such that U0 = U and Un = Conv(FUn−1) for n = 1, 2, . . . . If there exists
an integer number n0 such that µ(Un0 ) = 0, then Un0 is compact. So by Theorem 1.2 F has a fixed point in U.
Assume that µ(Un) > 0 for n ≥ 0. Due to (1), we deduce that

ψ(µ(Un+1)) = ψ(µ(Conv(FUn))) = ψ(µ(FUn)) ≤ φ(ψ(µ(Un)))ψ(µ(Un)). (2)

By (2), the sequence {ψ(µ(Un))} is non-increasing. So, there exists r ≥ 0 such that ψ(µ(Un)) −→ r. We claim
that r = 0. Let βn = ψ(µ(Un)) and β = supn∈N φ(βn). Thus, from [[14], Theorem 2.1] we have β ∈ [0, 1). Due
to (2), we have

βn+1 ≤ φ(βn)βn ≤ ββn. (3)

This implies that

βn+1 ≤ φ(βn)βn ≤ ββn ≤ β
2βn−1 ≤ · · · ≤ β

nβ1. (4)

Letting n −→ ∞ in (4), we infer that βn = ψ(µ(Un)) −→ 0. Now we indicate that µ(Un) −→ 0. Since {ψ(µ(Un)}
is a decreasing sequence and ψ is nondecreasing, we obtain that {µ(Un)} is a decreasing sequence of positive
numbers. This yields that there exists t ≥ 0 such that lim

n→∞
µ(Un) = t+. Since ψ is nondecreasing, we arrive

that

ψ(t) ≤ ψ(µ(Un)). (5)

Letting n −→ ∞ in (5), we have ψ(t) ≤ 0. So, ψ(t) = 0 which implies that t = 0 and we have µ(Un) −→ 0.
Now keeping in mind that Un+1 ⊆ Un and lim

n→∞
µ(Un) = 0, from condition (6) of Definition 1.1 we conclude

that the set U∞ = ∩∞n=1Un is nonempty, closed, convex and U∞ ⊆ U. Moreover, taking in to account our
assumptions, we infer that U∞ is invariant under the operator F and U∞ ∈ Kerµ. Consequently, from
Theorem 1.2 we deduce that F has a fixed point.

The Darbo fixed point theorem is followed if ψ = I and φ = k in the Theorem 2.1.

Corollary 2.2. Let U be a nonempty, bounded, closed and convex subset of the Banach space E. Assume F : U −→ U
be a continuous operator such that

µ(F(X)) ≤ kµ(X) (6)

for all nonempty subset X of U, where µ is an arbitrary measure of noncompactness defined in E and k is a constant
in [0, 1). Then F has a fixed point in U.

Corollary 2.3. Let U be a nonempty, bounded, closed and convex subset of the Banach space E. Assume F : U −→ U
be a continuous operator satisfying

µ(F(X)) ≤ α(µ(X))µ(X) (7)

for all nonempty subset X of U, where µ is an arbitrary measure of noncompactness defined in E and α : [0,∞) −→
[0, 1) is a non-decreasing function. Then F has a fixed point in U.
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Proof. Since α is non-decreasing, we have lim sup
t→r+

α(t) < 1 for all r ≥ 0. Thus, by taking α = φ and ψ = I in

(7) we have
ψ(µ(F(X))) ≤ φ(ψ((µ(X))))ψ(µ(X)).

Now, Theorem 2.1 completes the proof.

Corollary 2.4. Let U be a nonempty, bounded, closed and convex subset of the Banach space E and F : U −→ U be a
continuous operator such that

µ(F(X)) ≤ φ(2µ(X))µ(X) (8)

for all nonempty subset X of U, where µ is an arbitrary measure of noncompactness defined in E and φ : [0,∞) −→
[0, 1) such that lim sup

t→r+

φ(t) < 1 for all r ≥ 0. Then F has a fixed point in U.

Proof. The result is followed by applying Theorem 2.1 with ψ(t) = 2t.

3. Application to Coupled Fixed Point

Very recently, as an applications of measure of noncompactness, Aghajani and Sabzali [2] derived the
following coupled fixed point theorem.

Theorem 3.1. Assume Ω be a nonempty, bounded, closed and convex subset of the Banach space E and G : Ω×Ω −→
Ω be a continuous function such that

µ(G(X1 × X2)) ≤ k max{µ(X1), µ(X2)}

for any X1,X2 ⊆ Ω, where µ is an arbitrary measure of noncompactness and k is a constant with 0 ≤ k < 1. Then G
has at least a coupled fixed point.

Proof. [2]

Let Ψ denote all functions ψ : [0,∞) −→ [0,∞) such that

(1) ψ is nondecreasing and ψ(t) = 0 if and only if t = 0,

(2) ψ(t + s) ≤ ψ(t) + ψ(s) for all t, s ≥ 0.

Now motivated and inspired by Theorem 3.1, we apply Theorem 2.1 and the concept of measure of
noncompactness to prove the existence of a coupled fixed point for the function F : U ×U −→ U.

Theorem 3.2. Let U be a nonempty, bounded, closed and convex subset of the Banach space E. Assume F : U×U −→
U be a continuous function such that

ψ(µ(F(X1 × X1))) ≤
1
2
φ(ψ(µ(X1) + µ(X2)))ψ(µ(X1) + µ(X2)) (9)

for any X1,X2 ⊆ U, where µ is an arbitrary measure of noncompactness defined in E, ψ ∈ Ψ and φ : [0,∞) −→ [0, 1)
such that lim sup

t→r+

φ(t) < 1 for all r ≥ 0. Then F has a coupled fixed point.

Proof. By taking µ̃(X) = µ(X1) + µ(X2), we know that µ̃ is a measure of noncompactness in the space E × E,
where Xi, i = 1, 2 indicate the natural projections of X. Let us define the map F̃ : U × U −→ U × U by
F̃(x, y) = (F(x, y),F(y, x)). Since F is continuous, F̃ is also continuous. Let X ⊆ U ×U be a nonempty subset.
Hence, due to (9) and the condition (2) of Definition 1.1 we conclude that

ψ(µ̃(F̃(X))) ≤ ψ(µ̃(F(X1 × X2) × F(X2 × X1)))
= ψ(µ(F(X1 × X2)) + ψ(µ(F(X2 × X1)))
≤ φ(ψ(µ(X1) + µ(X2)))ψ(µ(X1) + µ(X2))
= φ(ψ(µ̃(X)))ψ(µ̃(X)).



A. Samadi, M. B. Ghaemi / Filomat 28:4 (2014), 879–886 883

So

ψ(µ̃(F̃(X))) ≤ φ(ψ(µ̃(X)))ψ(µ̃(X)). (10)

Consequentially, by Theorem 2.1 F̃ has a fixed point, which means that F has a coupled fixed point.

Corollary 3.3. Let U be a nonempty, bounded, closed and convex subset of the Banach space E. Assume F : U×U −→
U be a continuous function such that

µ(F(X1 × X1)) ≤
1
2
φ(2µ(X1) + 2µ(X2))(µ(X1) + µ(X2)) (11)

for any X1,X2 ⊆ U, where µ is an arbitrary measure of noncompactness defined in E and φ : [0,∞) −→ [0, 1) is a
function satisfying lim sup

t→r+

φ(t) < 1 for all r ≥ 0. Then F has a coupled fixed point.

Proof. Applying Theorem 3.2 with ψ(t) = 2t, we have the result.

4. Existence of Solution for an Integral Equation

In this section as an application of Theorem 2.1, we investigate the existence of solutions for the integral
equation of the form

x(t) = f (t, x(t)) +

∫ t

0
1(t, s, x(s))ds, (12)

where t ≥ 0. Let x ∈ BC(R+) where BC(R+) is the space of all real functions defined on R+ equipped with
the norm

‖x‖ = sup{| x |: t ≥ 0}.

Banas [5] constructed a measure of noncompactness in the space BC(R+). To present that measure, let us fix
a nonempty bounded subset X of BC(R+) and a positive number K > 0. For x ∈ X and ε ≥ 0 Put

ωK(x, ε) = sup{| x(t) − y(t) |: t, s ∈ [0,K], | t − s |≤ ε},

ωK(X, ε) = sup{ωK(x, ε) : x ∈ X},

ωK
0 (X) = lim

ε→0
ωK(X, ε),

ω0(X) = lim
K→∞

ωK
0 (X).

Moreover, for a fixed number t ∈ R+, let us put

X(t) = {x(t) : x ∈ X}

and

diamX(t) = sup{| x(t) − y(t) |: x, y ∈ X}.

Now let the function µ is defined on MBC(R+) as the follows:

µ(X) = ω0(X) + lim sup
t→∞

diamX(t).

Banas [5] showed that the function µ(X) defines a measure of noncompactness in the space BC(R+).
Let Φ∗ denote all nondecreasing and upper semicontinuous functionsφ : [0,∞) −→ [0, 1). Moreover, denote
by Ψ∗ all functions ψ : R+

−→ R+ such that
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(1) ψ is nondecreasing and upper semicontinuous,

(1) ψ(t) < t for all t > 0 and ψ(t) = 0 if and only if t = 0.

Assume that the functions applied in (12) satisfy the following conditions:

(1) f : R+
× R −→ R is continuous and the function t −→ f (t, 0) is a number of the space BC(R+).

(2) There exist functions φ ∈ Φ∗ and ψ ∈ Ψ∗ such that for any t ∈ R+ and for all x, y ∈ R we have

| f (t, x) − f (t, y)| ≤
1
2
φ(ψ(|x − y|))ψ(|x − y|).

(3) The function 1 : R+
× R+

× R −→ R is a continuous function and there exist continuous functions
a, b : R+

−→ R+ such that

lim
t→∞

a(t)
∫ t

0
b(s)ds = 0 and |1(t, s, x)| ≤ a(t)b(s)

for all t, s ∈ R+ with s ≤ t and for each x ∈ R.

(4) There exists a positive solution r0 of the inequality

1
2
φ(ψ(r))ψ(r) + q ≤ r,

where q = sup{| f (t, 0) | +a(t)
∫ t

0 b(s)ds}.

Now we can state the following theorem.

Theorem 4.1. Let assumptions (1) − (4) are satisfied. Then the equation (12) has at least one solution x = x(t)
belonging to the space BC(R+).

Proof. Let the operator T has been defined on the space BC(R+) as the follows:

(Tx)(t) = f (t, x(t)) +

∫ t

0
1(t, s, x(s))ds. (13)

Keeping in mind our assumptions, we infer that Tx is continuous on R+. Let x be an arbitrary element of
BC(R+). Taking into account our assumptions, we deduce that

|(Tx)(t)| ≤ | f (t, x(t)) − f (t, 0)| + | f (t, 0)| +
∫ t

0 | 1(t, s, x(s) | ds
≤

1
2φ(ψ(| x(t) |))ψ(| x(t) |) + | f (t, 0)| + a(t)

∫ t

0 b(s)ds.
(14)

Since ψ and φ are nondecreasing, in view of (14) we conclude that

‖ Tx ‖≤
1
2
φ(ψ(‖ x ‖))ψ(‖ x ‖)+ | f (t, 0) | +q, (15)

where q = sup{| f (t, 0)| + a(t)
∫ t

0 b(s)ds}. Thus T transforms continuously BC(R+) into itself. From (15) and
assumption (4) we conclude that T maps Br0 into itself where r0 is the existing constant in the assumption
(4). Now we indicate that T is continuous on Br0 . Let ε > 0 be an arbitrary fixed number and x, y ∈ Br0 such
that ‖ x − y ‖≤ ε. Taking into account our assumptions, we have

|(Tx)(t) − (Ty)(t)| ≤ 1
2φ(ψ(| x(t) − y(t) |))ψ(| x(t) − y(t) |) +

∫ t

0 | 1(t, s, x(s) − 1(t, s, y(s) | ds
≤

1
2φ(ψ(ε))ψ(ε) +

∫ t

0 | 1(t, s, x(s) | ds
+
∫ t

0 | 1(t, s, y(s) | ds ≤ 1
2φ(ψ(ε))ψ(ε) + 2c(t),

(16)
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where c(t) = a(t)
∫ t

0 b(s)ds. Moreover, from(3) we conclude that there exists K > 0 such that for all t ≥ K we

have 2a(t)
∫ t

0 b(s)ds ≤ ε. So, from (16) we obtain that

| (Tx)(t) − (Ty)(t) |≤ ε +
1
2
φ(ψ(ε))ψ(ε). (17)

Now let the quantity ωK(1, ε) is defined as follows:

ωK(1, ε) = sup{| 1(t, s, x) − 1(t, s, y) |: t, s ∈ [0,K], x, y ∈ [−r0, r0], | x − y |≤ ε}.

The function 1(t, s, x) is uniformly continuous on the set [0,K]× [0,K]× [−r0, r0]. So ωK(1, ε) −→ 0 as ε −→ 0.
On the other hand from (16) for an arbitrary fixed t ∈ [0,K] we obtain

| (Tx)(t) − (Ty)(t) | ≤ φ(ψ(ε))ψ(ε) +
∫ K

0 | ω
K(1, ε) | ds

= φ(ψ(ε))ψ(ε) + KωK(1, ε).
(18)

Due to (17) and (18) we infer that T is continuous on Br0 . Now let X be a nonempty subset of Br0 , ε > 0
and K > 0 be arbitrary fixed numbers. Assume t, s ∈ [0,K] such that s ≤ t and | t − s |≤ ε. In view of our
assumptions, for x ∈ X we get

| (Tx)(t) − (Tx)(s) | ≤ | f (t, x(t)) − f (s, x(s))|+ |
∫ t

0 1(t, τ, x(τ))dτ −
∫ s

0 1(s, τ, x(τ))dτ |
≤ | f (t, x(t)) − f (t, x(s))| + | f (t, x(s)) − f (s, x(s))|

+ |
∫ t

0 1(t, τ, x(τ))dτ −
∫ t

0 1(s, τ, x(τ))dτ | + |
∫ t

0 1(s, τ, x(τ))dτ −
∫ s

0 1(s, τ, x(τ))dτ |
≤ ωK

1 ( f , ε) + 1
2φ(ψ(| x(t) − x(s) |))ψ(| x(t) − x(s) |)

+
∫ t

0 | 1(t, τ, x(τ)) − 1(s, τ, x(τ)) | dτ +
∫ t

s | 1(s, τ, x(τ)) | dτ
≤ ωK

1 ( f , ε) + 1
2φ(ψ(ωK(x, ε)))ψ(ωK(x, ε)) +

∫ t

0 ω
K
1 (1, ε)dτ + a(s)

∫ t

s b(τ)dτ
≤ ωK

1 ( f , ε) + 1
2φ(ψ(ωK(x, ε)))ψ(ωK(x, ε)) + KωK

1 (1, ε) + ε sup{a(s)b(t), t, s ∈ [0,K]},

(19)

where

ωK
1 ( f , ε) = sup{| f (t, x) − f (s, x) |: t, s ∈ [0,K], x ∈ [−r0, r0], | t − s |≤ ε}

and

ωK
1 (1, ε) = sup{| 1(t, τ, x) − 1(s, τ, x) |: t, s ∈ [0,K], x ∈ [−r0, r0], | t − s |≤ ε}.

Since f is uniformly continuous on [0,K]× [−r0, r0] and the function 1 on the set [0,K]× [0,K]× [−r0, r0], we
obtain that ωK

1 ( f , ε) −→ 0 and ωK
1 (1, ε) −→ 0 as ε −→ 0. Hence, from (19) we obtain that

ωK
0 (TX) ≤

1
2

lim
ε→0

φ(ψ(ωK(x, ε)))ψ(ωK(x, ε)). (20)

Since φ and ψ are upper semicontinuous, so from (20) we derive that

ωK
0 (TX) ≤

1
2
φ(ψ(ωK

0 (X)))ψ(ωK
0 (X)).

So

ω0(TX) ≤
1
2
φ(ψ(ω0(X)))ψ(ω0(X)). (21)

Let x, y be two arbitrary functions of X. Thus, for t ∈ R+ we have

| (Tx)(t) − (Ty)(t) | ≤ | f (t, x(t)) − f (t, y(t)) | +
∫ t

0 | 1(t, s, x(s)) | ds
+
∫ t

0 | 1(t, s, y(s)) | ds ≤ 1
2φ(ψ(| x(t) − y(t) |))ψ(| x(t) − y(t) |)

+2c(t),
(22)
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where c(t) = a(t)
∫ t

0 b(s)ds. Since ψ and φ are nondecreasing functions, so from (22) we have

diam(TX)(t) ≤
1
2
φ(ψ(diam(X)(t)))ψ(diam(X)(t)) + 2c(t). (23)

Now since φ and ψ are upper semicontinuous, from (23) we get

lim sup
t→∞

diam(X)(t) ≤
1
2
φ(ψ(lim sup

t→∞
diam(X)(t)))ψ(lim sup

t→∞
diam(X)(t)). (24)

Using (21) and (24) and our assumptions we have

ψ(ω0(X) + lim sup
t→∞

diam(X)(t)) ≤ ω0(X) + lim sup
t→∞

diam(X)(t)

≤ φ(ψ(ω0(X) + lim sup
t→∞

diam(X)(t)))ψ(ω0(X)

+lim sup
t→∞

diam(X)(t)).

So

ψ(µ(TX)) ≤ φ(ψ(µ(X)))ψ(µ(X)).

From the above inequality and Theorem 2.1, we infer that there exists a solution of the the equation (12).
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