

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Buzano Inequality in Inner Product C*-modules via the Operator Geometric Mean

Jun Ichi Fujii^a, Masatoshi Fujii^b, Yuki Seo^c

^aDepartment of Arts and Sciences (Information Science), Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
^bDepartment of Mathematics, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan
^cDepartment of Mathematics Education, Osaka Kyoiku University, Asahigaoka, Kashiwara, Osaka 582-8582, Japan

Abstract. In this paper, by means of the operator geometric mean, we show a Buzano type inequality in an inner product C^* -module, which is an extension of the Cauchy-Schwarz inequality in an inner product C^* -module.

1. Introduction

The theory of Hilbert C^* -modules over non-commutative C^* -algebras firstly appeared in Paschke [15] and Rieffel [16], and it has contributed greatly to the developments of operator algebras. Recently, many researchers have studied geometric properties of Hilbert C^* -modules from a viewpoint of the operator theory. For examples, Moslehian et al considered in [14] Busano's type inequality in the context of Hilbert C^* -modules. Also, Roukbi considered in [18] norm type inequalities of the Buzano inequality and its generalization in an inner product C^* -module. We showed in [7] the new Cauchy-Schwarz inequality in an inner product C^* -module by means of the operator geometric mean. From the viewpoint, we show a Hilbert C^* -module version of the Buzano inequality which is an extension of the Cauchy-Schwarz inequality in an inner product C^* -module.

We briefly review the Buzano inequality and its generalization in a Hilbert space. Let H be a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$. Buzano [3] showed an extension of the Cauchy-Schwarz inequality:

$$\frac{|\langle a, x \rangle \langle x, b \rangle|}{\langle x, x \rangle} \le \frac{1}{2} \left(\langle a, a \rangle^{\frac{1}{2}} \langle b, b \rangle^{\frac{1}{2}} + |\langle a, b \rangle| \right) \tag{1}$$

for all $a, b, x \in H$, also see [8]. In the case of a = b, the inequality (1) becomes the Cauchy-Schwarz inequality $|\langle a, x \rangle| \le \langle a, a \rangle^{\frac{1}{2}} \langle x, x \rangle^{\frac{1}{2}}$ for all $a, x \in H$. For a real inner product space, Richard [17] obtained the following stronger inequality:

$$\left| \frac{\langle a, x \rangle \langle x, b \rangle}{\langle x, x \rangle} - \frac{1}{2} \langle a, b \rangle \right| \le \frac{1}{2} \langle a, a \rangle^{\frac{1}{2}} \langle x, x \rangle^{\frac{1}{2}} \tag{2}$$

2010 Mathematics Subject Classification. Primary 46L08; Secondary 47A63

Keywords. inner product C*-module, Buzano inequality, operator geometric mean, Caucht-Schwarz inequality

Received: 06 November 2013; Accepted: 12 April 2014

Communicated by Mohammad Sal Moslehian

Email addresses: fujii@cc.osaka-kyoiku.ac.jp (Jun Ichi Fujii), mfujii@cc.osaka-kyoiku.ac.jp (Masatoshi Fujii), yukis@cc.osaka-kyoiku.ac.jp (Yuki Seo)

for all $a, b, x \in H$. Dragomir [4] showed the following refinement of the Richard inequality (2):

$$\left| \frac{\langle a, x \rangle \langle x, b \rangle}{\langle x, x \rangle} - \frac{\langle a, b \rangle}{\alpha} \right| \le \frac{\langle b, b \rangle^{\frac{1}{2}}}{|\alpha| \langle x, x \rangle^{\frac{1}{2}}} \left(|\alpha - 1|^2 |\langle a, x \rangle|^2 + \langle x, x \rangle \langle a, a \rangle - |\langle a, x \rangle|^2 \right)^{\frac{1}{2}} \tag{3}$$

for all $a, b, x \in H$ with $x \neq 0$ and $\alpha \in \mathbb{C} - \{0\}$. In fact, if we put $\alpha = 2$ in (3), then we have the Richard inequality (2). Moreover, in [5], he showed that if e_1, \ldots, e_n is a finite orthonormal system and $\alpha_1, \ldots, \alpha_n \in \mathbb{C}$ such that $|\alpha_i - 1| = 1$ for i = 1, ..., n, then

$$\left| \langle x, y \rangle - \sum_{i=1}^{n} \alpha_i \langle x, e_i \rangle \langle e_i, y \rangle \right| \le \langle x, x \rangle^{\frac{1}{2}} \langle y, y \rangle^{\frac{1}{2}}. \tag{4}$$

Roukbi [18] considered norm type inequalities of the Dragomir inequality (3) and the Buzano one (1) in an inner product C*-module. Also, Moslehian et al [14] considered Busano's type inequality in the context of Hilbert C*-modules.

In this paper, by means of the operator geometric mean, we show inner product C^* -module versions of the Dragomir inequality (3) and the Richard inequality (2). As a result, we have a Buzano type inequality, which are an extension of the Cauchy-Schwarz inequality in an inner product *C**-module.

2. Preliminaries

Let \mathscr{A} be a unital C^* -algebra with the unit element e. An element $a \in \mathscr{A}$ is called positive if it is selfadjoint and its spectrum is contained in $[0, \infty)$. For $a \in \mathcal{A}$, we denote the absolute value of a by $|a| = (a^*a)^{\frac{1}{2}}$. For positive elements $a, b \in \mathcal{A}$, the operator geometric mean of a and b is defined by

$$a \sharp b = a^{\frac{1}{2}} \left(a^{-\frac{1}{2}} b a^{-\frac{1}{2}} \right)^{\frac{1}{2}} a^{\frac{1}{2}}$$

for invertible a, also see [9, 11]. In the case of non-invertible, since $a \not\equiv b$ satisfies the upper semicontinuity, we define $a \sharp b = \lim_{\varepsilon \to +0} (a + \varepsilon e) \sharp (b + \varepsilon e)$ in the strong operator topology. Hence $a \sharp b$ belongs to the double commutant \mathcal{A}'' of \mathcal{A} in general. If \mathcal{A} is monotone complete in the sense that every bounded increasing net in the self-adjoint part has a supremum with respect to the usual partial order, then we have $a \sharp b \in \mathcal{A}$, see [10]. The operator geometric mean has the symmetric property: $a \sharp b = b \sharp a$. In the case that a and bcommute, we have $a \sharp b = \sqrt{ab}$.

A complex linear space $\mathscr X$ is said to be an inner product $\mathscr A$ -module (or a pre-Hilbert $\mathscr A$ -module) if $\mathscr X$ is a right \mathscr{A} -module together with a C^* -valued map $(x,y) \mapsto \langle x,y \rangle : \mathscr{X} \times \mathscr{X} \to \mathscr{A}$ such that

- (i) $\langle x, \alpha y + \beta z \rangle = \alpha \langle x, y \rangle + \beta \langle x, z \rangle$ $(x, y, x \in \mathcal{X}, \alpha, \beta \in \mathbb{C}),$
- (ii) $\langle x, ya \rangle = \langle x, y \rangle a$ $(x, y \in \mathcal{X}, a \in \mathcal{A}),$ (iii) $\langle y, x \rangle = \langle x.y \rangle^*$ $(x, y \in \mathcal{X}),$
- (iv) $\langle x, x \rangle \ge 0$ $(x \in \mathcal{X})$ and if $\langle x, x \rangle = 0$, then x = 0.

We always assume that the linear structures of \mathscr{A} and \mathscr{X} are compatible. Notice that (ii) and (iii) imply $\langle xa,y\rangle=a^*\langle x,y\rangle$ for all $x,y\in\mathscr{X}$, $a\in\mathscr{A}$. If \mathscr{X} satisfies all conditions for an inner-product \mathscr{A} -module except for the second part of (iv), then we call \mathscr{X} a semi-inner product \mathscr{A} -module.

In [7], from a viewpoint of operator theory, we presented the following Cauchy-Schwarz inequality in the framework of a semi-inner product C*-module over a unital C*-algebra: If $x, y \in \mathcal{X}$ such that the inner product $\langle x, y \rangle$ has a polar decomposition $\langle x, y \rangle = u |\langle x, y \rangle|$ with a partial isometry $u \in \mathcal{A}$, then

$$|\langle x, y \rangle| \le u^* \langle x, x \rangle u \sharp \langle y, y \rangle.$$
 (5)

Under the assumption that \mathcal{X} is an inner product \mathcal{A} -module and y is nonsingular, the equality in (5) holds if and only if xu = yb for some $b \in \mathcal{A}$, also see [2, 6].

An element x of an inner product C^* -module $\mathscr X$ is called nonsingular if the element $\langle x, x \rangle \in \mathscr A$ is invertible. The set $\{e_i\} \subset \mathcal{X}$ is called orthonormal if $\langle e_i, e_i \rangle = \delta_{ij}e$. For more details on Hilbert C^* -modules; see [13].

3. Main Result

First of all, we show an inner product *C**-module version of Dragomir's result (3).

Theorem 3.1. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algebra \mathscr{A} . If $x, y, z \in \mathscr{X}$ such that x is nonsigular and $a \in \mathscr{A}$ and the inner product $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - ya \rangle$ has a polar decomposition $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - ya \rangle = u |\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - ya \rangle|$ with a partial isometry $u \in \mathscr{A}$, then

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \langle z, y \rangle a|$$

$$\leq u^* \langle z, z \rangle u \sharp \left((a - e)^* \langle y, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle (a - e) + a^* \langle y, y \rangle a - a^* \langle y, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle a \right).$$
(6)

Under the assumption that $x \langle x, x \rangle^{-1} \langle x, y \rangle - ya$ is nonsingular, the equality in (6) holds if and only if $x \langle x, x \rangle^{-1} \langle x, y \rangle b = zu + yab$ for some $b \in \mathcal{A}$.

Proof. By the Cauchy-Schwarz inequality (5), it follows that

$$\begin{aligned} &|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \langle z, y \rangle a| = |\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - ya \rangle| \\ &\leq u^* \langle z, z \rangle u \, \sharp \, \langle x \langle x, x \rangle^{-1} \langle x, y \rangle - ya, x \langle x, x \rangle^{-1} \langle x, y \rangle - ya \rangle \\ &= u^* \langle z, z \rangle u \, \sharp \, (a - e)^* \langle y, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle \, (a - e) + a^* \langle y, y \rangle \, a - a^* \langle y, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle \, a. \end{aligned}$$

The equality condition in (6) follows from those of the Cauchy-Schwarz inequality (5). \Box

In particular, if we put $a = \frac{1}{2}e$ in Theorem 3.1, then we have an inner product C^* -module version of the Richard inequality (2):

Theorem 3.2. If $x, y, z \in \mathcal{X}$ such that x is nonsigular and the inner product $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y \rangle$ has a polar decomposition $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y \rangle = u |\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y \rangle|$ with a partial isometry $u \in \mathcal{A}$, then

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2} \langle z, y \rangle| \le \frac{1}{2} \left(u^* \langle z, z \rangle u \, \sharp \, \langle y, y \rangle \right). \tag{7}$$

Under the assumption that $x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y$ is nonsingular, the equality in (7) holds if and only if $x \langle x, x \rangle^{-1} \langle x, y \rangle b = zub + \frac{1}{2}yb$ for some $b \in \mathcal{A}$.

Remark 1. Theorem 3.2 is an extension of the Cauchy-Schwarz inequality (5). In fact, if we put $x = y \langle y, y \rangle^{-\frac{1}{2}}$ in Theorem 3.2, then we have the Cauchy-Schwarz inequality (5).

In the case that a = e and a = 0 in Theorem 3.1 respectively, we have the following corollary, which is related to the Buzano inequality (1).

Corollary 3.3. *Let* x, y, $x \in \mathcal{X}$ *be as in Theorem 3.1. Then*

- $1. \ |\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle \langle z, y \rangle| \leq u^* \langle z, z \rangle \, u \, \sharp \, \left(\langle y, y \rangle \langle y, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle \right).$
- 2. $|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle| \le u^* \langle z, z \rangle u \sharp \langle y, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle$.

The following theorem is an inner product *C**-module version of Dragomir's result (4):

Theorem 3.4. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algebra \mathscr{A} . If $e_1, \ldots, e_n \in \mathscr{X}$ is an orthonormal system, and $y, z \in \mathscr{X}$ and the inner product $\langle z, \sum_{i=1}^n e_i \langle e_i, y \rangle - y \rangle$ has a polar decomposition $\langle z, \sum_{i=1}^n e_i \langle e_i, y \rangle - y \rangle = u |\langle z, \sum_{i=1}^n e_i \langle e_i, y \rangle - y \rangle|$ with a partial isometry $u \in \mathscr{A}$, then

$$\left| \sum_{i=1}^{n} \langle z, e_i \rangle \langle e_i, y \rangle - \langle z, y \rangle \right| \le u^* \langle z, z \rangle u \, \sharp \left(\langle y, y \rangle - \sum_{i=1}^{n} \langle y, e_i \rangle \langle e_i, y \rangle \right). \tag{8}$$

Under the assumption that $\sum_{i=1}^{n} e_i \langle e_i, y \rangle - y$ is nonsingular, the equality holds in (8) if and only if there exists $b \in \mathcal{A}$ such that $\sum_{i=1}^{n} e_i \langle e_i, y \rangle b = zu + yb$.

Proof. By the Cauchy-Schwarz inequality (5), it follows that

$$\left| \sum_{i=1}^{n} \langle z, e_{i} \rangle \langle e_{i}, y \rangle - \langle z, y \rangle \right| = \left| \left\langle z, \sum_{i=1}^{n} e_{i} \langle e_{i}, y \rangle - y \right\rangle \right| \le u^{*} \langle z, z \rangle u \, \sharp \left(\sum_{i=1}^{n} e_{i} \langle e_{i}, y \rangle - y, \sum_{i=1}^{n} e_{i} \langle e_{i}, y \rangle - y \right)$$

$$= u^{*} \langle z, z \rangle u \, \sharp \left(\langle y, y \rangle - \sum_{i=1}^{n} \langle y, e_{i} \rangle \langle e_{i}, y \rangle \right) \quad \text{by the orthonormality of } \{e_{i}\}.$$

It is generally impossible to get the triangle inequality $|a+b| \le |a| + |b|$ in C^* -algebra. However, Akemann, Anderson and Pedersen [1] showed the following result:

Theorem A. For each a and b in a unital C*-algebra $\mathscr A$ and $\varepsilon > 0$ there are unitaries v and w in $\mathscr A$ such that

$$|a+b| \le v|a|v^* + w|b|w^* + \varepsilon e$$
.

Remark 1. If $\mathscr A$ is a von Neumann algebra on a separable Hilbert space, then they moreover showed that for any $x, y \in \mathscr A$ there are isometries $v, w \in \mathscr A$ such that $|x + y| \le v|x|v^* + w|y|w^*$.

By Theorem 3.2 and Theorem A, we have the following inner product C^* -module version of the Buzano inequality (1):

Theorem 3.5. Let \mathscr{X} be an inner product C^* -module over a unital C^* -algebra \mathscr{A} . For $\varepsilon > 0$ and each $x, y, z \in \mathscr{X}$ such that x is nonsigular and the inner product

 $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y \rangle$ has a polar decomposition $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y \rangle = u \left| \langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}y \rangle \right|$ with a partial isometry $u \in \mathcal{A}$, then there exist unitaries v_1, w_1, v_2 and w_2 in \mathcal{A} such that

$$\frac{1}{2}w_{2}|\langle z,y\rangle|w_{2}^{*} - \frac{1}{2}v_{2}\left(u^{*}\langle z,z\rangle u \sharp \langle y,y\rangle\right)v_{2}^{*} - \varepsilon e$$

$$\leq |\langle z,x\rangle\langle x,x\rangle^{-1}\langle x,y\rangle| \leq \frac{1}{2}v_{1}\left(u^{*}\langle z,z\rangle u \sharp \langle y,y\rangle\right)v_{1}^{*} + \frac{1}{2}w_{1}|\langle z,y\rangle|w_{1}^{*} + \varepsilon e. \tag{9}$$

Proof. By Theorem 3.2, we have

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2} \langle z, y \rangle| \le \frac{1}{2} \left(u^* \langle z, z \rangle u \; \sharp \; \langle y, y \rangle \right).$$

By Theorem A, there are unitaries v_1 and w_1 in $\mathscr A$ such that

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle| \leq v_1 |\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2} \langle z, y \rangle |v_1^* + \frac{1}{2} w_1 |\langle z, y \rangle |w_1^* + \varepsilon e.$$

Therefore, we have the second part of the desired inequality (9). For the first part, it follows from Theorem A that there are unitaries \tilde{v} and \tilde{w} in \mathscr{A} such that

$$\begin{split} \frac{1}{2} |\left\langle z,y\right\rangle| &\leq \tilde{v} |\frac{1}{2} \left\langle z,y\right\rangle - \left\langle z,x\right\rangle \left\langle x,x\right\rangle^{-1} \left\langle x,y\right\rangle |\tilde{v}^* + \tilde{w}| \left\langle z,x\right\rangle \left\langle x,x\right\rangle^{-1} \left\langle x,y\right\rangle |\tilde{w}^* + \varepsilon e \\ &\leq \frac{1}{2} \tilde{v} \left(u^* \left\langle z,z\right\rangle u \ \sharp \ \left\langle y,y\right\rangle \right) \tilde{v}^* + \tilde{w} |\left\langle z,x\right\rangle \left\langle x,x\right\rangle^{-1} \left\langle x,y\right\rangle |\tilde{w}^* + \varepsilon e. \end{split}$$

If we put $w_2 = \tilde{w}^*$ and $v_2 = \tilde{w}^*\tilde{v}$, then we have the desired inequality

$$\frac{1}{2}w_2|\langle z,y\rangle|w_2^* - \frac{1}{2}v_2\left(u^*\langle z,z\rangle u \sharp \langle y,y\rangle\right)v_2^* - \varepsilon e \leq |\langle z,x\rangle\langle x,x\rangle^{-1}\langle x,y\rangle|.$$

Remark 2. Theorem 3.5 is an extension of the Cauchy-Schwarz inequality (5) in an inner product C^* -module: As a matter of fact, if we put $x = y \langle y, y \rangle^{-\frac{1}{2}}$ in Theorem 3.2, then we can take u = w = e and $\varepsilon = 0$ and hence we have the Cauchy-Schwarz inequality (5).

4. Applications

In this section, as an application, we consider an inequality related to the Selberg inequality in an inner product C^* -module.

Let $\{y_1, \ldots, y_n\}$ be an orthonormal set in \mathcal{X} . Then the Bessel inequality says that

$$\sum_{i=1}^{n} |\langle y_i, x \rangle|^2 \le \langle x, x \rangle \tag{10}$$

holds for all $x \in \mathcal{X}$. In [12], we showed the Selberg inequality in an inner product C^* -module, which is a simultaneous extension of the Bessel and the Cauchy-Schwarz inequalities: If x, y_1, \ldots, y_n are nonzero vectors in \mathcal{X} such that y_1, \ldots, y_n are nonsingular, then

$$\sum_{i=1}^{n} \langle x, y_i \rangle \left(\sum_{j=1}^{n} |\langle y_j, y_i \rangle| \right)^{-1} \langle y_i, x \rangle \le \langle x, x \rangle. \tag{11}$$

By virtue of Theorem 3.5, we show a simultaneous extension of the Selberg inequality (11) and the Buzano inequality (9):

Theorem 4.1. let \mathscr{X} be an inner product C^* -module over a unital C^* -algebra \mathscr{A} and $x, y, z, w_1, \ldots, w_n \in \mathscr{X}$ be nonzero vectors such that x, w_1, \ldots, w_n are nonsingular. Put $c_i = \sum_{j=1}^n |\langle w_j, w_i \rangle|$ and $h = y - \sum_{i=1}^n w_i c_i^{-1} \langle w_i, y \rangle$. Suppose that the inner product $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}h \rangle$ has a polar decomposition $\langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}h \rangle = u \left| \langle z, x \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2}h \rangle \right|$ with a partial isometry $u \in \mathscr{A}$. If $\langle x, w_i \rangle = 0$ and $\langle z, w_i \rangle = 0$ for $i = 1, \ldots, n$, then for $\varepsilon > 0$ there are unitaries v and w such that

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle| \leq \frac{1}{2} v^* \left[u^* \langle z, z \rangle u \sharp \left(\langle y, y \rangle - \sum_{i=1}^n \langle y, w_i \rangle c_i^{-1} \langle w_i, y \rangle \right) \right] v + \frac{1}{2} w^* |\langle z, y \rangle | w + \varepsilon e.$$

Proof. Since $\langle z, y \rangle = \langle z, h \rangle$ and $\langle x, y \rangle = \langle x, h \rangle$, we have

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2} \langle z, y \rangle| = |\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, h \rangle - \frac{1}{2} \langle z, h \rangle|$$

$$\leq \frac{1}{2} (u^* \langle z, z \rangle u \sharp \langle h, h \rangle) \quad \text{by Theorem 3.2}$$

$$\leq \frac{1}{2} \left(u^* \langle z, z \rangle u \sharp \langle \langle y, y \rangle - \sum_{i=1}^n \langle y, w_i \rangle c_i^{-1} \langle w_i, y \rangle) \right)$$

and the last inequality follows from [12, Theorem 3.1]. By Theorem A, there are uniatries v and w in $\mathscr A$ such that

$$|\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle| \le v |\langle z, x \rangle \langle x, x \rangle^{-1} \langle x, y \rangle - \frac{1}{2} \langle z, y \rangle |v^* + \frac{1}{2} w |\langle z, y \rangle |w^* + \varepsilon e$$

$$\le \frac{1}{2} v \left[u^* \langle z, z \rangle u \, \sharp \left(\langle y, y \rangle - \sum_{i=1}^n \langle y, w_i \rangle c_i^{-1} \langle w_i, y \rangle \right) \right] v^* + \frac{1}{2} w |\langle z, y \rangle |w^* + \varepsilon e$$

as desired. \square

References

[1] C.H. Akemann, J. Anderson and G.K. Pedersen, *Triangle inequalities in operator algebras*, Linear Multilinear Algebra, 11 (1982), 167–178.

- [2] L. Arambašić, D. Bakić and M.S. Moslehian, A treatment of the Cauchy-Schwarz inequality in C*-modules, J. Math. Anal. Appl., 381 (2011), 546–556.
- [3] M.L. Buzano, Generalizzazione della diseguaglianza di Cauchy-Schwarz, Rend. Sem. Mat. Univ. e Politech. Torino **31** (1971–73). (1974), 405–409.
- [4] S.S. Dragomir, *Refinement of Buzano's and Kurepa's inequalities in inner product spaces*, Facta Universitatis (NIS). Ser. Math. Inform. **20** (2005), 63–73.
- [5] S.S. Dragomir, A potpourri of Schwarz related inequalities in inner product spaces (II), J. Inequal. Pure Appl. Math., 7 (2006), Article 14.
- [6] J.I. Fujii, Operator-valued inner product and operator inequalities, Banach J. Math. Anal., 2 (2008), 59-67.
- [7] J.I. Fujii, M. Fujii, M.S. Moslehian and Y. Seo, Cauchy-Schwarz inequality in semi-inner product C*-modules via polar decomposition, J. Math. Anal. Appl., 394 (2012), 835-840.
- [8] M. Fujii and F. Kubo, Buzano's inequality and bounds for roots of algebraic equations, Proc. Amer. Math. Soc., 117 (1993), 359-361.
- [9] M. Fujii, J. Mićić Hot, J. Pečarić and Y. Seo, Recent developments of Mond-Pečarić method in operator inequalities, Monographs in Inequalities 4, Element, Zagreb, 2012.
- [10] M. Hamana, Partial *-automorphisms, normalizers, and submodules in monotome complete C*-algebras, Canad. J. Math., 58 (2006), 1144–1202.
- [11] F. Kubo and T. Ando, Means of positive linear operators, Math. Ann., 246 (1980), 205-224.
- [12] K. Kubo, F. Kubo and Y. Seo, Selberg type inequalities in a Hilbert C*-module and its applications, to appear in Sci. Math. Jpn.
- [13] E.C. Lance, Hilbert C*-Modules, London Math. Soc. Lecture Note Series 210, Cambridge Univ. Press, 1995.
- [14] M.S. Moslehian, M. Khosravi and R. Drnovsek, A commutator approach to Buzuno's inequality, Filomat, 26 (2012), 827–832.
- [15] W.L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
- [16] M.A. Rieffel, Morita equivalence for C*-algebras and W*-algebras, J. Pure Applied Algebra, 5 (1974), 51-96.
- [17] U. Richard, Sur des inégalités du type Wirtinger et leurs application aux équationes diffrentielles ordinarires, Colloquium of Anaysis held in Rio de Janeiro, (1972), 233–244.
- [18] A. Roukbi, Dragomir's, Buzano's and Kerupa's inequalities in Hilbert C*-modules, Facta Universitis (NIS) Ser. Math. Inform., 27, No.1 (2012), 117–129.