

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

A Hosszú-Gluskin Algebra and a Central Operation of (sm, m)-Groups

Anita Katića, Mališa R. Žižovićb

^aFaculty of Electrical Engineering, University of Osijek, Kneza Trpimira 2b, 31000 Osijek, Croatia ^bUniversity Singidunum, Danijelova 32, 11000 Belgrade, Serbia

Abstract. In this paper we prove a generalization of the Hosszú-Gluskin theorem for (sm,m)-groups in terms of a $\{1,(s-1)m+1\}$ -neutral operation and we define the algebra $(Q^m,\{\cdot,\varphi,c_1^m\})$ associated to the (sm,m)-group (Q,A). The central operation of an (n,m)-group is defined in [7]. Research results of central operation properties using a bijection $\sigma_\alpha:Q^m\to Q^m$ are presented by means of a series of theorems. Then, a central operation of an (sm,m)-group is investigated using the previously mentioned algebra.

1. Introduction

Firstly, we explain a notation introduced by Janez Ušan which we use in this paper. Let $p \in N$ and let $q \in N_0$. Then a_p^q denotes a_p, \ldots, a_q the sequence of elements of a set Q if p < q. If p = q, then a_p^q denotes the element a_p into the set Q and if p > q, then a_p^q denotes the empty sequence. If a_p^q is a sequence over a set Q, $p \le q$ and the equalities $a_p = \ldots = a_q = a$ are satisfied, then a_p^q is denoted by a_p^{q-p+1} . If we have $a_1^m \in Q^m$, then a_p^q denotes a sequence of a_1^m denotes a sequence of a_1^m .

The notion of an (n, m)-group, as a generalization of the notion of an n-group, that is of a group was introduced by G. Čupona in 1983. Let Q be a nonempty set and let A be a mapping of the set Q^n into the set Q^m , where $n \ge m+1$. Then, we say that (Q, A) is an (n, m)-groupoid. Since every groupoid is a group if and only if it is a semigroup and a quasigroup, similarly an (n, m)-group was defined as an (n, m)-semigroup and an (n, m)-quasigroup.

Definition 1.1. [1] Let (Q, A) be an (n, m)-groupoid, $n \ge m+1$. (Q, A) is an (n, m)-group iff the following statements hold:

a) $\forall i, j \in \{1, ..., n-m+1\}$ and for every sequence $x_1^{2n-m} \in Q$ the following equality holds:

$$A\left(x_1^{i-1},A\left(x_i^{i+n-1}\right),x_{i+n}^{2n-m}\right)=A\left(x_1^{j-1},A\left(x_j^{j+n-1}\right),x_{j+n}^{2n-m}\right),$$

which is called an $\langle i, j \rangle$ -associative law.

2010 Mathematics Subject Classification. Primary 20N15

Keywords. (n, m)-group, $\{1, n - m + 1\}$ -neutral operation, central operation

Received: 15 January 2014; Accepted: 11 November 2014

Communicated by Miroslav Ćirić

Email addresses: anita.katic@etfos.hr (Anita Katić), zizovic@gmail.com (Mališa R. Žižović)

b) $\forall i \in \{1, ..., n-m+1\}$ and for every sequence $a_1^n \in Q$ there is exactly one sequence $x_1^m \in Q$ such that the following equality holds:

$$A\left(a_1^{i-1}, x_1^m, a_i^{n-m}\right) = a_{n-m+1}^n.$$

An (n, m)-groupoid (Q, A), where the statement a) holds, is called an (n, m)-semigroup, so that the (n, m)-groupoid (Q, A), where the statement b) holds, is called a weak (n, m)-quasigroup.

Example 1.2. Let (Q, \cdot) , $Q = \{1, 2, 3, 4\}$ be the Klein group defined with the following table:

	1	2	3	4
1	1	2	3	4
2	2	1	4	3
3	3	4	1	2
4	4	3	2	1

Let ψ be the permutation of the set Q defined in the following way: $\psi \stackrel{def}{=} \begin{pmatrix} 1 \ 2 \ 3 \ 4 \\ 1 \ 2 \ 4 \ 3 \end{pmatrix}$. Further on, let $A: Q^6 \to Q^2$

be the mapping defined in the following way: $A(x_1^6) \stackrel{def}{=} (x_1 \cdot \psi(x_3) \cdot x_5, x_2 \cdot \psi(x_4) \cdot x_6)$. We prove that (Q, A) is a (6, 2)-group. Firstly, we prove that the $\langle 1, 2 \rangle$ -associative law holds.

$$A(A(x_1^6), x_7^{10}) = A(x_1 \cdot \psi(x_3) \cdot x_5, x_2 \cdot \psi(x_4) \cdot x_6, x_7, x_8, x_9, x_{10}) = (x_1 \cdot \psi(x_3) \cdot x_5 \cdot \psi(x_7) \cdot x_9, x_2 \cdot \psi(x_4) \cdot x_6 \cdot \psi(x_8) \cdot x_{10})$$

$$A(x_1, A(x_2^7), x_8^{10}) = A(x_1, x_2 \cdot \psi(x_4) \cdot x_6, x_3 \cdot \psi(x_5) \cdot x_7, x_8, x_9, x_{10}) = (x_1 \cdot \psi(x_3) \cdot x_5 \cdot \psi(x_7) \cdot x_9, x_2 \cdot \psi(x_4) \cdot x_6 \cdot \psi(x_8) \cdot x_{10})$$

Similarly, we can prove that the (i, j)-associative law holds for all $i, j \in \{1, 2, 3, 4, 5\}$.

Now, we prove that the statement b) of Definition 1.1 for i = 1 *holds.*

$$A(x_1^2, a_1^4) = a_5^6 \Leftrightarrow (x_1 \cdot \psi(a_1) \cdot a_3, x_2 \cdot \psi(a_2) \cdot a_4) = (a_5, a_6) \Leftrightarrow x_1 \cdot \psi(a_1) \cdot a_3 = a_5 \text{ and } x_2 \cdot \psi(a_2) \cdot a_4 = a_6$$

Because (Q, \cdot) is a group, for every sequence $a_1^6 \in Q$ there is exactly one $x_1 \in Q$ and exactly one $x_2 \in Q$ such that the previous sequence of equivalences holds. Likewise, we can prove that the statement b) of Definition 1.1 for all $i \in \{1, 2, 3, 4, 5\}$ holds.

An interesting research method of n-structures and (n, m)-structures was inspired by J. Ušan, who in his manifold papers puts emphasis on a neutral operation. These results are systematized in the monograph [16]: n-groups in the light of the neutral operations. An $\{i, j\}$ -neutral operation of an n-groupoid (Q, A) was defined by Ušan in 1988 [10] and it presents a generalization of a neutral element of a groupoid. Then, in 1989 he defined a $\{1, n-m+1\}$ -neutral operation of an (n, m)-groupoid (Q, A).

Definition 1.3. [11] Let $n \ge 2m$ and let (Q, A) be an (n, m)-groupoid. Furthermore, let e_L , e_R and e be mappings of the set Q^{n-2m} into the set Q^m . Then:

a) e_L is a left $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A) iff $\forall a_1^{n-2m}, x_1^m \in Q$ the following equality holds:

$$A\left(e_L\left(a_1^{n-2m}\right), a_1^{n-2m}, x_1^m\right) = x_1^m;$$

b) e_R is a right $\{1, n-m+1\}$ -neutral operation of the (n,m)-groupoid (Q,A) iff $\forall a_1^{n-2m}, x_1^m \in Q$ the following equality holds:

$$A(x_1^m, a_1^{n-2m}, e_R(a_1^{n-2m})) = x_1^m;$$

c) e is a $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A) iff it is a left $\{1, n-m+1\}$ -neutral operation and a right $\{1, n-m+1\}$ -neutral operation.

Example 1.4. Let (Q, A) be the (6, 2)-group defined in Example 1.2. Now we define a mapping $e: Q^2 \to Q^2$ such that the following equality holds: $e(a_1^2) \stackrel{def}{=} (\psi(a_1), \psi(a_2))$. We prove that e is a $\{1, 5\}$ -neutral operation of the (6, 2)-group (Q, A). $\forall a_1^2, x_1^2 \in Q$ two following sequences of equalities hold:

$$A(e(a_1^2),a_1^2,x_1^2) = A(\psi(a_1),\psi(a_2),a_1^2,x_1^2) = (\psi(a_1)\cdot\psi(a_1)\cdot x_1,\psi(a_2)\cdot\psi(a_2)\cdot x_2) = (x_1,x_2),$$

$$A(x_1^2,a_1^2,e(a_1^2)) = A(x_1^2,a_1^2,\psi(a_1),\psi(a_2)) = (x_1\cdot\psi(a_1)\cdot\psi(a_1),x_2\cdot\psi(a_2)\cdot\psi(a_2)) = (x_1,x_2).$$

If we put (n, m) = (2, 1), the definition of a $\{1, n - m + 1\}$ -neutral operation of an (n, m)-groupoid is the same as the definition of a neutral element of a groupoid. Furthermore, a $\{1, n - m + 1\}$ -neutral operation has the same properties as a neutral element in binary structures. Some of them are the following statements:

- there is at most one $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A) $(n \ge 2m)$;
- if e_L is a left $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A) and e_R is a right $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A), then they are equal and $e = e_L = e_R$ is a $\{1, n-m+1\}$ -neutral operation of the (n, m)-groupoid (Q, A);
- every (n, m)-group, where $n \ge 2m$, has exactly one $\{1, n m + 1\}$ -neutral operation.

The previous statements were proved in [11].

Moreover, one generalization of an inverse element in binary structures was defined in n-structures by Janez Ušan 1994 in [12], in terms of a neutral operation. Similarly, he defined an inverse operation in (n, m)-structures.

Proposition 1.5. [14] Let (Q, A) be an (n, m)-groupoid, $n \ge 2m$ and let the following statements hold:

- (a) in (Q, A) a (1, n m + 1)-associative law holds;
- (b) for every sequence $a_1^n \in Q$ there is at least one $x_1^m \in Q^m$ such that the following equality holds:

$$A(a_1^{n-m}, x_1^m) = a_{n-m+1}^n;$$

(c) for every sequence $a_1^n \in Q$ there is at least one $y_1^m \in Q^m$ such that the following equality holds:

$$A(y_1^m, a_1^{n-m}) = a_{n-m+1}^n.$$

Then, there are mappings $^{-1}: Q^{n-m} \to Q^m$ and $e: Q^{n-2m} \to Q^m$ such that in the algebra $(Q, \{A, ^{-1}, e\})$ the following equalities hold:

$$\begin{split} &(i)\ A\left(\left(a_{1}^{n-2m},b_{1}^{m}\right)^{-1},a_{1}^{n-2m},A\left(b_{1}^{m},a_{1}^{n-2m},x_{1}^{m}\right)\right)=x_{1}^{m};\\ &(ii)\ A\left(A\left(x_{1}^{m},a_{1}^{n-2m},b_{1}^{m}\right),a_{1}^{n-2m},\left(a_{1}^{n-2m},b_{1}^{m}\right)^{-1}\right)=x_{1}^{m};\\ &(iii)\ A\left(b_{1}^{m},a_{1}^{n-2m},\left(a_{1}^{n-2m},b_{1}^{m}\right)^{-1}\right)=e\left(a_{1}^{n-2m}\right);\\ &(iv)\ A\left(\left(a_{1}^{n-2m},b_{1}^{m}\right)^{-1},a_{1}^{n-2m},b_{1}^{m}\right)=e\left(a_{1}^{n-2m}\right). \end{split}$$

Where holds

$$\left(a_1^{n-2m},b_1^m\right)^{-1}\stackrel{def}{=} E\left(a_1^{n-2m},b_1^m,a_1^{n-2m}\right), \forall a_1^{n-2m},b_1^m \in Q,$$

where E is a $\{1, 2n-2m+1\}$ -neutral operation of the (2n-m,m)-groupoid $(Q, \overset{2}{A})$ and $\overset{2}{A}\left(x_{1}^{2n-m}\right) \overset{def}{=} A\left(A\left(x_{1}^{n}\right), x_{n+1}^{2n-m}\right)$.

In two following propositions, the equalities, which hold for a $\{1, n - m + 1\}$ -neutral operation (n > 2m), are given and they are important for further research of (n, m)-groups.

Proposition 1.6. [5] Let (Q, A) be an (n, m)-group, n > 2m and let e be its $\{1, n - m + 1\}$ -neutral operation. Then $\forall a_1^{n-2m} \in Q, \forall x_1^m \in Q^m \text{ and } \forall t \in \{1, \dots n-2m+1\} \text{ the following equalities hold:}$

$$A\left(x_{1}^{m}, a_{t}^{n-2m}, e\left(a_{1}^{n-2m}\right), a_{1}^{t-1}\right) = x_{1}^{m};$$

$$A\left(a_t^{n-2m}, e\left(a_1^{n-2m}\right), a_1^{t-1}, x_1^m\right) = x_1^m$$

Proposition 1.7. [6] Let (Q,A) be an (n,m)-group, $n \ge 2m$, e its $\{1,n-m+1\}$ -neutral operation and let $^{-1}: Q^{n-m} \to Q^m$ be its inverse operation. Then $\forall a_1^{n-2m}, b_1^{n-2m}, x_1^m, y_1^m \in Q$ the following equality holds:

$$A\left(x_{1}^{m},b_{1}^{n-2m},y_{1}^{m}\right)=A\left(A\left(x_{1}^{m},a_{1}^{n-2m},\left(a_{1}^{n-2m},e\left(b_{1}^{n-2m}\right)\right)^{-1}\right),a_{1}^{n-2m},y_{1}^{m}\right).$$

2. A Generalization of the Hosszú-Gluskin Theorem for Some (n, m)-Groups in Terms of a Neutral Operation

Hosszú-Gluskin theorem is very important for the description and systematization of *n*-groups.

Theorem 2.1. [8], [9] For every n-group (Q, A), $n \ge 3$, there is an algebra $(Q, \{\cdot, \varphi, b\})$ such that the following statements hold: (1) (Q, \cdot) is a group; (2) $\varphi \in Aut(Q, \cdot)$; (3) $\varphi(b) = b$; (4) for every $x \in Q$, $\varphi^{n-1}(x) \cdot b = b \cdot x$; (5) for every $x_1^n \in Q$, $A(x_1^n) = x_1 \cdot \varphi(x_2) \cdot \ldots \cdot \varphi^{n-1}(x_n) \cdot b$.

In 1995 Ušan proved the Hosszú-Gluskin theorem by using a neutral operation and defined a Hosszú-Gluskin algebra of order $n, n \ge 3$, [13]. One generalization of the Hosszú-Gluskin theorem for (sm, m)-groups was described by Čupona and others in 1988 [2].

Following Ušan's approach to the research of (n, m)-structures, a generalization of the Hosszú-Gluskin theorem for (sm, m)-groups, s > 2 in terms of a $\{1, n - m + 1\}$ -neutral operation was proved in the following two theorems.

Theorem 2.2. Let (Q, A) be an (sm, m)-group, s > 2, $e : Q^{(s-2)m} \to Q^m$ its $\{1, (s-1)m+1\}$ -neutral operation and let $a_1^{(s-2)m} \in Q$ be an arbitrary sequence. $\forall x_1^m, y_1^m \in Q^m$, we define the following operations:

(a)
$$x_1^m \cdot y_1^m \stackrel{def}{=} A\left(x_1^m, a_1^{(s-2)m}, y_1^m\right),$$

(b) $\varphi\left(x_1^m\right) \stackrel{def}{=} A\left(e\left(a_1^{(s-2)m}\right), x_1^m, a_1^{(s-2)m}\right),$
(c) $c_1^m \stackrel{def}{=} A\left(\frac{s}{e\left(a_1^{(s-2)m}\right)}\right).$

Then, the following statements hold:

- (i) (Q^m, \cdot) is a group;
- (ii) $\varphi \in Aut(Q^m, \cdot)$;
- (iii) $\varphi\left(c_1^m\right) = c_1^m$;

$$\begin{array}{l} (iv) \ \varphi^{s-1}\left(b_{1}^{m}\right) \cdot c_{1}^{m} = c_{1}^{m} \cdot b_{1}^{m}, \ \forall b_{1}^{m} \in Q^{m}; \\ (v) \ A\left(x_{1}^{sm}\right) = x_{1}^{m} \cdot \varphi\left(x_{m+1}^{2m}\right) \cdot \varphi^{2}\left(x_{2m+1}^{3m}\right) \cdots \varphi^{s-1}\left(x_{(s-1)m+1}^{sm}\right) \cdot c_{1}^{m}, \ \forall x_{1}^{sm} \in Q. \end{array}$$

Proof. (i) $\forall x_1^m, y_1^m, z_1^m \in Q^m$, according to (a) and according to definition of the (sm, m)-group, the following sequence of equalities holds:

$$x_1^m \cdot \left(y_1^m \cdot z_1^m\right) = A\left(x_1^m, a_1^{(s-2)m}, A\left(y_1^m, a_1^{(s-2)m}, z_1^m\right)\right) = A\left(A\left(x_1^m, a_1^{(s-2)m}, y_1^m\right), a_1^{(s-2)m}, z_1^m\right) = \left(x_1^m \cdot y_1^m\right) \cdot z_1^m,$$

which proves that (Q^m, \cdot) is a semigroup.

 $\forall x_1^m, y_1^m \in Q^m$ and for an arbitrary sequence $a_1^{(s-2)m} \in Q$, since (Q, A) is an (sm, m)-group, there is exactly one $z_1^m \in Q^m$ and there is exactly one $k_1^m \in Q^m$ such that the following implication holds:

$$A\left(x_1^m,a_1^{(s-2)m},z_1^m\right) = y_1^m \overset{(a)}{\leftrightarrow} x_1^m \cdot z_1^m = y_1^m \\ A\left(k_1^m,a_1^{(s-2)m},x_1^m\right) = y_1^m \overset{(a)}{\leftrightarrow} k_1^m \cdot x_1^m = y_1^m \\ \right\} \Rightarrow (Q^m,\cdot) \text{ is a quasigroup.}$$

(*ii*) By (*b*) and since (Q, A) is an (sm, m)-quasigroup, we conclude that $\varphi : Q^m \to Q^m$ is a bijection. We prove that φ is a homomorphism.

$$\begin{split} &\varphi\left(x_{1}^{m}\cdot y_{1}^{m}\right)\overset{(b),(a)}{=}A\left(e\left(a_{1}^{(s-2)m}\right),A\left(x_{1}^{m},a_{1}^{(s-2)m},y_{1}^{m}\right),a_{1}^{(s-2)m}\right)\overset{1.1}{=}A\left(A\left(e\left(a_{1}^{(s-2)m}\right),x_{1}^{m},a_{1}^{(s-2)m}\right),y_{1}^{m},a_{1}^{(s-2)m}\right)\overset{1.6}{=}A\left(A\left(e\left(a_{1}^{(s-2)m}\right),x_{1}^{m},a_{1}^{(s-2)m}\right),A\left(a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right),y_{1}^{m}\right),a_{1}^{(s-2)m}\right)\overset{1.1}{=}\\ &=A\left(A\left(e\left(a_{1}^{(s-2)m}\right),x_{1}^{m},a_{1}^{(s-2)m}\right),a_{1}^{(s-2)m},A\left(e\left(a_{1}^{(s-2)m}\right),y_{1}^{m},a_{1}^{(s-2)m}\right)\right)\overset{(a),(b)}{=}\varphi\left(x_{1}^{m}\right)\cdot\varphi\left(y_{1}^{m}\right). \end{split}$$

$$\begin{split} \varphi\left(c_{1}^{m}\right) &\stackrel{(b)}{=} A\left(e\left(a_{1}^{(s-2)m}\right), c_{1}^{m}, a_{1}^{(s-2)m}\right) \stackrel{(c)}{=} A\left(e\left(a_{1}^{(s-2)m}\right), A\left(\overline{e\left(a_{1}^{(s-2)m}\right)}\right)\right), a_{1}^{(s-2)m}\right) \stackrel{1.1}{=} \\ &= A\left(A\left(\overline{e\left(a_{1}^{(s-2)m}\right)}\right), e\left(a_{1}^{(s-2)m}\right), a_{1}^{(s-2)m}\right) \stackrel{1.6}{=} A\left(\overline{e\left(a_{1}^{(s-2)m}\right)}\right) \stackrel{(c)}{=} c_{1}^{m}. \end{split}$$

(*iv*) $\forall b_1^m \in Q^m$ the following sequence of equalities holds:

$$\begin{split} &c_{1}^{m} \cdot b_{1}^{m} \overset{(a),(c)}{=} A \left(A \left(\overline{e^{(a_{1}^{(s-2)m})}} \right), a_{1}^{(s-2)m}, b_{1}^{m} \right) \overset{1}{=} A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, a_{1}^{(s-2)m}, b_{1}^{m} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(b_{1}^{m}, a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, a_{1}^{(s-2)m}, b_{1}^{m} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, \varphi \left(b_{1}^{m} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(\varphi \left(b_{1}^{m} \right), a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, \varphi \left(b_{1}^{m} \right), a_{1}^{(s-2)m} \right), \varphi \left(b_{1}^{m} \right), a_{1}^{(s-2)m} \right) \overset{2}{=} \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, \varphi \left(e^{(a_{1}^{(s-2)m})} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})} \right), e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} \\ &= A \left(\overline{e^{(a_{1}^{(s-2)m})}}, A \left(e^{(a_{1}^{(s-2)m})}, \varphi^{2} \left(b_{1}^{m} \right), a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} A \left(\overline{e^{(a_{1}^{(s-2)m})}}, a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})}, e^{(a_{1}^{(s-2)m})} \right) \overset{1}{=} A \left(\overline{e^{(a_{1}^{(s-2)m})}}, a_{1}^{(s-2)m}, e^{(a_{1}^{(s-2)m})}, e^{(a_{1}^{(s-2)m})}, e^{(a_{1}^{(s-2)m})}, e^{$$

(v) $\forall x_1^{sm} \in Q$ the following sequence of equalities holds:

$$\begin{split} &A\left(x_{1}^{m}\right)^{\frac{1}{2}}=A\left(x_{1}^{(s-1)m},A\left(a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right),x_{(s-1)m+1}^{sm}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-1)m},A\left(a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right),A\left(x_{(s-1)m+1}^{sm},a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right)\right)\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-1)m},A\left(a_{1}^{(s-2)m},A\left(e^{\left(a_{1}^{(s-2)m}\right)},A\left(x_{(s-1)m+1}^{sm},a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right)\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-1)m},A\left(a_{1}^{(s-2)m},A\left(e^{\left(a_{1}^{(s-2)m}\right)},x_{(s-1)m+1}^{sm},a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-1)m},A\left(x_{(s-1)m}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{sm}\right),e\left(a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},X_{(s-2)m+1}^{(s-2)m+1},a_{1}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{sm}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(x_{(s-2)m+1}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{sm}\right),e\left(a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(x_{(s-2)m+1}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{sm}\right),a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right),A\left(x_{(s-2)m+1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right)\right),e\left(a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right),A\left(x_{(s-2)m+1}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{sm}\right),a_{1}^{(s-2)m},e\left(a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},\phi\left(x_{(s-1)m}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{s-2}\right)\right),e\left(a_{1}^{(s-2)m}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{s-2}\right),\phi\left(x_{(s-1)m+1}^{s-2}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},\phi\left(x_{(s-1)m}^{s-2}\right),\phi\left(x_{(s-1)m+1}^{s-2}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},\phi\left(x_{(s-1)m}^{s-2}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},\phi\left(x_{(s-1)m+1}^{s-2}\right),\phi\left(x_{(s-1)m+1}^{s-2}\right)\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},a_{1}^{s-2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(a_{1}^{(s-2)m},a_{1}^{s-2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(x_{1}^{(s-2)m},a_{1}^{s-2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(x_{1}^{(s-2)m},a_{1}^{s-2}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}}\\ &=A\left(x_{1}^{(s-2)m},A\left(x_{1}^{(s-2)m},a_{1}^{s-2}\right)^{\frac{1}{$$

Theorem 2.3. Let (Q, A) be an (sm, m)-group, $s \ge 3$, $e : Q^{(s-2)m} \to Q^m$ its $\{1, (s-1)m+1\}$ -neutral operation. Also, let (Q^m, \cdot) be a group and let for every sequence $x_1^{sm} \in Q$ holds:

$$\begin{split} &(a) \ A\left(x_{1}^{sm}\right) = x_{1}^{m} \cdot \varphi\left(x_{m+1}^{2m}\right) \cdot \varphi^{2}\left(x_{2m+1}^{3m}\right) \cdots \varphi^{s-1}\left(x_{(s-1)m+1}^{sm}\right) \cdot c_{1}^{m}, \ where: \\ &(b) \ \varphi \in Aut\left(Q^{m}, \cdot\right), \\ &(c) \ \varphi\left(c_{1}^{m}\right) = c_{1}^{m}, \\ &(d) \ \varphi^{s-1}\left(b_{1}^{m}\right) \cdot c_{1}^{m} = c_{1}^{m} \cdot b_{1}^{m}, \ \forall b_{1}^{m} \in Q^{m}. \end{split}$$

Then, there is a sequence $a_1^{(s-2)m} \in Q$, such that $\forall x_1^m, y_1^m \in Q^m$ the following equalities hold:

(i)
$$x_1^m \cdot y_1^m = A\left(x_1^m, a_1^{(s-2)m}, y_1^m\right),$$

(ii) $\varphi\left(x_1^m\right) = A\left(e\left(a_1^{(s-2)m}\right), x_1^m, a_1^{(s-2)m}\right),$

(iii)
$$c_1^m = A\left(\frac{s}{e\left(a_1^{(s-2)m}\right)}\right)$$
.

Proof. (*i*) Let $e_1^m \in Q^m$ be a neutral element of the group (Q^m, \cdot) and $f : Q^m \to Q^m$ its inverse operation. Then, $\forall x_1^m, y_1^m \in Q^m$ the following sequence of equalities holds:

$$A\left(x_{1}^{m}, \frac{s-3}{e_{1}^{m}}, f\left(c_{1}^{m}\right), y_{1}^{m}\right) \stackrel{(a)}{=} x_{1}^{m} \cdot \varphi\left(e_{1}^{m}\right) \cdots \varphi^{s-3}\left(e_{1}^{m}\right) \cdot \varphi^{s-2}\left(f\left(c_{1}^{m}\right)\right) \cdot \varphi^{s-1}\left(y_{1}^{m}\right) \cdot c_{1}^{m} \stackrel{(b)}{=}$$

$$= x_{1}^{m} \cdot \varphi^{s-2}\left(f\left(c_{1}^{m}\right)\right) \cdot \varphi^{s-1}\left(y_{1}^{m}\right) \cdot c_{1}^{m} \stackrel{(d)}{=} x_{1}^{m} \cdot \varphi^{s-2}\left(f\left(c_{1}^{m}\right)\right) \cdot c_{1}^{m} \cdot y_{1}^{m} = x_{1}^{m} \cdot y_{1}^{m} = x_{1}^{m} \cdot y_{1}^{m}.$$

Hence, there is a sequence

$$a_1^{(s-2)m} = \left(\frac{s-3}{e_1^m}, f(c_1^m)\right),\tag{1}$$

such that the following equality holds:

$$A(x_1^m, a_1^{(s-2)m}, y_1^m) = x_1^m \cdot y_1^m.$$

(ii) By (i) the following equality holds:

$$e_1^m \cdot e_1^m = A\left(e_1^m, a_1^{(s-2)m}, e_1^m\right).$$

By definition of the $\{1, (s-1)m+1\}$ -neutral operation of the (sm, m)-group (Q; A), the equality:

$$e_1^m = A\left(e\left(a_1^{(s-2)m}\right), a_1^{(s-2)m}, e_1^m\right)$$

holds.

Using the two above equalities and the assumption that (Q, A) is an (sm, m)-quasigroup, we conclude that the equality

$$e\left(a_1^{(s-2)m}\right) = e_1^m \tag{2}$$

holds. Then, by the following sequence of equalities, we conclude that there is a sequence $a_1^{(s-2)m} \in Q$ such that $\forall x_1^m \in Q^m$ the equality (ii) holds.

$$A\left(e\left(a_{1}^{(s-2)m}\right), x_{1}^{m}, a_{1}^{(s-2)m}\right) \stackrel{(1),(2)}{=} A\left(e_{1}^{m}, x_{1}^{m}, \overline{e_{1}^{m}}\right), f\left(c_{1}^{m}\right)\right) \stackrel{(a)}{=} \\ = e_{1}^{m} \cdot \varphi\left(x_{1}^{m}\right) \cdot \varphi^{2}\left(e_{1}^{m}\right) \cdots \varphi^{s-2}\left(e_{1}^{m}\right) \cdot \varphi^{s-1}\left(f\left(c_{1}^{m}\right)\right) \cdot c_{1}^{m} \stackrel{(b),(c)}{=} \varphi\left(x_{1}^{m}\right) \cdot f\left(c_{1}^{m}\right) \cdot c_{1}^{m} = \varphi\left(x_{1}^{m}\right).$$

$$A\left(\overline{e\left(a_1^{(s-2)m}\right)}\right) \stackrel{(2)}{=} A\left(\overline{e_1^m}\right) \stackrel{(a)}{=} e_1^m \cdot \varphi\left(e_1^m\right) \cdots \varphi^{s-1}\left(e_1^m\right) \cdot c_1^m \stackrel{(b)}{=} c_1^m. \quad \Box$$

For the algebra $(Q^m, \{\cdot, \varphi, c_1^m\})$ which have been described in Theorems 2.2 and 2.3, we say that it is associated to the (sm, m)-group (Q, A).

Example 2.4. Let (Q,A) be a (6,2)-group defined in Example 1.2 and $e:Q^2\to Q^2$ be its neutral operation (see Example 1.4). For an arbitrary sequence $a_1^2\in Q$ and $\forall x_1^2,y_1^2\in Q^2$, we define the following operations:

a)
$$x_1^2 * y_1^2 \stackrel{def}{=} A(x_1^2, a_1^2, y_1^2) = (x_1 \cdot \psi(a_1) \cdot y_1, x_2 \cdot \psi(a_2) \cdot y_2);$$

b) $\varphi(x_1^2) \stackrel{def}{=} A(e(a_1^2), x_1^2, a_1^2) = A(\psi(a_1), \psi(a_2), x_1^2, a_1^2) = (\psi(a_1) \cdot \psi(x_1) \cdot a_1, \psi(a_2) \cdot \psi(x_2) \cdot a_2);$
c) $c_1^2 \stackrel{def}{=} A\left(\frac{3}{e(a_1^2)}\right) = A(\psi(a_1), \psi(a_2), \psi(a_1), \psi(a_2), \psi(a_1), \psi(a_2)) = (\psi(a_1) \cdot a_1 \cdot \psi(a_1), \psi(a_2) \cdot a_2 \cdot \psi(a_2)) = (a_1, a_2).$

Since the afore mentioned operators satisfy the assumptions of Theorem 2.2, the following statements hold: $(Q^2,*)$ is a group, $\varphi \in Aut(Q^2,*)$, $\varphi(c_1^2) = c_1^2$, $\varphi^2(b_1^2) * c_1^2 = c_1^2 * b_1^2$, $\forall b_1^2 \in Q^2$, $A(x_1^6) = x_1^2 * \varphi(x_3^4) * \varphi^2(x_5^6) * c_1^2$, $\forall x_1^6 \in Q$. Therefore, $(Q^2, \{*, \varphi, c_1^2\})$ is the algebra which is associated to the (6, 2)-group (Q, A).

In the following proposition we prove some interesting equalities which relate a $\{1, (s-1)m+1\}$ -neutral operation of an (sm, m)-group (Q, A) and an inverse operation of the binary group (Q^m, \cdot) , which also relate an inverse operation of an (sm, m)-group (Q, A) and an inverse operation of the binary group (Q^m, \cdot) .

Proposition 2.5. Let (Q, A) be an (sm, m)-group, $s \ge 3$, $e : Q^{(s-2)m} \to Q^m$ its $\{1, (s-1)m+1\}$ -neutral operation and $^{-1} : Q^{(s-1)m} \to Q^m$ its inverse operation. Also, let $\left(Q^m, \left\{\cdot, \varphi, c_1^m\right\}\right)$ be an algebra associated to the (sm, m)-group (Q, A) and $f : Q^m \to Q^m$ inverse operation of the group (Q^m, \cdot) . Then, $\forall d_1^{(s-2)m} \in Q$ the following equality holds:

$$e\left(d_{1}^{(s-2)m}\right) = f\left(\varphi\left(d_{1}^{m}\right) \cdot \varphi^{2}\left(d_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(d_{(s-3)m+1}^{(s-2)m}\right) \cdot c_{1}^{m}\right). \tag{3}$$

Proof. Firstly, we will prove that there is a sequence $a_1^{(s-2)m} \in Q$ such that $\forall b_1^m \in Q^m$ the following equality holds:

$$f\left(b_{1}^{m}\right) = \left(a_{1}^{(s-2)m}, b_{1}^{m}\right)^{-1}. \tag{4}$$

$$b_{1}^{m} \cdot \left(a_{1}^{(s-2)m}, b_{1}^{m}\right)^{-1} \stackrel{2.3}{=} A\left(b_{1}^{m}, a_{1}^{(s-2)m}, \left(a_{1}^{(s-2)m}, b_{1}^{m}\right)^{-1}\right) \stackrel{1.5}{=} e\left(a_{1}^{(s-2)m}\right).$$
By Theorem 2.3 there is a sequence $a_{1}^{(s-2)m} = \left(\frac{s-3}{e_{1}^{m}}\right), f\left(c_{1}^{m}\right)$ such that $e\left(a_{1}^{(s-2)m}\right) = e_{1}^{m}$. Thus,
$$b_{1}^{m} \cdot \left(a_{1}^{(s-2)m}, b_{1}^{m}\right)^{-1} = e_{1}^{m} = b_{1}^{m} \cdot f\left(b_{1}^{m}\right) \Rightarrow \left(a_{1}^{(s-2)m}, b_{1}^{m}\right)^{-1} = f\left(b_{1}^{m}\right).$$

From the following sequence of equalities, we can conclude that $\forall d_1^{(s-2)m} \in Q$ the statement of the proposition holds:

$$\begin{aligned} & \chi_{1}^{m} \cdot f\left(e\left(d_{1}^{(s-2)m}\right)\right) \overset{2.3}{=} A\left(\chi_{1}^{m}, a_{1}^{(s-2)m}, f\left(e\left(d_{1}^{(s-2)m}\right)\right)\right) \overset{(4)}{=} A\left(\chi_{1}^{m}, a_{1}^{(s-2)m}, \left(a_{1}^{(s-2)m}, e\left(d_{1}^{(s-2)m}\right)\right)^{-1}\right) \overset{1.3}{=} \\ & = A\left(A\left(\chi_{1}^{m}, a_{1}^{(s-2)m}, \left(a_{1}^{(s-2)m}, e\left(d_{1}^{(s-2)m}\right)\right)^{-1}\right), a_{1}^{(s-2)m}, e\left(a_{1}^{(s-2)m}\right)\right) \overset{1.7}{=} A\left(\chi_{1}^{m}, d_{1}^{(s-2)m}, e\left(a_{1}^{(s-2)m}\right)\right) \overset{(2)}{=} \\ & = A\left(\chi_{1}^{m}, d_{1}^{(s-2)m}, e_{1}^{m}\right) \overset{2.2}{=} \chi_{1}^{m} \cdot \varphi\left(d_{1}^{m}\right) \cdot \varphi^{2}\left(d_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(d_{(s-3)m+1}^{(s-2)m}\right) \cdot \varphi^{s-1}\left(e_{1}^{m}\right) \cdot c_{1}^{m} \overset{2.2}{=} \\ & = \chi_{1}^{m} \cdot \varphi\left(d_{1}^{m}\right) \cdot \varphi^{2}\left(d_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(d_{(s-3)m+1}^{(s-2)m}\right) \cdot c_{1}^{m}. \end{aligned}$$

3. A Central Operation in Terms of a Hosszú-Gluskin Algebra for an (sm, m) - Group

Further aim of research considering (n, m)-structures was to generalize the notion of a central element in a binary group, i.e. to define mapping whose properties for (n, m) = (2, 1) would correspond to properties of the central element in a binary group. In n-group this notion was described by Ušan in 2001 [15].

Definition 3.1. [7] Let (Q, A) be an (n, m)-group, $n \ge 2m$ and let α be a map of the set Q^{n-2m} into the set Q^m . We say that α is a central operation of an (n, m)-group (Q, A) iff $\forall a_1^{n-2m} \in Q$, $\forall b_1^{n-2m} \in Q$ and $\forall x_1^m \in Q^m$ the following equality holds:

$$A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right) = A\left(x_{1}^{m}, \alpha\left(b_{1}^{n-2m}\right), b_{1}^{n-2m}\right). \tag{5}$$

By Proposition 1.6 we see that a $\{1, n - m + 1\}$ -neutral operation is an example of the central operation of the (n, m)-group.

By means of a series of propositions, in [7] it was proved that a mapping $\alpha: \mathbb{Q}^{n-2m} \to \mathbb{Q}^m$ is a central operation of the (n,m)-group (Q,A) iff the equality

$$A(x_1^m, a_1^{n-2m}, \alpha(a_1^{n-2m})) = A(b_1^{n-2m}, \alpha(b_1^{n-2m}), x_1^m)$$

holds.

Proposition 3.2. Let (Q, A) be an (n, m)-group, $n \ge 2m$ and $\alpha, \beta : Q^{n-2m} \to Q^m$ its central operations. Then, $\forall a_1^{n-2m} \in Q$ the following equality holds:

$$A\left(\alpha\left(a_{1}^{n-2m}\right),a_{1}^{n-2m},\beta\left(a_{1}^{n-2m}\right)\right)=A(\beta(a_{1}^{n-2m}),a_{1}^{n-2m},\alpha(a_{1}^{n-2m})\right).$$

Proof. For the central operation α of the (n, m)-group (Q, A) the equality

$$A\left(\alpha\left(a_1^{n-2m}\right),a_1^{n-2m},x_1^m\right)=A\left(x_1^m,b_1^{n-2m},\alpha\left(b_1^{n-2m}\right)\right)$$

holds $\forall a_1^{n-2m}, b_1^{n-2m}, x_1^m \in Q$ (see [7]). The proof of the proposition follows directly from the previous equality if we put x_1^m instead of $\beta(a_1^{n-2m})$ and b_1^{n-2m} instead of a_1^{n-2m} . \square

Theorem 3.3. Let (Q,A) be an (n,m)-group, $n \ge 2m$ and α its central operation. Then, there is a bijection $\sigma_\alpha: Q^m \to Q^m$ such that $\forall x_1^m \in Q^m$ and $\forall a_1^{n-2m}, b_1^{n-2m} \in Q$ the following equalities hold:

(i)
$$A\left(\alpha\left(a_1^{n-2m}\right), a_1^{n-2m}, x_1^m\right) = \sigma_\alpha\left(x_1^m\right),$$

(ii) $A\left(x_1^m, \alpha\left(b_1^{n-2m}\right), b_1^{n-2m}\right) = \sigma_\alpha\left(x_1^m\right).$

Proof. Let $k_1^{n-2m} \in Q$ be an arbitrary sequence. Then, we define:

$$A\left(x_1^m,\alpha\left(k_1^{n-2m}\right),k_1^{n-2m}\right)\stackrel{def}{=}\sigma_\alpha\left(x_1^m\right).$$

Firstly, we will prove that such a defined mapping σ_{α} is a bijection. Since (Q, A) is an (n, m)-quasigroup, by Definition 1.1 (b), for i = 1 holds: $\forall a_1^n \in Q$, $\exists ! x_1^m \in Q^m$ such that holds $A\left(x_1^m, a_1^{n-m}\right) = a_{n-m+1}^n$.

If we replace the sequence a_1^n in the above statement with $A\left(\alpha\left(k_1^{n-2m}\right),k_1^{n-2m},y_1^m\right)$, then the following statement holds: $\forall y_1^m \in Q$, $\exists ! x_1^m \in Q^m$ such that holds:

$$y_1^m = A(x_1^m, \alpha(k_1^{n-2m}), k_1^{n-2m}) = \sigma_\alpha(x_1^m).$$

Then, equalities from the theorem hold by Definition 3.1. \Box

Definition 3.4. Let (Q,A) be an (n,m)-group, $n \ge 2m$, $\alpha: Q^{n-2m} \to Q^m$ its central operation and let $\sigma_\alpha: Q^m \to Q^m$ be a bijection. We say that the bijection σ_α is associated to the central operation α iff $\forall x_1^m \in Q^m$ and $\forall a_1^{n-2m} \in Q$ holds:

$$A\left(\alpha\left(a_1^{n-2m}\right), a_1^{n-2m}, x_1^m\right) = \sigma_\alpha\left(x_1^m\right). \tag{6}$$

Example 3.5. Let (Q,\cdot) , $Q=\{1,2,3,4\}$ be the Klein group, let $\psi=\begin{pmatrix}1&2&3&4\\1&2&4&3\end{pmatrix}$ be the permutation of the set Q. In Example 1.2 we proved that (Q,A) is a (6,2)-group, when $A:Q^6\to Q^2$ is the mapping defined with $A(x_1^6)=(x_1\cdot\psi(x_3)\cdot x_5,x_2\cdot\psi(x_4)\cdot x_6)$. Let $\alpha:Q^2\to Q^2$ be a mapping such that $\forall x_1^2\in Q^2$ the following equality holds:

$$\alpha(x_1^2) \stackrel{def}{=} (2 \cdot \psi(x_1), 2 \cdot \psi(x_2)).$$

We prove that this mapping is a central operation of the (6,2)-group (Q,A). By Definition 3.1 we need to prove that $\forall a_1^2 \in Q, \forall b_1^2 \in Q \text{ and } \forall x_1^2 \in Q^2 \text{ the equality } (5) \text{ holds for } m=2, n=6.$

$$\begin{array}{l} A(x_1^2,a_1^2,\alpha(a_1^2)) = A(b_1^2,\alpha(b_1^2),x_1^2) \Leftrightarrow \\ \Leftrightarrow A(x_1,x_2,a_1,a_2,2\cdot\psi(a_1),2\cdot\psi(a_2)) = A(b_1,b_2,2\cdot\psi(b_1),2\cdot\psi(b_2),x_1,x_2) \Leftrightarrow \\ \Leftrightarrow (x_1\cdot\psi(a_1)\cdot2\cdot\psi(a_1),x_2\cdot\psi(a_2)\cdot2\cdot\psi(a_2)) = (b_1\cdot\psi(2)\cdot b_1\cdot x_1,b_2\cdot\psi(2)\cdot b_2\cdot x_2) \Leftrightarrow \\ \Leftrightarrow (2\cdot x_1,2\cdot x_2) = (2\cdot x_1,2\cdot x_2) \end{array}$$

With $\sigma_{\alpha}(x_1^2) \stackrel{def}{=} (2 \cdot x_1, 2 \cdot x_2)$ a bijection $\sigma_{\alpha} : Q^2 \to Q^2$ associated to the central operation α is defined. Let us prove equation (6):

$$A(\alpha(a_1^2), a_1^2, x_1^2) = A(2 \cdot \psi(a_1), 2 \cdot \psi(a_2), a_1, a_2, x_1, x_2) = (2 \cdot \psi(a_1) \cdot \psi(a_1) \cdot x_1, 2 \cdot \psi(a_2) \cdot \psi(a_2) \cdot x_2) = (2 \cdot x_1, 2 \cdot x_2) = \sigma_{\alpha}(x_1^2)$$

Theorem 3.6. Let (Q, A) be an (n, m)-group, $n \ge 2m$, $\alpha : Q^{n-2m} \to Q^m$ its central operation and let the bijection $\sigma_\alpha : Q^m \to Q^m$ be associated to the central operation α . Then, $\forall x_1^n \in Q$ the following equalities hold:

$$\begin{aligned} &(i)\ \sigma_{\alpha}\left(A\left(x_{1}^{n}\right)\right)=A\left(\sigma_{\alpha}\left(x_{1}^{m}\right),x_{m+1}^{n}\right),\\ &(ii)\ \sigma_{\alpha}\left(A\left(x_{1}^{n}\right)\right)=A\left(x_{1}^{m},\sigma_{\alpha}\left(x_{m+1}^{2m}\right),x_{2m+1}^{n}\right),\\ &(iii)\ \sigma_{\alpha}\left(A\left(x_{1}^{n}\right)\right)=A\left(x_{1}^{-m},\sigma_{\alpha}\left(x_{m-m+1}^{n}\right)\right). \end{aligned}$$

Proof. (i)

$$\sigma_{\alpha}\left(A\left(x_{1}^{n}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) \stackrel{1.1}{=} A\left(A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right), x_{m+1}^{n}\right) \stackrel{(6)}{=} A\left(\sigma_{\alpha}\left(x_{1}^{m}\right), x_{m+1}^{n}\right).$$

(ii)
$$\sigma_{\alpha}\left(A\left(x_{1}^{n}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) \stackrel{1.1}{=} A\left(A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right), x_{m+1}^{n}\right) \stackrel{(5)}{=} \\ = A\left(A\left(x_{1}^{m}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right), x_{m+1}^{n}\right) \stackrel{1.1}{=} A\left(x_{1}^{m}, A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{m+1}^{2m}\right), x_{2m+1}^{n}\right) \stackrel{(6)}{=} A\left(x_{1}^{m}, \sigma_{\alpha}\left(x_{m+1}^{2m}\right), x_{2m+1}^{n}\right).$$

(iii)
$$\sigma_{\alpha}\left(A\left(x_{1}^{n}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(x_{1}^{n}\right)\right) \stackrel{(5)}{=} A\left(A\left(x_{1}^{n}\right), \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right) \stackrel{1.1}{=} \\ = A\left(x_{1}^{n-m}, A\left(x_{n-m+1}^{n}, \alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}\right)\right) \stackrel{(5)}{=} A\left(x_{1}^{n-m}, A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{n-m+1}^{n}\right)\right) \stackrel{(6)}{=} A\left(x_{1}^{n-m}, \sigma_{\alpha}\left(x_{n-m+1}^{n}\right)\right). \quad \Box$$

If we have two central operations of an (n, m)-group and if a bijection is associated to each of them as defined in 3.4, then the bijections commute.

Theorem 3.7. Let (Q,A) be an (n,m)-group, $n \ge 2m$ and $\alpha,\beta: Q^{n-2m} \to Q^m$ its central operations. Also, let the bijection σ_{α} be associated to the central operation α and the bijection σ_{β} be associated to the central operation β . Then $\forall x_1^m \in Q^m$ the following equality holds:

$$\sigma_{\alpha}\left(\sigma_{\beta}\left(x_{1}^{m}\right)\right)=\sigma_{\beta}\left(\sigma_{\alpha}\left(x_{1}^{m}\right)\right).$$

$$Proof. \ \ \sigma_{\alpha}\left(\sigma_{\beta}\left(x_{1}^{m}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, \sigma_{\beta}\left(x_{1}^{m}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(\beta\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right)\right) \stackrel{1.1}{=} \\ = A\left(A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, \beta\left(a_{1}^{n-2m}\right)\right), a_{1}^{n-2m}, x_{1}^{m}\right) \stackrel{3.2}{=} A\left(A\left(\beta\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right), a_{1}^{n-2m}, x_{1}^{m}\right) \stackrel{1.1}{=} \\ = A\left(\beta\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right)\right) \stackrel{(6)}{=} \sigma_{\beta}\left(\sigma_{\alpha}\left(x_{1}^{m}\right)\right). \ \ \Box$$

Under particular condition, a bijection associated to the central operation α is an involution which has been proved in the following theorem.

Theorem 3.8. Let (Q, A) be an (n, m)-group, $n \ge 2m$, $\alpha : Q^{n-2m} \to Q^m$ its central operation, let σ_α be the bijection associated to the central operation α and let $^{-1}: Q^{n-m} \to Q^m$ be an inverse operation of the (n, m)-group (Q, A). If $\forall a_1^{n-2m} \in Q$ the equality

$$\left(a_1^{n-2m}, \alpha\left(a_1^{n-2m}\right)\right)^{-1} = \alpha\left(a_1^{n-2m}\right) \tag{7}$$

holds, then $\forall x_1^m \in Q^m$ the following equality holds:

$$\sigma_{\alpha}\left(\sigma_{\alpha}\left(x_{1}^{m}\right)\right)=x_{1}^{m}.$$

Proof. $\forall a_1^{n-2m} \in Q$ the following sequence of equalities holds:

$$\sigma_{\alpha}\left(\sigma_{\alpha}\left(x_{1}^{m}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, \sigma_{\alpha}\left(x_{1}^{m}\right)\right) \stackrel{(6)}{=} A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right)\right) \stackrel{(7)}{=} A\left(\left(a_{1}^{n-2m}, \alpha\left(a_{1}^{n-2m}\right)\right)^{-1}, a_{1}^{n-2m}, A\left(\alpha\left(a_{1}^{n-2m}\right), a_{1}^{n-2m}, x_{1}^{m}\right)\right) \stackrel{(8)}{=} X_{1}^{m}. \quad \Box$$

Theorem 3.9. Let (Q, A) be an (sm, m)-group, $s \ge 3$ and $(Q^m, \{\cdot, \varphi, c_1^m\})$ an algebra associated to the (sm, m)-group (Q, A). Also, let f be an inverse operation in a group (Q^m, \cdot) , $\alpha : Q^{(s-2)m} \to Q^m$ central operation of the (sm, m)-group (Q, A) and σ_α a bijection associated to the central operation α . Then, $\exists ! y_1^m \in Q^m$ such that for every sequence $a_1^{(s-2)m} \in Q$ and $\forall x_1^m \in Q^m$ the following equalities hold:

(i)
$$\alpha \left(a_{1}^{(s-2)m} \right) = y_{1}^{m} \cdot f \left(\varphi \left(a_{1}^{m} \right) \cdot \varphi^{2} \left(a_{m+1}^{2m} \right) \cdots \varphi^{s-2} \left(a_{(s-3)m+1}^{(s-2)m} \right) \right),$$

(ii) $\sigma_{\alpha} \left(x_{1}^{m} \right) = \left(y_{1}^{m} \cdot c_{1}^{m} \right) \cdot x_{1}^{m},$
(iii) $\varphi \left(y_{1}^{m} \right) = y_{1}^{m},$
(iv) $\left(y_{1}^{m} \cdot c_{1}^{m} \right) \cdot x_{1}^{m} = x_{1}^{m} \cdot \left(y_{1}^{m} \cdot c_{1}^{m} \right).$

Proof. (*i*) Let us prove that by assumptions of the theorem $\exists ! y_1^m \in Q^m$ such that for every sequence $a_1^{(s-2)m} \in Q$ the following equality holds:

$$\alpha\left(a_1^{(s-2)m}\right)\cdot\varphi\left(a_1^m\right)\cdot\varphi^2\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)=y_1^m.$$

Let $k_1^{(s-2)m} \in Q$ be an arbitrary fixed sequence. Then by the definition of the central operation of an (sm, m)-group, $\forall x_1^m \in Q^m \text{ i } \forall a_1^{(s-2)m} \in Q \text{ holds}$:

$$A\left(\alpha\left(a_{1}^{(s-2)m}\right),a_{1}^{(s-2)m},x_{1}^{m}\right)=A\left(x_{1}^{m},\alpha\left(k_{1}^{(s-2)m}\right),k_{1}^{(s-2)m}\right)=A\left(\alpha\left(k_{1}^{(s-2)m}\right),k_{1}^{(s-2)m},x_{1}^{m}\right).$$

Moreover, by Theorem 2.2 $\forall x_1^m \in Q^m$, $\forall a_1^{(s-2)m} \in Q$ the following sequence of equivalences holds:

$$\begin{split} &A\left(\alpha\left(a_{1}^{(s-2)m}\right),a_{1}^{(s-2)m},x_{1}^{m}\right)=A\left(\alpha\left(k_{1}^{(s-2)m}\right),k_{1}^{(s-2)m},x_{1}^{m}\right)\Leftrightarrow\\ &\alpha\left(a_{1}^{(s-2)m}\right)\cdot\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot\varphi^{s-1}\left(x_{1}^{m}\right)\cdot c_{1}^{m}=\\ &=\alpha\left(k_{1}^{(s-2)m}\right)\cdot\varphi\left(k_{1}^{m}\right)\cdot\varphi^{2}\left(k_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(k_{(s-3)m+1}^{(s-2)m}\right)\cdot\varphi^{s-1}\left(x_{1}^{m}\right)\cdot c_{1}^{m}\Leftrightarrow\end{split}$$

$$\alpha\left(a_1^{(s-2)m}\right)\cdot\varphi\left(a_1^m\right)\cdot\varphi^2\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)=\alpha\left(k_1^{(s-2)m}\right)\cdot\varphi\left(k_1^m\right)\cdot\varphi^2\left(k_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(k_{(s-3)m+1}^{(s-2)m}\right).$$

Because $k_1^{(s-2)m} \in Q$ is a fixed sequence, we can denote:

$$\alpha\left(k_1^{(s-2)m}\right)\cdot\varphi\left(k_1^m\right)\cdot\varphi^2\left(k_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(k_{(s-3)m+1}^{(s-2)m}\right)=y_1^m,$$

which, due to the last equality from the above sequence of equalities yields the equality:

$$\alpha\left(a_1^{(s-2)m}\right)\cdot\varphi\left(a_1^m\right)\cdot\varphi^2\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)=y_1^m.$$

Because f is an inverse operation in the group (Q^m, \cdot) , the last equality is equivalent to:

$$\alpha\left(a_{1}^{(s-2)m}\right) = y_{1}^{m} \cdot f\left(\varphi\left(a_{1}^{m}\right) \cdot \varphi^{2}\left(a_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\right).$$

(ii) $\exists ! y_1^m \in Q^m$ such that $\forall x_1^m \in Q^m$ i $\forall a_1^{(s-2)m} \in Q$ the following sequence of equalities holds:

$$\begin{split} & \sigma_{\alpha}\left(x_{1}^{m}\right) \overset{(6)}{=} A\left(\alpha\left(a_{1}^{(s-2)m}\right), a_{1}^{(s-2)m}, x_{1}^{m}\right) \overset{2.2}{=} \alpha\left(a_{1}^{(s-2)m}\right) \cdot \varphi\left(a_{1}^{m}\right) \cdot \varphi^{2}\left(a_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right) \cdot \varphi^{s-1}\left(x_{1}^{m}\right) \cdot c_{1}^{m} \overset{2.2}{=} \\ & = \alpha\left(a_{1}^{(s-2)m}\right) \cdot \varphi\left(a_{1}^{m}\right) \cdot \varphi^{2}\left(a_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right) \cdot c_{1}^{m} \cdot x_{1}^{m} \overset{(i)}{=} \left(y_{1}^{m} \cdot c_{1}^{m}\right) \cdot x_{1}^{m}. \end{split}$$

(iii) $\forall a_1^{(s-2)m}, k_1^{(s-2)m} \in Q$ and $\forall x_1^m \in Q^m$, by definition of a central operation and Theorem 2.2, the following sequence of equivalences holds:

$$\begin{split} &A\left(\alpha\left(a_{1}^{(s-2)m}\right),a_{1}^{(s-2)m},x_{1}^{m}\right)=A\left(x_{1}^{m},\alpha\left(k_{1}^{(s-2)m}\right),k_{1}^{(s-2)m}\right)\Leftrightarrow\\ &\alpha\left(a_{1}^{(s-2)m}\right)\cdot\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot x_{1}^{m}=x_{1}^{m}\cdot\varphi\left(\alpha\left(k_{1}^{(s-2)m}\right)\right)\cdot\varphi^{2}\left(k_{1}^{m}\right)\cdots\varphi^{s-1}\left(k_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\Leftrightarrow\\ &\alpha\left(a_{1}^{(s-2)m}\right)\cdot\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot x_{1}^{m}=x_{1}^{m}\cdot\varphi\left(\alpha\left(k_{1}^{(s-2)m}\right)\cdot\varphi\left(k_{1}^{m}\right)\cdots\varphi^{s-2}\left(k_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}.\end{split}$$

By (i), the last equality is equivalent to:

$$y_1^m \cdot c_1^m \cdot x_1^m = x_1^m \cdot \varphi\left(y_1^m\right) \cdot c_1^m.$$

Since this equality holds $\forall x_1^m \in Q^m$, thus it holds for $x_1^m = e_1^m$ where e_1^m is a neutral element of a group (Q^m, \cdot) . Accordingly, it follows:

$$y_1^m \cdot c_1^m = \varphi\left(y_1^m\right) \cdot c_1^m,$$

that is

$$y_1^m = \varphi\left(y_1^m\right).$$

(*iv*) In the proof (*iii*), we have proved that $\exists! y_1^m \in Q^m$ such that $\forall x_1^m \in Q^m$ the following equalities hold:

$$y_1^m \cdot c_1^m \cdot x_1^m = x_1^m \cdot \varphi\left(y_1^m\right) \cdot c_1^m$$

and

$$y_1^m = \varphi\left(y_1^m\right).$$

From the above equalities it follows:

$$(y_1^m \cdot c_1^m) \cdot x_1^m = x_1^m \cdot (y_1^m \cdot c_1^m).$$

Theorem 3.10. Let (Q, A) be an (sm, m)-group, $s \ge 3$ and $(Q^m, \{\cdot, \varphi, c_1^m\})$ an algebra which is associated to the (sm, m)-group (Q, A). Also, let f be an inverse operation in the group (Q^m, \cdot) and $e_1^m \in Q^m$ its neutral element. Let α be a central operation of the (sm, m)-group (Q, A), σ_{α} a bijection associated to the central operation α and let $e^{-1}: Q^{(s-1)m} \to Q^m$ be an inverse operation of the (sm, m)-group (Q, A). If for every sequence $e^{(s-2)m} \in Q$ the equality

$$\left(a_1^{(s-2)m},\alpha\left(a_1^{(s-2)m}\right)\right)^{-1}=\alpha\left(a_1^{(s-2)m}\right)$$

holds, then $\exists ! y_1^m \in Q^m$ such that the following equality holds:

$$\left(y_1^m \cdot c_1^m\right) \cdot \left(y_1^m \cdot c_1^m\right) = e_1^m.$$

Proof. $\forall x_1^m, a_1^{(s-2)m} \in Q, \exists ! y_1^m \in Q^m \text{ such that the following sequence of equalities holds: } x_1^m \stackrel{3.8}{=} \sigma_\alpha \left(\sigma_\alpha \left(x_1^m\right)\right) \stackrel{3.9}{=} \sigma_\alpha \left(\left(y_1^m \cdot c_1^m\right) \cdot x_1^m\right) \stackrel{3.9}{=} \left(y_1^m \cdot c_1^m\right) \cdot \left(y_1^m \cdot c_1^m\right) \cdot x_1^m.$

Since (Q^m, \cdot) is a group, from the above sequence of equalities it follows: $(y_1^m \cdot c_1^m) \cdot (y_1^m \cdot c_1^m) = e_1^m$. \square

Theorem 3.11. Let (Q, A) be an (sm, m)-group, $s \ge 3$ and $(Q^m, \{\cdot, \varphi, c_1^m\})$ the algebra associated to the (sm, m)-group (Q, A). Also, let f be an inverse operation of the group (Q^m, \cdot) and $e_1^m \in Q^m$ its neutral element. Let $y_1^m \in Q^m$ be a fixed sequence such that $\forall x_1^m \in Q^m$ the following equalities hold:

$$(a)\left(y_1^m\cdot c_1^m\right)\cdot x_1^m=x_1^m\cdot \left(y_1^m\cdot c_1^m\right),$$

$$(b) \varphi \left(y_1^m \right) = y_1^m,$$

$$(c) \left(y_1^m \cdot c_1^m \right) \cdot \left(y_1^m \cdot c_1^m \right) = e_1^m.$$

We define the mapping $\alpha: Q^{(s-2)m} \to Q^m$ such that $\forall a_1^{(s-2)m} \in Q$ holds:

(d)
$$\alpha \left(a_1^{(s-2)m} \right) \stackrel{def}{=} y_1^m \cdot f \left(\varphi \left(a_1^m \right) \cdot \varphi^2 \left(a_{m+1}^{(2m)} \right) \cdots \varphi^{s-2} \left(a_{(s-3)m+1}^{(s-2)m} \right) \right).$$

Then, the following statements hold:

- (i) α is a central operation of the (sm, m)-group (Q, A);
- (ii) for every sequence $a_1^{(s-2)m} \in Q$ the equality

$$(a_1^{(s-2)m}, \alpha(a_1^{(s-2)m}))^{-1} = \alpha(a_1^{(s-2)m})$$

holds, where $^{-1}: Q^{(s-1)m} \to Q^m$ is an inverse operation of the (sm, m)-group (Q, A).

Proof. (i) $\forall a_1^{(s-2)m} \in Q \text{ i } \forall x_1^m \in Q^m \text{ the following sequence of equalities holds:}$

$$\begin{split} &A\left(\alpha\left(a_{1}^{(s-2)m}\right),a_{1}^{(s-2)m},x_{1}^{m}\right)\overset{2.2}{=}\alpha\left(a_{1}^{(s-2)m}\right)\cdot\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot x_{1}^{m}\overset{(d)}{=}\\ &=y_{1}^{m}\cdot f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\right)\cdot\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot x_{1}^{m}=\\ &=\left(y_{1}^{m}\cdot c_{1}^{m}\right)\cdot x_{1}^{m}. \end{split}$$

Further on, $\forall b_1^{(s-2)m} \in Q \text{ i } \forall x_1^m \in Q^m \text{ the following sequence of equalities holds:}$

$$A\left(x_{1}^{m},\alpha\left(b_{1}^{(s-2)m}\right),b_{1}^{(s-2)m}\right)\overset{2.2}{=}x_{1}^{m}\cdot\varphi\left(\alpha\left(b_{1}^{(s-2)m}\right)\right)\cdot\varphi^{2}\left(b_{1}^{m}\right)\cdot\cdots\varphi^{s-1}\left(b_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\overset{2.2}{=}\\ =x_{1}^{m}\cdot\varphi\left(\alpha\left(b_{1}^{(s-2)m}\right)\cdot\varphi\left(b_{1}^{m}\right)\cdot\varphi^{2}\left(b_{m+1}^{2m}\right)\cdot\cdots\varphi^{s-2}\left(b_{(s-3)m+1}^{(s-2)m}\right)\right)\cdot c_{1}^{m}\overset{(d)}{=}$$

$$= x_1^m \cdot \varphi \left(y_1^m \cdot f \left(\varphi \left(b_1^m \right) \cdot \varphi^2 \left(b_{m+1}^{2m} \right) \cdots \varphi^{s-2} \left(b_{(s-3)m+1}^{(s-2)m} \right) \right) \cdot \varphi \left(b_1^m \right) \cdot \varphi^2 \left(b_{m+1}^{2m} \right) \cdots \varphi^{s-2} \left(b_{(s-3)m+1}^{(s-2)m} \right) \right) \cdot c_1^m = x_1^m \cdot \varphi \left(y_1^m \right) \cdot c_1^m \stackrel{(b)}{=} x_1^m \cdot \left(y_1^m \cdot c_1^m \right) \stackrel{(a)}{=} \left(y_1^m \cdot c_1^m \right) \cdot x_1^m.$$

From the previous two sequences of equalities, we conclude that the statement (i) of the theorem holds.

(ii) By Proposition 1.5, $\forall a_1^{(s-2)m} \in Q$ and $\forall x_1^m \in Q^m$ the equality

$$A\left(\left(a_1^{(s-2)m},x_1^m\right)^{-1},a_1^{(s-2)m},x_1^m\right)=e\left(a_1^{(s-2)m}\right)$$

holds, where $e: Q^{(s-2)m} \to Q^m$ is a $\{1, (s-1)m+1\}$ -neutral operation of the (sm, m)-group (Q, A). For $x_1^m = \alpha \left(a_1^{(s-2)m}\right)$, by Theorem 2.2 and Proposition 2.5, the above equality is:

$$\begin{split} & \left(a_{1}^{(s-2)m},\alpha\left(a_{1}^{(s-2)m}\right)\right)^{-1} \cdot \varphi\left(a_{1}^{m}\right) \cdot \varphi^{2}\left(a_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right) \cdot c_{1}^{m} \cdot \alpha\left(a_{1}^{(s-2)m}\right) = \\ & = f\left(\varphi\left(a_{1}^{m}\right) \cdot \varphi^{2}\left(a_{m+1}^{2m}\right) \cdots \varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right) \cdot c_{1}^{m}\right), \end{split}$$

which implies the following sequence of equalities:

$$\begin{array}{l} \left(a_{1}^{(s-2)m},\alpha\left(a_{1}^{(s-2)m}\right)\right)^{-1} = \\ = f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot f\left(\alpha\left(a_{1}^{(s-2)m}\right)\right)\cdot f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\right) = \\ = f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot\alpha\left(a_{1}^{(s-2)m}\right)\cdot\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\right) \stackrel{d}{=} \\ = f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot y_{1}^{m}\cdot f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\right) \stackrel{d}{=} \\ = f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\right) = f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right)\cdot c_{1}^{m}\cdot y_{1}^{m}\cdot c_{1}^{m}\right) = \\ = f\left(c_{1}^{m}\right)\cdot f\left(y_{1}^{m}\right)\cdot f\left(c_{1}^{m}\right)\cdot f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right) \stackrel{c}{=} \\ = f\left(c_{1}^{m}\right)\cdot f\left(y_{1}^{m}\right)\cdot f\left(c_{1}^{m}\right)\cdot f\left(y_{1}^{m}\right)\cdot y_{1}^{m}\cdot f\left(\varphi\left(a_{1}^{m}\right)\cdot\varphi^{2}\left(a_{m+1}^{2m}\right)\cdots\varphi^{s-2}\left(a_{(s-3)m+1}^{(s-2)m}\right) \stackrel{c}{=} \\ = e_{1}^{m}\cdot\alpha\left(a_{1}^{(s-2)m}\right) = \alpha\left(a_{1}^{(s-2)m}\right). \quad \Box \end{array}$$

References

- [1] G. Čupona, Vector valued semigroups, Semigroup Forum 26 (1983), 65–74
- [2] G. Čupona, N. Celakoski, S. Markovski, D. Dimovski, Vector valued groupoids, semigroups and groups in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje, 1988, 1–78
- [3] G. Čupona, S. Markovski, D. Dimovski, B. Janeva, Introduction to combinatorial theory of vector valued semigroups. Vector valued semigroups and groups, Macedonian Acad. Sci. Arts, Skopje, 1988, 141–183, 196–197
- [4] D. Dimovski, S. Ilić, Commutative (2*m*, *m*)-groups in: Vector valued semigroups and groups, (B. Popov, G. Čupona and N. Celakoski, eds.), Skopje, 1988, 79–90
- [5] R. Galić, A. Katić, On neutral operations of (n, m)-groups, Math. Moravica 9 (2005), 1–3
- [6] R. Galić, A. Katić, Some equalities which hold in (n, m)-group (Q; A) for $n \ge 2m$, Math. Moravica 14–1 (2010), 47–51
- [7] R. Galić, A. Katić, Central operations of the (n, m)-group, Math. Moravica 14–1 (2010), 53–59
- [8] L. M. Gluskin, Position operatives, (Russian), Math. Sb., t. 68 (110) (1965) No. 3, 444–472
- [9] M. Hosszú, On the explicit form of n-group operations, Publ. Math. Debrecen, 10 (1963), 88–92
- [10] J. Ušan, Neutral operations of *n*-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 18 (1988) No. 2, 117–126
- [11] J. Ušan, Neutral operations of (n, m)-groupoids, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 19 (1989) No. 2, 125–137
- [12] J. Ušan, A comment on *n*-groups, (Russian), Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 24 (1994) No. 1, 281–288
- [13] J. Ušan, On Hosszú-Gluskin algebras corresponding to the same n-group, Rev. of Research, Fac. of Sci. Univ. of Novi Sad, Math. Ser. 25 (1995) No. 1, 101–119
- [14] J. Ušan, Note on (n, m)-groups, Math. Moravica 3 (1999), 127–139
- [15] J. Ušan, Description of super-associative algebras with n-quasigroup operations, Math. Moravica 5 (2001), 129–157
- [16] J. Ušan, n-groups in the light of the neutral operations, Math. Moravica, Special Vol. (2003), Monograph