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A Hosszt-Gluskin Algebra and a Central Operation of (sm, m)-Groups
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Abstract. In this paper we prove a generalization of the Hosszu-Gluskin theorem for (sm, m)-groups in
terms of a {1,(s — 1)m + 1}-neutral operation and we define the algebra (Q"‘, {-, @, c’l"}) associated to the

(sm, m)-group (Q, A). The central operation of an (1, m)-group is defined in [7]. Research results of central
operation properties using a bijection g, : Q" — Q™ are presented by means of a series of theorems. Then,
a central operation of an (sm, m)-group is investigated using the previously mentioned algebra.

1. Introduction

Firstly, we explain a notation introduced by Janez USan which we use in this paper. Let p € N and let
g € Ny. Then ”Z denotes ay, ..., a, the sequence of elements of a set Q if p < g. If p = g, then aZ denotes the

element g, into the set Q and if p > g, then aZ denotes the empty sequence. If aZ is a sequence over a set Q,

. s . q-p+1
p < g and the equalities a, = ... = 4, = a are satisfied, then aZ is denoted by ~ a . If we have 4}’ € Q", then
S

aﬂ denotes a sequence of s sequences 4.

The notion of an (1, m)-group, as a generalization of the notion of an n-group, that is of a group was
introduced by G. Cupona in 1983. Let Q be a nonempty set and let A be a mapping of the set Q" into the set
Q™, where n > m + 1. Then, we say that (Q, A) is an (n, m)-groupoid. Since every groupoid is a group if and
only if it is a semigroup and a quasigroup, similarly an (1, m)-group was defined as an (1, m)-semigroup
and an (n, m)-quasigroup.

Definition 1.1. [1] Let (Q, A) be an (n, m)-groupoid, n > m+1. (Q, A) is an (n, m)-group iff the following statements
hold:

a) Vi, j€{l,...,n—m+ 1} and for every sequence x> € Q the following equality holds:

A (Xli_l,A (x{+n—1) x2n—m) -A (Xj_l,A (x;‘*'”—l) x2n—m),

i 7 itn 1 7Y j+n

which is called an (i, j)-associative law.
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by Vi € {1,...,n —m+ 1} and for every sequence aj € Q there is exactly one sequence x]' € Q such that the
following equality holds:

i-1 ,m n-m\ _ n
A(”1 s X1, 4; )_an—m+1‘

An (n,m)-groupoid (Q, A), where the statement a) holds, is called an (1, m)-semigroup, so that the
(n, m)-groupoid (Q, A), where the statement b) holds, is called a weak (1, m)-quasigroup.

11234
111|234
Example 1.2. Let (Q,-), Q = {1,2,3,4} be the Klein group defined with the following table: | 2 | 2 | 1 | 4| 3 |
313|412
414|321

def( 1234

Let 1 be the permutation of the set Q defined in the following way: ¢ = 1243 ) Further on, let A : Q% — Q?

be the mapping defined in the following way: A(x?) f (1 - P(x3) - x5, %2 - P(xg) - x6). We prove that (Q,A) is a
(6,2)-group. Firstly, we prove that the (1,2)-associative law holds.

A(A(S), x30) = A(x1 - P(x3) - X5, X2 - P(Xa) - X, X7, X3, X9, X10) = (X1 - P(x3) - X5 - P(X7) - Xo, X2 - (xa) - X - (Xg) - X10)
Alxy, A(x]), x) = A(x1, x2-1(x4)- X6, X3-1(X5) X7, X8, Xo, X10) = (¥1-1(x3)-X5-P(X7)- X0, X2 1(x4) - X6 (X5) - X10)

Similarly, we can prove that the (i, j)-associative law holds for all i, j € {1,2,3,4,5}.
Now, we prove that the statement b) of Definition 1.1 for i = 1 holds.
A(x,a}) = af & (x1- (@) - a3, x2 - P(a2) - as) = (a5,86) © x1 - Y(a1) - a3 = as and xy - P(ar) - a4 = ae

Because (Q,-) is a group, for every sequence a$ € Q there is exactly one x; € Q and exactly one x, € Q such
that the previous sequence of equivalences holds. Likewise, we can prove that the statement b) of Definition 1.1 for all
i€1{1,2,3,4,5} holds.

An interesting research method of n-structures and (1, m)-structures was inspired by J. Usan, who in his
manifold papers puts emphasis on a neutral operation. These results are systematized in the monograph
[16]: n-groups in the light of the neutral operations. An {i, j}-neutral operation of an n-groupoid (Q, A) was
defined by Usan in 1988 [10] and it presents a generalization of a neutral element of a groupoid. Then, in
1989 he defined a {1, n — m + 1}-neutral operation of an (n, m)-groupoid (Q, A).

Definition 1.3. [11] Let n > 2m and let (Q, A) be an (n, m)-groupoid. Furthermore, let ey, er and e be mappings of
the set Q"~2" into the set Q™. Then:
a) ey is a left {1, n—m+1}-neutral operation of the (n, m)-groupoid (Q, A) iff Vai =", xI" € Q the following equality
holds:
A (eL (aq’_z'”) ,alimam, x’lﬂ) =x1;

b) eg is a right {1,n — m + 1}-neutral operation of the (n,m)-groupoid (Q, A) iff Yai=",xI" € Q the following
equality holds:

2 -2 .
A (x’f,u’l1 M er (ag‘ m)) =x);

c) eis a{1,n —m+ 1}-neutral operation of the (n, m)-groupoid (Q, A) iff it is a left {1, n — m + 1}-neutral operation
and a right {1,n — m + 1}-neutral operation.
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Example 1.4. Let (Q, A) be the (6, 2)-group defined in Example 1.2. Now we define a mapping e : Q* — Q% such that

the following equality holds: e(a?) Y ((a1), P(az)). We prove that e is a {1, 5}-neutral operation of the (6,2)-group
(Q, A). Ya2,x? € Q two following sequences of equalities hold:

Ale(a?), a2, x2) = A(ar), Y(az), a3, x3) = (P(a1) - P(ar) - x1,P(a2) - Paz) - x2) = (x1, x2),
A3, a3, e(a})) = A(x3, a3, P(a1), P(a2)) = (x1 - P(a1) - P(ar), X2 - P(a2) - P(az)) = (x1, x2).
If we put (n,m) = (2,1), the definition of a {1,n — m + 1}-neutral operation of an (1, m)-groupoid is the

same as the definition of a neutral element of a groupoid. Furthermore, a {1, n —m + 1}-neutral operation has
the same properties as a neutral element in binary structures. Some of them are the following statements:

e there is at most one {1, n — m + 1}-neutral operation of the (1, m)-groupoid (Q, A) (n > 2m);

o if ¢y is a left {1, n —m + 1}-neutral operation of the (1, m)-groupoid (Q, A) and er is a right {1,n —m + 1}-
neutral operation of the (1, m)-groupoid (Q, A), then they are equal and e = ¢, = egisa {l,n —m + 1}-
neutral operation of the (1, m)-groupoid (Q, A);

e every (n,m)-group, where n > 2m, has exactly one {1,n — m + 1}-neutral operation.

The previous statements were proved in [11].

Moreover, one generalization of an inverse element in binary structures was defined in n-structures
by Janez USan 1994 in [12], in terms of a neutral operation. Similarly, he defined an inverse operation in
(n, m)-structures.

Proposition 1.5. [14] Let (Q, A) be an (n, m)-groupoid, n > 2m and let the following statements hold:

(a) in (Q,A) a{1,n — m + 1)-associative law holds;
b) for every sequence a} € Q there is at least one x]' € Q™ such that the following equality holds:

n—m
A(”l /x1) LAY

(c) for every sequence ay € Q there is at least one y\' € Q™ such that the following equality holds:

n—-my\ _ 4n
(ylfal ) Ayt

Then, there are mappings ~' : Q"™ — Q™ and e : Q""" — Q™ such that in the algebra (Q,{A, ™!, e}) the following
equalities hold:

(l)A(( n—2m bm) ,a n —2m A(bm n— 2m’x1141)) — an;

(lZ)A( (xm an -2m bm) ;l m (arli—Zm bm)—l) _ XT;

-1 n 2m

(lll)A( b n Zm n 2m bm )
(lZ))A(( n—2m bm n —2m bm) n 2m

Where holds »
(agt—Zm’bT) LfE( n—2m bm n— Zm) VﬂT_Zm, blm c Q;
1 n+l

. . . 2 2 onem) %f on—
where E is a {1, 2n—2m+ 1}-neutral operation of the (2n —m, m)-groupoid (Q, A) and A (xln m) 2 A (A (x") Ly m)'

In two following propositions, the equalities, which hold for a {1, n — m + 1}-neutral operation (n > 2m),
are given and they are important for further research of (1, m)-groups.
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Proposition 1.6. [5] Let (Q, A) be an (n, m)-group, n > 2m and let e be its {1,n — m + 1}-neutral operation. Then
Yal=>" e Q, VxI' € Q" and Vt € {1,...n — 2m + 1} the following equalities hold:

n-2m n—2m -1 m.
A(xl,at ,e(a1 ) a, ) x1;
n—2 n-2m t-1 .m\ _ ,m
A(at e(a1 ) a, ,xl)—xl.

Proposition 1.7. [6] Let (Q, A) be an (n,m)-group, n > 2m, e its {1,n — m + 1}-neutral operation and let ~!
Q"™ — Q™ be its inverse operation. Then Yali=#", bi=2", x™, y™ € Q the following equality holds:

A (XT/ bT—Zm’ yilﬂ) —A (A (xl ,arlz -2m <a711 Zm (b711—2m)>_1) n— 2m, y! )

2. A Generalization of the Hosszi-Gluskin Theorem for Some (1, m)-Groups in Terms of a Neutral
Operation

Hosszu-Gluskin theorem is very important for the description and systematization of n-groups.

Theorem 2.1. [8], [9] For every n-group (Q,A), n > 3, there is an algebra (Q, {-, ¢, b}) such that the following
statements hold: (1) (Q, ) is a group; (2) ¢ € Aut(Q,); (3) p(b) = b; (4) for every x € Q, "1 (x) - b = b - x; (5) for
every x € Q,A(X}) = x1- @(x2) - ... @"H(xy) - b

In 1995 Usan proved the Hosszi-Gluskin theorem by using a neutral operation and defined a Hosszu-
Gluskin algebra of order n, n > 3,[13]. One generalization of the Hosszt-Gluskin theorem for (sm, m)-groups
was described by Cupona and others in 1988 [2].

Following Usan’s approach to the research of (1, m)-structures, a generalization of the Hosszt-Gluskin

theorem for (sm, m)-groups, s > 2 in terms of a {1, n — m + 1}-neutral operation was proved in the following
two theorems.

Theorem 2.2. Let (Q, A) be an (sm, m)-group, s > 2, e : QE=2m — Q™M jts {1,(s — 1) m + 1}-neutral operation and
let a(s M e Q bean arbitrary sequence. ¥x\', yi' € Q™, we define the following operations:

(a) x;n . yyln d:f A( (s Z)m, yl )
(b) @ (x’lﬂ) d;f A (6 (als Z)m) x1 ,d(s 2)m> ,

def p (u(lss_zm)’] .

(©c' = A
Then, the following statements hold:

(1) (Q™, ) is a group;

(ii) @ € Aut (Q’” );

(i) @ (c ) =c

(iv) ! (bm) Sl = b, VBT € QT

@ AQ") = (3 ) 07 (30) - 07 () - V2" € Q

Proof. (i) Yx[', yT',z]" € Q™, according to (2) and according to definition of the (sm, m)-group, the following
sequence of equahties holds:

iy 2y) = Ay a " Ay, oy ) = A(A (e a2, yy) a2 = (- y) -2
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which proves that (Q™, -) is a semigroup.

Vx™, y™ € Q™ and for an arbitrary sequence aS2m ¢ , since (Q, A) is an (sm, m)-group, there is exactl
17 Y1 y seq 1 group y

one z|' € Q™ and there is exactly one ki' € Q™ such that the following implication holds:

A (xm,a(S—2)m, m) _ 5:% xm Lol — ]/T

1771 1 -
A(kT,a(f_z)", ) Y gk’” =y

= (Q", ") is a quasigroup.

3

1

(i1) By (b) and since (Q, A) is an (sm, m)-quasigroup, we conclude that ¢ : Q" — Q™ is a bijection. We prove
that ¢ is a homomorphism.

qo(x”’ . y,ln) (b)é(ﬂ) A (6 (a(s—Z)m) A (x at (s— Z)m, y,ln), gs Z)m) i A (A e(a(s—Z)m),x;n (s— 2)m) yl s Z)m) =6

e(ags—Z)m),xT a(ls 2)m)lA(a(15 2)m ,6((1;5 2)m),y ,
Y

(
A (6 (a(s—2)m) x;” ags Z)m) §572)m/A (e (a(lsf2)m) ,

[0 (c’”) A (e (a(s_z)"') , c;",a(ls_Z)m) 94

e (ags—Z)m) , A (6 (a(lss_Z)m) ] , ags—Z)m] 1:1
L6 A [e (agss_Z)m) ] (é) CT'

(iv) Yb7" € Q™ the following sequence of equalities holds:

s s—1
A [6 (ags—2)m)|] , ags—z)ml bm] A [e( 5— 2)m)|,A (e (a(ls—Z)m) a gs 2)m bm)] :3

-2
e( ags—z)m)|, A ( p ( a(ls—2)m)’ b, a§5_2)m),€(ﬂ(ls_2>m)] ®

S

¢ (a§5—2)m)'] e (a(ls—2)m) ) ags—2)m

(@),(c)
by =T A

=A 6(0(5_2)’"),A(b’ln,af_z)m,e(a(f_z)m)) 1ﬁ1A

s—2 5—2
=l (). )] :3“‘[@<aas-2>m>| (pl07) 2>m,e<af-2>m>>,e<a$‘”'“>]
s—3

=A 6(a(15_2)m),A(e (a(ls_z)m),qo(b’ln),a(f_z)m), e(a(ls—Z)m)|

3 )
= A e(a(:S—Z)m) ) ((P (bm) (s— 2)mle(a(15—2)m))’ e(ﬂgs_z)m)” 1:1

- A e( a(ls—Z)m), A( e(a(f_z)m) @ (bm) (s— Z)m)/ e( ags—z)m)|

3

—A slbm (52)m|_

=A Slb’” 52)"1 [ (s2)m]

-1
gs -2)m ,e(ags—Z)m)), e(ags—Z)m)|] L1

(C) 5 1 (brln) Ia(ls—Z)ml CT) (i_) ('0571 (bgn) . C’ln'
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(v) Yx7" € Q the following sequence of equalities holds:

) A xls 1)m A( (s—2)ym e(a(ls—z)m),x )) 1:

x(ls 1)m A<als Z)m ( (s— 2)m) A(xism —_ gs—Z)mle(a(ls—Z)m

(15 1)m A(ags 2)m e( (s— Z)m) Zn R gs Z)m),e(a

(s— A a(s 2)m @ x (s 2)m 1.1

(15 —2)m A< (s—=1)m ((552)1)7’1+1> sm( ))) (s 2)m (ﬂ)

1 4 (x(s —2)m+1’ al P ( (s 1m+1)) ))
(s=2)m s m x(s 1)m+1) ( (s— Z)m))

v
<

1 X (s—2)ym+1 P
(

— xls 2)m,A sz ;)m+1 (P( (S 1)m+1) (s— 2m (s— 2)m)) ( 5— 2)111)) _6
— x(ls 2)m A ags Z)m ( (s— 2)m) ( EZ 32_'—1 ( (s 1)m+1) (s— Z)m ( s5— Z)m))) e
(s=2)m (s—=1)m

N S " T N S S .

JA

=

(
(
(A ™).
&
&

1 (s 2)m+1
_ x(f 2)m A F5-2m (P(xi gzﬂ (p( " 1)m+1)) e( (s—2)m )) ( (s— Z)m)) @)
_ x(15 2)m A a(s 2)m (p(xzz 32+1> '(PZ( an)mﬂ) E( (s— 2)m>) ( (15 2)m )) L1
2
s mﬂémqwmwxmw«mmnmwmk
2
= A o () P () e(ﬂf‘”’”)|] ==
s—1
= Al (P(xiﬁl) : (PZ( 3%1) gt (x?:il)mn)' e(”(ls_2)m)’] =
= ALAQ @ (7)) 02 (D) 0 () oot e (7)) e (a72)
S
=A@ (2) - @2 () 0 (1 0) A [ (ai*”’“)|]] "
= xy ~(p(x§1"11)-(p2 (xgﬁn)” P 1(xs 1)m+1) . o

Theorem 2.3. Let (Q, A) be an (sm, m)-group, s > 3, e : Q=2
let (Q™,-) be a group and let for every sequence xJ" € Q holds:

(@) A (xl ) = (P( m+1) : (Pz( %H) et (xf:il)mﬂ) -, where:
(b) @ € Aut (Q™, "),

@ (ef) =<,

@) @ (b1r) - e = e b, b € Q™

® (i) ") e (o)) e (o))

844

())

—~
S
-

1.1

]_

— QM its {1, (s — 1)m + 1}-neutral operation. Also,

Then, there is a sequence agsfz)m € Q, such that Vx', yi' € Q™ the following equalities hold:

m - (s—=2)m

(x1 a ’yl)’

(E(ﬂs Z)m)’ " (s m),

(1) XY=

() =
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(iii) " = A

e (a(lss—Z)m) \J ]

Proof. (i) Lete]" € Q™ be a neutral element of the group (Q™,-) and f : Q™ — Q™ its inverse operation. Then,
V', y' € Q™ the following sequence of equalities holds:

/f(ca“)%] = p(ef) e () 0 (1) 0 () e 2

xy', et

A 1

=g 2 (F () o () - e D g (F () ey w =gy =
Hence, there is a sequence

5-3

A = [?f(cﬁ")]f g

such that the following equality holds:

A (x’l”,a(ls_z)m, yi") =x -yl

(ii) By (i) the following equality holds:

momo_ m (s=2)m m
ey -ef —A<el,a1 ,el).

By definition of the {1, (s — 1) m + 1}-neutral operation of the (sm, m)-group (Q; A), the equality:

€T —A (6 (a(ls—z)m) Iags—Z)ml ET)

holds.
Using the two above equalities and the assumption that (Q, A) is an (sm, m)-quasigroup, we conclude that
the equality

e (ags_z)m) = e )

holds. Then, by the following sequence of equalities, we conclude that there is a sequence ags " e Q such
that Yx[' € Q™ the equality (i) holds.

Ale(d27) xpam) 12 4 EZ"IXE";?/’(CE")] :

1 1771

= () @ (o) o2 (er) - ot (£ (o) e P () () = o ).
(iii)

A

5 s
e(ags—z)m)| @ A ? (a:) 371” ¥ (eilﬂ) . (ps—l (e;ln) . C'{" (i) CT- O

For the algebra (Q’”, {-,(p, c’lﬂ}) which have been described in Theorems 2.2 and 2.3, we say that it is
associated to the (sm, m)-group (Q, A).
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Example 2.4. Let (Q, A) be a (6,2)-group defined in Example 1.2 and e : Q> — Q? be its neutral operation (see
Example 1.4). For an arbitrary sequence a3 € Q and ¥x3, y3 € Q?, we define the following operations:

a) x%*y A(xl,al,yl) = (x1 - Y(a1) - y1, %2 - Y(a2) - yo);
D) o) L Alelad), 2, 2) = AWlar), pla), 2, 02) = (Wlar) - Y(r) - ay, plaa) - Y(o2) - )
3

fAM

de
2 %
e =

= A (a1), Y(a2), Y(ar), P(az), Y(a1), P(a2)) = (Y(a1) - a1 - P(ar), Y(az) - a2 - P(az)) = (a1,a2).

Since the afore mentioned operators satisfy the assumptions of Theorem 2.2, the following statements hold: (Q?, =) is
a group, p € Aut(Q?,#), (c3) = c3, p*(b7) * c3 = cj » b}, Vb] € Q% A(x) = x * p(x3) * p*(x§) = c], Va$ € Q.
Therefore, (Q%, {*, ¢, c%}) is the algebra which is associated to the (6,2)-group (Q, A).

In the following proposition we prove some interesting equalities which relate a {1, (s — 1) m + 1}-neutral
operation of an (sm, m)-group (Q, A) and an inverse operation of the binary group (Q™, ), which also relate

an inverse operation of an (sm, m)-group (Q, A) and an inverse operation of the binary group (Q™, -).
Proposition 2.5. Let (Q,A) be an (sm, m)-group, s > 3, e : Q2" — Q™ its {1,(s — 1) m + 1}-neutral operation
and 71 QD™ — QM its inverse operation. Also, let (Qm, {-, Q, c;”}) be an algebra associated to the (sm, m)-group
(Q,A)and f : Q™ — Q™ inverse operation of the group (Q™,-). Then, Vd(f*z)m € Q the following equality holds:
s—2)m m m s=2)m m
e(d ") = o (@) 97 (4h) -0 (@ 500) ¢7)- ®)

Proof. Firstly, we will prove that there is a sequence a(ls_z)m € Q such that Yo' € Q™ the following equality
holds:

£(or) = (a2, o) 4)

b;" ( (15 2)m bm) 2: (bm (s— Z)m’( (s—2)m bm) 1) 1:5 (ags—Z)m).

s—3
By Theorem 2.3 there is a sequence al’™>" = [ ", (cl )] such that e( s=2ym ) = ¢". Thus,

) = () = ) = ).

1

From the following sequence of equalities, we can conclude that Vd'">"

holds:

xllﬂ f (e (d(1572)m)) 2.3 A (x a(s 2)m f(e (d(ls—2)m))) (i) A (xlm,a(lsz)ml (a(lsz)m,e(d(s—Z)m))—l) L3
(A (x ags Z)m, (a(s—Z)mle(dgs—Z)m»—l)/a(s—Z)m/e(a(s—Z)m)) 1.7 7 ( T/ d(ls Z)m ( Z)m)) (2:>
(e, 27, ep) Z it () 2 (@) - 02 (d00) - (e) b =
=7 '(P( ) (di%) L ( E: §;$+1) . 0

€ Q the statement of the proposition

=A
A

3. A Central Operation in Terms of a Hosszt-Gluskin Algebra for an (sm, m) — Group

Further aim of research considering (1, m)-structures was to generalize the notion of a central element in
a binary group, i.e. to define mapping whose properties for (1, m) = (2,1) would correspond to properties
of the central element in a binary group. In n-group this notion was described by Usan in 2001 [15].
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Definition 3.1. [7] Let (Q, A) be an (n, m)-group, n > 2m and let a be a map of the set Q"~2" into the set Q™. We

say that « is a central operation of an (n, m)-group (Q, A) iff Va=*" € Q, Yb'>" € Q and VxI' € Q™ the following
equality holds:

Alar(apm), ai2m, ) = A(x), a (B2, b2, )
By Proposition 1.6 we see that a {1,n — m + 1}-neutral operation is an example of the central operation
of the (n, m)-group.
By means of a series of propositions, in [7] it was proved that a mapping « : Q"*" — Q™ is a central
operation of the (1, m)-group (Q, A) iff the equality
A (x’lﬂ, ar ", a (a’f‘zm)) =A (b;l_zm, a (b’f‘zm) , x’ln)
holds.

Proposition 3.2. Let (Q,A) be an (n,m)-group, n > 2m and a,f : Q"2" — Q™ its central operations. Then,
Yali=2" € Q the following equality holds:

A (CK (a;L—Zm) , a;L—Zm"B (a111—2m)) — A(‘B(ﬂ;l_zm), a111—2m, Oé(ﬂif_zm)) ]
Proof. For the central operation a of the (1, m)-group (Q, A) the equality
A (a (a;l‘zm) ,aim, x;") =A (x;", b (b’f‘z"’))

holds Ya"=2", b=", xI" € Q (see [7]). The proof of the proposition follows directly from the previous equality
if we put x?" instead of f(a%>") and b}~ instead of a7 ~>". [J

Theorem 3.3. Let (Q,A) be an (n,m)-group, n > 2m and « its central operation. Then, there is a bijection
0o : Q" — Q" such that Vx'' € Q™ and Ya=2",b"=2" € Q the following equalities hold:

() A (ay72) @y, ) = 0 (7).
Gi) A (i, (b12"), b1") = o ().

Proof. Let K"~2" € Q be an arbitrary sequence. Then, we define:

At a (k) k) Y o, (1),

Firstly, we will prove that such a defined mapping o, is a bijection. Since (Q, A) is an (1, m)-quasigroup, by
Definition 1.1 (b), for i = 1 holds: Ya;' € Q,31x™ € Q" such that holds A (v, a;~") = a”

n—m+1°
If we replace the sequence a7 in the above statement with A (0( (k;"zm)  k=am, y’lﬂ), then the following state-
ment holds: Yyi' € Q, Alx]" € Q™ such that holds:

Y= A, a(k2m), 1) = o ().
Then, equalities from the theorem hold by Definition 3.1. O

Definition 3.4. Let (Q, A) bean (n, m)-group, n > 2m, a : Q"™ — Q™ its central operation and let o, : Q™ — Q™
be a bijection. We say that the bijection o, is associated to the central operation a iff Vx' € Q™ and Ya ™" € Q holds:

A (a (11?‘2’“) ,a'f‘z”’, xg”) =0, (x’lﬂ) . (6)
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1234

1243
Q. In Example 1.2 we proved that (Q,A) is a (6,2)-group, when A : Q° — Q2 is the mapping defined with

Zl(lyzl?) = (x1 - (x3) - x5, %2 - P(xg) - x6). Let a : Q* — Q7 be a mapping such that Vx7 € Q the following equality
olds:

Example 3.5. Let (Q,-), Q = {1,2,3,4} be the Klein group, let ¢ = ( ) be the permutation of the set

a0 Z @y, 2- p),

We prove that this mappzng is a central operation of the (6,2)-group (Q, A). By Definition 3.1 we need to prove that
Va3 € Q, Vb2 € Q and Vx? € Q? the equality (5) holds for m =2, n = 6.

A(x3, a2, a(a?)) = A7, a(b?), x3) &

© A(x1,x2,a1,82,2 - P(a1),2 - P(az)) = A(by, bz, 2 - P(b1), 2 - Y(ba), x1, X2) ©

& (x1-P(ar) - 2-P(ar), x2 - P(az) - 2 P(az)) = (by - P(2) - by - x1,b2 - P(2) - by - x2) &
(=4 (2 -x1,2 . xz) = (2 -x1,2 'Xz)

d
With aa(xf) Y (2 x1,2 - x2) a bijection o, : Q* — Q2 associated to the central operation a is defined. Let us prove
equation (6):

Ala(ad), a3, x3) = AQRp(a1), 2p(a2), 81, a2, X1, X2) = (2:9(a1)P(ar)-x1, 2p(a2)P(a2)-x2) = (2:x1,2:%2) = 04(x3).

Theorem 3.6. Let (Q, A) be an (n,m)-group, n > 2m, a : Q""" — Q™ its central operation and let the bijection
0a : Q™ — Q™ be associated to the central operation a. Then, Vx} € Q the following equalities hold:

M( (1)) = A (o0 (1) ).
ou (A (1)) = A(¥ 00 (5111) )
m> Oa( (1)) = A (00 (3 00)):

Proof. (i)

O, (A (x;’)) © A (a (a’l"z’”) ,al=?m, A (x’f)) EY) (A (a (a;"z’") ,anm, x;”) , xfnﬂ) © A (oa (x1 ), x”m+1)
(i1)

o, (A x’f)) © A (oz (a’f‘zm),ag"zm,A (xﬁ’ ) Ya(a (a (aql‘z’”),a’f‘z’”,x’ln), Z1+1) ©

= A(A (e a(ay2m)a2m)x, ) 2 A A (o), a2 ) g, ,) @ Ao (20),20,,.,).
(iii)

oo (A (1) € Afa(ar2m),ar2m, A(x1)) 2 A(A (), o (a272m), ar2m) &
A( n—m A( " m+1'“(”711_2m)’”¥ zm)) (5)A( n—m A( ( n— Zm),a‘az—Zmlxz_mﬂ)) @A(x;’ "G, (xn m+1)) 0

If we have two central operations of an (1, m)-group and if a bijection is associated to each of them as
defined in 3.4, then the bijections commute.

Theorem 3.7. Let (Q, A) be an (n, m)-group, n > 2m and «, 3 : Qr=2m — Q™ its central operations. Also, let the
bijection o, be associated to the central operation a and the bijection og be associated to the central operation . Then
V' € Q™ the following equality holds:
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Proof. aa (o (37)) = A (a (a1 2), 32", (7)) 2 4 o). a2, 4 (B ay>). a2 p)) =
= A(A(a(ay2m), a2, p(ar2m)), a2, xp) 2 A(A(B(ap2"), ap 2, a(ay2")) 0l :
=A (ﬁ (a;l‘zm) a2, A (a (a’f‘z"’) a2, x;")) © op (aa (x’l”)) . O

Under particular condition, a bijection associated to the central operation « is an involution which has
been proved in the following theorem.

Theorem 3.8. Let (Q, A) be an (n, m)-group, n > 2m, a : Qm=2m — Q™ its central operation, let o, be the bijection
associated to the central operation o and let = : Q™™™ — Q™ be an inverse operation of the (n, m)-group (Q, A). If
Vaj~?" € Q the equality

(agt—Zml a (aT_Zm))_l — (agl—Zm) @)

holds, then Yx' € Q™ the following equality holds:

On (oa (x’ln)) =
Proof. Ya=*" € Q the following sequence of equalities holds:
0 (o0 (34)) 2 A e (o) a2 0 (1) = A (a2 a2, A o) a2, 7)) =

-1 15
:A((ag—zﬂl,a(a;’—m)) ,a’f‘zm,A(a(a;"zm),a¥‘2m,xq1)):x;”. O

Theorem 3.9. Let (Q, A) be an (sm, m)-group, s > 3 and (Q"’, o, cg"}) an algebra associated to the (sm, m)-group

(Q, A). Also, let f be an inverse operation in a group (Q™,-), a : QE=2m s O™ central operation of the (sm, m)-group
(Q,A) and o, a bijection associated to the central operation a. Then, Ay € Q™ such that for every sequence

ags—Z)m € Qand Vx| € Q™ the following equalities hold:

Dala ") =y f(p(ap) ¢ (i) 072 ()
i) 0a (") = (v ) -1

i) @ (1) = v

i) (7<) = - (o of)-

(
(
(
(

Proof. (i) Let us prove that by assumptions of the theorem 3!y]" € Q™ such that for every sequence ags—Z)m €eQ
the following equality holds:

alay ") o) o2 () @ (@) =

Let kgs—Z)m € Q be an arbitrary fixed sequence. Then by the definition of the central operation of an
(sm, m)-group, V"' € Q™ i Va(ls_z)m € Q holds:

A (a ({és—Z)m) , ags—Z)m’ xT) —A (x,lnl a (kgs—Z)m> , kgs—Z)m) —A (0( (kgs—Z)m) , kgs—Z)m’ an) )

Moreover, by Theorem 2.2 Vx7' € Q™, Vags_z)m € Q the following sequence of equivalences holds:

A (0( (ags—Z)m) , a(ls—Z)m’ x;ln) —A (0( (kgs—2)m) , kgs—Z)ml xT) o
a(ay™") - p(af) - @2 (a2,) -2 (a2 ) - 0" (37)
() ol0) 20 o2 () 0 ()
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) ) 2 ) () =) o) 25 )

k(s—Z)m

Because k; € Qs a fixed sequence, we can denote:

(s=2)m m 2m s—2 (1.(s—2)m m
a(l5™") - o () 97 () -+ 97 (kG ) = V2
which, due to the last equality from the above sequence of equalities yields the equality:
(s=2)m m 2 (2m s=2 [ (s—=2)m _m
a(d") o (@) -7 () 0 () = -
Because f is an inverse operation in the group (Q", ), the last equality is equivalent to:

s—2)m - (s—2)m
a(af™") =yt f e (@) @ (a) 0 (a3 mn)-
(i) Ayl € Q™ such that Vx' € Q" i Va(ls_z)m € Q the following sequence of equalities holds:

1)L A7) 1) ) )2 ) 0 ) )
(s— L
A 1

- (i) () o2 ) o o) e () -y

(iii) Va] (s5=2)m k(s 2" e Qand Vx" € Q™, by definition of a central operation and Theorem 2.2, the following
sequence of equlvalences holds:

A (a (ags—Z)m) , a(ls—Z)ml x;n) —A (x;n/ a (kgs—Z)m) , kgs—Z)m o
a(a™") (@) @ (@) o (@) e =g (a (K577)) 2 (k) 07 (K ) 6 &

1 1 a 1
a(ay ") (ay) - o (a2n,)-- 2 () e xy = 2 (a (k) - (k)2 (K ) - e

By (i), the last equality is equivalent to:

~—

m m m __ m m m
Y16 "X =X '(P(%)’Cl

Since this equality holds ¥Yx|" € Q™, thus it holds for x{' = e]' where ] is a neutral element of a group (Q™, -).
Accordingly, it follows:
vt =p(yy)- o,

that is

= (u)-
(iv) In the proof (iii), we have proved that A!y}" € Q™ such that Yx|' € Q™ the following equalities hold:

e = () of

and

i =o(y).

From the above equalities it follows:
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Theorem 3.10. Let (Q, A) be an (sm,m)-group, s > 3 and (Qm { o] }) an algebra which is associated to the

(sm, m)-group (Q,A). Also, let f be an inverse operation in the group (Q™,-) and ef' € Q™ its neutral element.
Let a be a central operation of the (sm, m)-group (Q, A), o, a bijection associated to the central operation o and let

~1. Q=M — Q™ be an inverse operation of the (sm, m)-group (Q, A). If for every sequence a(s M e Q the equality

( af*”m, a ( a(1572)m))_1 — ( a3572)m)

holds, then Ay € Q™ such that the following equality holds:

(v et) - (i ef) = ¢
Proof. ¥xT', a(lsfz)m € Q, Ayl € Q™ such that the following sequence of equalities holds:
5 0 on (7)) = o (o) 7)) = (v o) - (o )

Since (Q", ) is a group, from the above sequence of equalities it follows:

(i cr)- (v -ep) = O

Theorem 3.11. Let (Q, A) be an (sm, m)-group, s > 3 and (Q"’, e, CT}) the algebra associated to the (sm, m)-group

(Q,A). Also, let f be an inverse operation of the group (Q™,-) and €' € Q™ its neutral element. Let yi' € Q™ be a
fixed sequence such that ¥x|' € Q™ the following equalities hold:

(ll) (]/1 m).x‘in _x (]/1 : )/
) @ (yr) =y,

(C) (]/1 1) (yl )—6‘
We define the mapping a: Q=" — Q™ such that ¥al™>" € Q holds:

@a(af™) Ly o (ar) - o (@) o 3m0))-
Then, the following statements hold:

(i) v is a central operation of the (sm, m)-group (Q, A);
(i) for every sequence al*™™ € Q the equality

(s—2)ym (s=2)ym -1 _ (s—2)ym
(“1 a (“1 )) = “(“1 )
holds, where ~' : QD" — Q™ is an inverse operation of the (sm, m)-group (Q, A).

Proof. (i) ¥ € Qi Vx™ € Q™ the following sequence of equalities holds:

A E ) o) PO ) 4
=i folay) @ (@) 02 (o ma)) @ (@) - 0 (@) -+ 9 (e S) -
:(yl 1) Xy

Further on, ngs—Z)m € Qi Vx]' € Q" the following sequence of equalities holds:

(U)ol )02 o) o7 ) 7
o) 005) 052 -0 032

hS
RA

M
1

m

1
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=xy '(P(]/T f((P (bm) P (bfn’ﬁl) P Z(bﬁz g;ZH)) ) (P(b71n) P (bfnﬁl)"'(Ps_z (bEZ:§;Z+1)) oy =
:x;" (p(yl) () m (%‘ )i(y'lﬂ.cl).xg".

852

From the previous two sequences of equalities, we conclude that the statement (i) of the theorem holds.

(if) By Proposition 1.5, ¥a" " € Q and Vx" € Q" the equality

A ((ags—Z)ml x;")_l ) u(ls—z)m, x;ln) —e (a(ls_z)m)

holds, where ¢ : Q2" — Q™ is a {1, (s — 1)m + 1}-neutral operation of the (sm, m)-group (Q, A).

For x]"' = & (ags_Z)m), by Theorem 2.2 and Proposition 2.5, the above equality is:

(62, 0 () ) 92 ()92 () (o) =
- o) o2 (2) 96 ) ).

which implies the following sequence of equalities:

(ags—Z)m, o (a(ls Z)m))
= fp (@) -2 (an,) - @2 () - ) £a(aT™™)) - £ (o (ar) - 92 (a2ny) - 9 (aii:iizﬁg'ca")—
= F(o(a) 92 (530,) - (a0, ) - (“ 7)o (@) 92 ()9 2@ 3) ) 2
= f(o(ay)-*(a2n,)- @S (E o) (e (af) o (m+1)-~'<P5j(a5223§i:+1))-
o(ar) o (@) o () T)‘f(@(ﬂT)‘ﬁozgﬂzm’il)"‘@ (@ San) €l Yy ) =
= f(em)- £ (ur)- (CT) f((P( )@ (a2) o (a0 ) = »
0 )3l )0 )™
= als " als 0O
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