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Abstract. The convergence of difference scheme for two-dimensional iitial-boundary value problem for
the heat equation with concentrated capacity and time-dependent coefficients of the space derivatives, is
considered. An estimate of the rate of convergence in a special discrete Sobolev norms , compatible with
the smoothness of the coefficients and solution, is proved.

1. Introduction

The finite-difference method is one of the basic tools for the numerical solution of partial differential
equations. In the case of problems with discontinuous coefficients and concentrated factors (Dirac delta
functions, free boundaries, etc.) the solution has weak global regularity and it is impossible to establish
convergence of finite difference schemes using the classical Taylor series expansion. Often, the Bramble-
Hilbert lemma takes the role of the Taylor formula for functions from the Sobolev spaces [5], [6], [10].

Following Lazarov et al. [10], a convergence rate estimate of the form

—k
e = ollys < ChHlullwg, s> k, (1)

is called compatible with the smoothness (regularity) of the solution u of the boundary-value problem.
Here v is the solution of the discrete problem, / is the spatial mesh step, W] and WIZ(,h are Sobolev spaces of
functions with continuous and discrete argument, respectively, C is a constant which doesn’t depend on u
and h. For the parabolic case typical estimates are of the form

-k
[t = ollyyere < CC+ VO lullygzen, s>k, ()

where 7 is the time step. In the case of equations with variable coefficients the constant C in the error
bounds depends on norms of the coefficients (see, for example, [6], [14], [1]).

One interesting class of parabolic problems model processes in heat-conducting media with concentrated
capacity in which the heat capacity coefficient contains a Dirac delta function, or equivalently, the jump
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of the heat flow in the singular point is proportional to the time-derivative of the temperature [11]. Such
problems are nonstandard and the classical tools of the theory of finite difference schemes are difficult to
apply to their convergence analysis.

In the present paper a finite-difference scheme, approximating the two-dimensonal initial-boundary
value problem for the heat equation with concentrated capacity and time dependent coefficients is derived.
Special Sobolev norms (corresponding to the norms W;’l/ Zand Wi’] for a classical heat-conduction problem)
is constructed. In this norm, a convergence rate estimate, compatible with the smoothness of the solution
of the boundary value problem, is obtained.

Note that one-dimensional parabolic problem with weak solution is studied in [8] and [2]; 2D parabolic

problem with concentrated capacity and variable (but not time-dependent) coefficients is considered in [9]
and [3].

2. Differential problem and its approximation

Let us consider the 2D initial-boundary-value problem for the heat equation in the presence of a
concentrated capacity at the line x, = & :

2

(1 + Ko(x, — 5))% -y % (ai(x, t)%) +a(x,hu = f, inQ,

u=0, on dQAx(0,T), 3)
u(x,0) = up(x), onQ,

where §(x) is the Dirac delta function, K > 0 , Q = (0,1)?,and Q = Q x (0, T).

Let @;,— uniform mesh with step size hin Q, wy = @, N Q, w1, = @, N ([0,1) X (0,1)), W = @, N ((0,1) X
[0,1)),0n = wp N X, where Z = {(x1,&)lx1 € (0,1)}. Suppose that & is a rational number. Then one can
choose step h so that 0y, # 0. Let w, be a uniform mesh on (0, T) with the stepsize 1 = T/m, w; = w, U {0},
w? = w; U{T} and @, = w, U {0, T}. Also we assume that the condition c1h?* < T < ¢h? is satisfied. Define
finite differences in the usual way [13]:

v—ot vti—op o(x, t) —o(x, t—1T
Uf‘(x’t):T’ Uy, (x, 1) = o vi(x, t) = () T( ):vt(x,t—T),

where v*(x,t) = v(x + eih, t),e1 = (1,0), e = (0,1). The problem (3) can be approximated on the mesh
Qe = @ X @, by the following difference scheme with averaged right-hand side (see [7]):

(1 + Koy(xa — &)vr + Lyo = TIT5T; f, in Qpe, (4)

v=0, ony,Xw;, v(x,0)=uy(x), onwy,
12
where L,v = =5 Z((aivxl.)gi + (av5,)x) + (TfT%T[a)v,
i=1

] 0, x¢op
6;1(x2—£)—{ 1/h, xé€oy
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is the mesh Dirac function, and T2, T3, T; are Steklov averaging operators defined as follows:

X1+h/2

+ 1 / /
Tif(x1,x2) = Ty f(x1 Fh/2,x2) = 7 f fx}, x2)dxy,
xl—h/Z

Xo+h/2
+ 1 ’ ’
Taof (x1,x2) = T f(x1, %2 Fh/2) = i f flxr, x5)dx;,

)Cz—h/z

t
T; f(x, ) =T/ f(x,t —1) = % f flx, t')dt .
t—1

Note that these operators are self-commutative and transforms the derivatives to divided differences, for
example:

_ou Lou 20U _ou
Tia—xi—uyi, Tia_xi_uxl’ Tl-%—uxiyi, Tty—ut.
We also define operators
X2 , xp+h
— 2 Xy = X2 ’ ’ 2 Xy = X2 ’ ’
s =5 [ (1452 s, T =5 [ (12252 s .
xo—h X2

We define the following inner products and norms:

1/2
© Wiy =12 Y 0@u), lollwy = ©0)7, )

XEwy

2 1/2
(U/ u)Lz((u,-h) =h Z U(X)M(X), ”U”Lz(wih) = (U, U)Li(wm) .

XEWij

Further, we denote B,v = (1 + Koy(x2 — £))v and define the following norms:

oI, = 0l ., + Kk Y %),

XEoy

h3
2 _ 1,2 2 2
ol =12 )P0 + e ) P,

xewy,\oy, X€oy
2

2 2 2
lollgs, = Y (Iowal + ol o) + e,

i=1
2 2 2
U||= =71 o, =, +71 or(-, t .
lolfes o, = T 20BN, -+ ) T ),

te@, . tew;
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Also we define the following discrete norms and seminorms:

2 2
R, =T ) N0 0 IO iy =T Y, IRCDIZ )

tew? tew?

2
o |L2(a27 Wi, )) Z lo(-, t)”Wl/z( iy

tew?

loC, ) = o, ) .,

Wl/2 (we; Ly (uh) Z Z t _ t/|2 4

tew,; FPEwq, '#t

llo(., S IE
2(on)
o |w”2 @i Laon) Z Z |t - t’|2 ’

tew; VeEw, '#t

ol

1
190 = Pt + 0 (s * s 0 Ol
tew,
—1 t
101y = sty vy, t+T+T — Il DIE o,y
tew,

ol 1y = 2 0O+ 0o+ 1oy

tew?

3. Convergence in W;’I/Z(Qhr)

Now we shall prove the convergence of the difference scheme (4) in the W;’l/ %(Qpe) norm.
We shall assume that (see [7], [16]):

a; € W2+6,1+£/2 HN W2+£,1+£/2 5), a € W1+£,(1+£)/2 N W1+£,(1+5)/2 )), a; > O, a> O,
2 2 2 2

feW; Q) N WyA(Q2), we WHP(Q1) N WHHA(Q2) N IWFA(E X (0,T)), ©

where Ql = (0/ 1) X (0/ é) ’ QZ = (0/ 1) X (é/ 1) ’ Ql = Ql X (0/ T) ’ QZ = QZ X (0/ T) ’ r= {(x1, E)lxl € (01 1)} and
e>0.

Let u be the solution of the boundary-value problem (3) and v the solution of the difference problem (4).
The error z = u — v satisfies the finite difference scheme

2

(1 + Kéh(xZ - 5))25 + LhZ = Z éi,f,- + Xt + 60/,IJZ +1, in QhT ’ (6)
i=1

z=0, ony,Xwi, z(x,00=0, onwy,

where
du

1 .
&=THT;. T‘( 8—%) - E(ai +auy,,
x=u-TiTou, p=ku—-Ti(ku), n=(T7T5T;a)u — TTT5T; (au).
Letusset & = é~1 + 5gha , X=X +00,X, =1+ 04,1, where

- K, u  day du
S T =Y,

—~ W[ _,0u
X-—[T%L'

S rmmfn )
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and [M]Z = u(xll é + 0/ t) - u(xlr 5 - Or t) .
The following a priori estimate for the solution of the difference scheme (6) is valid (see [9], [15]):

I2ll 71120, < C[”EZ”Lz(Qm) + 1€M@y + 1110 Wiy F 1ML @)

HMeao w0 + X220 Ly + M2, L@ + ||”||W;/2<amz<oh>)]'

Therefore, in order to estimate the rate of convergence of the difference scheme (4), it is sufficient to
estimate the right-hand side of the inequality (7).

The estimates of terms &,, &1, &1 are derived in [15]:

”éZ”Lz(QhT) < Chz(“”Z”w;*trlﬂ/z(Ql)“u||w§r3/2(Ql) + ”aZ”Wgﬂrl“/Z(QZ)||ullwgr3/2(Q2))- (8)
“51”L2(Qm) < Chz(”lll”Wﬁ“'l“/Z(Ql)||u||W§’3/2(Q1) + ||(11||W§+a/1+e/z(Q2)||u||w§,3/2(Q2)). (9)
€10, w2y S O Umillyzeerr g lullyse g + Iatllyzeerson g, lillygsn g,)- (10)

Let us estimate the term 7. At the point x ¢ 0, we have 1 = 1. We decompose term 1 = i + 7, where
M = (TeTaT;a)(u — T1T5T; w),
2 = (T2T2T; a)(T2T2T; 1) — T2T2T; (au).

The term 7; is a bounded bilinear functional of the argument (a, u) € L,(e) X (e), g > 2, where

W2l

29/(9-2)
e=(x1 —hx1+h)X(x2—h,x,+h) X (t—7,t). Further, ; = 0 whenever u is a polynomial of degree one in x;
or x; or a constant in t. Applying Bramble-Hilbert lemma [5] we get:

[M(x, B) < C|a|Lq(e)|M|W§,q}(q_2)(e)/ q>2. (1)

The term 7}, is a bounded bilinear functional of the argument (a, u) € W,;’ v 2(e) X W;q’}(/;_z) (e), g > 2. Further,

> = 0 whenever is a constant or u is constant. Applying Bramble-Hilbert lemma we get:
[2(x, t)] < C|ﬂ|Wq1,1/2(€)|M|W;5}(/;_2)(6), q>2. (12)

At the point x € 0, we decompose term 7 = Ny + My + Ty + M Where

_ _ h _du
s, = (T2T34T; a)[u — (T2T2*T; u) + 5(:rf:r —)]

t8x2
+ + - + = + - h — + = —au
n@4@%%@@@%@—?&%wmﬁwﬁm—ﬁﬁ%m@n5ﬂ

’
Xp=E+0

xp=6+0

The term 17;—’1) is a bounded bilinear functional of the argument (a, u) € L,(e}) X Wﬁq} -2 (e7), g > 2, where
el = (x1=h,x1+h)X(&, E+h) X (t—1,t),e] = (x1—h,x1+h) X (E—h, &) X (t—1,t). Further, 77?1) = 0 whenever u is
a polynomial of degree one in x1 or x; or constant. Applying Bramble-Hilbert lemma we get the following
estimate:

+
)5 < Clale, e llyzr, ey 7> 2 (13)

The term r](ia) is a bounded bilinear functional of the argument (4, u) € W;’l/ 2(e;—’) X W;q’}(;_a(ef). Further,

r](’—'z) = 0 whenever a is a constant or u is constant. Applying Bramble-Hilbert lemma we get the following
estimate:
|T]E£2)(x, h < C|a|w;,1/z(ef)|u|wl,1/z € q>2. (14)

2q/(q-2)
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From estimates (11)-(12) and (13)-(14), after summation and using imbeddings W;H’(HS)/ 2(Qk) - W;’l/ 2(Qk) ,
Wy Q) € Ly(Q), Wy ¥A(Q0) € Wa 5 (Q0), Wy *H(Qu) € Wyl (Qu), for g = 4/(2—€), & > 0, k =
1,2, we have

||;I-“L2(Q;”) < Ch2(||a||W;+s/(1+&)/z(Ql)||u||w§,3/z(Ql) + I|ﬂ||W;+e',(1+g)/2(Q2)||M||W;,3/2(Q2)). (15)

Let us estimate the term 7). At the point (x, ) € o), X w,, using Holder inequality, we obtain the following
estimate

ou

ox

u

7 + llall, o)

Lag/q-2(0},)

IA(x, £)ll < Ch'/? (Ilallwop

Lag/g-2) (U,,)]

where ||11||L,4(a;) = llaC, & £ 0, I, @y -k +hyxE-t)- After summation over the mesh oj, X w,; we have

N 2
Willesormany < COF (Il gl ooy + ol ol )

2q/(9-2)

where ”‘ZHLq(Zi) =lla(, € £0,)IL,s) » Qe =(0,1) X (0, T). Further, using imbeddings

Wo14(Qe) < Ly(Qe), W5*4(Qe) € Wiy 5,(Qe), 2 <4 <3,

we have
||77||L2(Gh><w7) < Ch2(||””w;/2'”4(2*)”””wg/zﬁ/‘*(y) + ||Ll||W;/ZJ/4(Zf)||M||W;/2,5/4(Zf)).
Further, the following result is valid [9]:
[, &, .)||W;71/z_5/271/4(Q5) < CHM”W;,s/z(Q).
Using previous result to all the norms in the previous estimate simply follows
A 2
||n||L2(O’],XwT) <Ch (||a||W;“'(1“)/2(Q1)||u||Wg’3/2(Q1) + ”a”W;HV(HE)/Z(QZ)”u”WgWZ(QZ)) (16)

The estimates of terms x, i, X are derived in [9]:

_ 1
X522 Loy < Ch? y[log 7, (lllzor g + lllyzan g,))s (17)
1
2
||1u||V~\/;/2(a)-[,L2(cr,,)) < Ch* 4/log }—l||u||wg,3/z(ZX(o/T)), (18)
1
||ﬂ|v~vg/z(wm(m) < Ch*4[log el o,y (19)

Finally from (7)-(10) and (15)-(19) we obtain the following result.

Theorem 3.1. Suppose that solution and coefficients of the differential problem (3) satisfy conditions (5). Then,
the solution of the difference scheme (4) converges in W;’l/ *(Qne) to the solution of the differential problem (3) and,
assuming that T < h?, the following estimate is valid:

2
= Dllgzq,) < CH(maxtadlyz-oio g, + maxailyzee e, + lallygieeieon g, + lallyieooon g, + I(h))

X (”M”W;,s/z(Ql) + ||M||W§,3/2(Q2) + ”u”Wg/S/Z(ZX(O,T))) ’

where I(h) = +/log1/h.
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4. Convergence in W:’I(th)

In this section we shall prove the convergence of the difference scheme (4) in the Wi’l(QhT) norm.
We shall assume that

a; € Wr(Q1) n W**(Qy), ae WaN Q) N W2 (Q2), 4;>0,a>0,

20
FeWQUNWIHQ), ueWA(Qi)NW;A(Q) NW,A(Z % (0,T)). @)

We also assume that the coefficients a;(x, t) are decreasing functions in the variable ¢.
The following a priori estimate for the solution of the difference scheme (6) is valid (see [4]):

h

1/2
2 2 2
el g, < c[f Y Wers, + ol + e+ Syl + Il ) | (21)

tew?

The following estimates are obtained in [3] and [4]:

1/2
2 2 2
[T 3 i+ s, utnghl] < CH (el gy + sy + W) (22)

Tew;

12
[T Z Héi,}?i”éhlJ < Chz(llﬂi”Wg/S/z(Ql)||u||w<2h2(Ql) + ||ai||wg/3/2(Q2)”u”wng(Qz))/ i=1,2. (23)

TEWF

Let us estimate the term 1. From (11) and (12), after summation and using imbeddings Wﬁ’l(Qk) C

Ly(Q0), W3 (Qo) € W2(Qi), Wy(Qu) € Wy2 5 (Q0), WyA(Qu) € Way 5(Qi), 2< g <4, k=12 we
have

1/2
[h%Z Y |n<x,t>|2] < CH(lallyzs g gz, + Mallyzs oy illsz ,)- (24)
tew! xewy\oy

At the point x € 0, we decompose term 1 = 11" + 177, j* = Y.7_, 1 , where
Nt = (T1T3* Ty a)(u — TIT5 Ty u),
;= (M T (T T w) = TIT T, (aw).

The term 717 is a bounded bilinear functional of the argument (a,u) € Ly(e1) X W;q}(/ qz_z)(e]), where e; =

(x1 —h,x1 + h) X (x2,x2 + h) X (t — 7,t).Further, r}{’ = 0 whenever u is constant . Applying Bramble-Hilbert
lemma we get:

C
.
i Ce, B < laley ol ey > 2.

Summing over the meshes w} and o;, and using imbeddings W%’ YQ,) c W;’l/ 2(Qy), W;l 2(Q2) C WZ}( q_2)(Q2),
2 < q <4, we have (see [12]):

1/2
™’ n 2 3/2
[k T 2 D e R | < O lall gy oz o

tew} x€oy,

2 2
<Ch ”a”W;I/Z(QZ)”u”W;;/(q,z)(Qz) < Ch “a”W§l(Qz)”u”W;Z(Qz)’ (25)
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where QZ = (0,1) X (§,E + h) x(0,T). The n; is a bounded bilinear functional of the argument (a,u) €
W;’l/ %(e1) X W;’q}(/;_z)(el), g > 2. Further n; = 0 whenever a is a constant or u is constant. Applying
Bramble-Hilbert lemma we get the following estimate:

In; (x, )] < C"ZIW;'”Z(el)|”|W§;,}{j,2)(e1) ,q>2.

Summing over the meshes w} and 0, and using imbeddings Wé’ YQ,) c W;’ u 2(Qz), Wg’z(Qz) C W;’q}(/;_z)(Qz),

q > 2, we have:

1/2
Th?
S Y Y R < OPlallye g sz, (26)

tew? x€op

From estimates (25) and (26) we have

2

1/
Th?
S Y Y @R < OPlallye g e, (27)

tew} X€oy,

Analogous estimate holds for term 77:

2

1/
Th? _
T Y Y P | < Clallyg gl (28)

tew? x€oy

From (24), (27) and (28) we obtain

1/2

T Z “77”2,71 < Chz(”allwg,l(Q])||M||W~21,2(Q1) + “a”WgJ(QZ)”uHW;rZ(QZ))- (29)

+
teEwy

Finally, from (21), (22), (23) and (29) we get:

Theorem 4.1. Suppose that solution and coefficients of the differential problem (3) satisfy conditions (20). Then,
the solution of the difference scheme (4) converges in Wg’l(QhT) to the solution of the differential problem (3) and,
assuming that T < h?, the following estimate is valid:

[|lu — U“W;J(Q}”) < Chz(miax ||”"“W§’3’2(Q1) + mlax IIaillwg,sxz(Qz) + ||“||w§'1(Q1) + ||a||w§,1(Qz) + 1)

X (I 0y + Il * Millageeniory) -

This estimate is compatible with the smoothness of the coefficients and solution of the differential problem (3).
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