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Abstract. In this paper, by using some families of special numbers and polynomials with their gener-
ating functions and functional equations, we derive many new identities and relations related to these
numbers and polynomials. These results are associated with well-known numbers and polynomials such
as Euler numbers, Stirling numbers of the second kind, central factorial numbers and array polynomials.
Furthermore, by using higher-order partial differential equations, we derive some combinatorial sums and
identities. Finally, we give two computation algorithms for Euler numbers and central factorial numbers.

1. Introduction

The special numbers and their generating functions have many applications in combinatorics and
probability theory. There are many advantages of the generating functions. By using generating functions
for special numbers and polynomials, one can get not only various properties of these numbers and
polynomials, but also enumerating arguments such as counting the number of subsets and the number of
total ordering.

In order to give our results, we need to recall some well-known generating functions for the special
combinatorial numbers such as Stirling numbers of the first kind, central factorial numbers, Euler numbers
and polynomials, array polynomials and other special numbers as follows:

Apostol-Euler polynomials of the first kind of order k are defined by

FP1(t, x; k, λ) =
( 2
λet + 1

)k

etx =

∞∑
n=0

E(k)
n (x;λ)

tn

n!
, (1)

(|t| < π when λ = 1 and |t| < |ln (−λ)| when λ , 1), λ ∈ C, the set of complex numbers, k ∈ N, the set of
natural numbers. By (1), we easily see that

E(k)
n (λ) = E(k)

n (0;λ),
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which denotes Apostol-Euler numbers of the first kind of order k. By substituting k = λ = 1 into (1), we
have

En = E(1)
n (1)

which denotes Euler numbers of the first kind (cf. [4]-[17], and the references cited therein).
Euler numbers E∗n of the second kind of order −k are defined by

FE2(t, k) =
( 2

et + e−t

)−k

=

∞∑
n=0

E∗(−k)
n

tn

n!
, (2)

where |t| < π
2 (cf. [13], [14], and the references cited therein).

Combining Remark 4.2 and Equation 12 in [13], we have the following explicit formula for the numbers
E∗(−k)

n as follows:

E∗(−k)
n = 2n−k

k∑
j=0

(
k
j

) (
j −

k
2

)n

. (3)

We also note that there exists (presumably) different proofs for the above formula.
λ-Stirling numbers of the second kind S2(n, v;λ) defined by

FS(t, v;λ) =

(
λet
− 1

)v

v!
=

∞∑
n=0

S2(n, v;λ)
tn

n!
, (4)

where v ∈N0 =N ∪ {0} and λ ∈ C (cf. [8], [11], [16], and the references cited therein).
By using (4), we have

S2(n, v;λ) =
1
v!

v∑
j=0

(
v
j

)
(−1)v− jλ j jn

(cf. [8], [11], [16]).
Substituting λ = 1 into (4), we have Stirling numbers of the second kind S2(n, v) which denotes the

number of ways to partition a set of n objects into v groups:

S2(n, v) = S2(n, v; 1).

(cf. [1]-[17]; see also the references cited therein).
In [11], we defined λ-array polynomials Sn

v(x;λ) by

FA(t, x, v;λ) =

(
λet
− 1

)v

v!
etx =

∞∑
n=0

Sn
v(x;λ)

tn

n!
, (5)

where v ∈N0 and λ ∈ C (cf. [5], [4], [11], [12], and the references cited therein).
Central factorial numbers T(n, k) of the second kind are defined by

FT(t, k) =
1

(2k)!

(
et + e−t

− 2
)k

=

∞∑
n=0

T(n, k)
t2n

(2n)!
(6)

(cf. [2], [6], [12], [17], and the references cited therein).

Remark 1.1. Central factorial numbers are used in combinatorial problems. That is, the number of ways to place k
rooks on a size m triangle board in three dimensions is equal to

T(m + 1,m + 1 − k),

where 0 ≤ k ≤ m (cf. [1]).
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In [14], we defined the numbers y1(n, k;λ) by means of the following generating functions:

Fy1 (t, k;λ) =
1
k!

(
λet + 1

)k
=

∞∑
n=0

y1(n, k;λ)
tn

n!
, (7)

where k ∈N0 and λ ∈ C. If we substitute λ = −1 into (7), then we have

S2(n, k) = (−1)ky1(n, k;−1) (8)

(cf. [14], [13]). The numbers y1(n, k;λ) is related to following combinatorial sum:

B(n, k) = k!y1(n, k; 1) =

k∑
j=0

(
k
j

)
jn =

dn

dtn

(
et + 1

)k
|t=0 , (9)

where n = 1, 2, . . .(cf. [7], [14]). In the work of Spivey [15, Identity 8-Identity 10], we see that

B(0, k) = 2k,B(1, k) = k2k−1,B(2, k) = k(k + 1)2k−2,

and also

B(m,n) =

n∑
j=0

(
n
j

)
j!2n− jS2(m, j), (10)

(cf. [3, p.4, Eq-(7)], [14]; see also the references cited therein). In [14], we gave a conjecture and two open
questions associated with the numbers B(n, k).

In [14], we defined the numbers y2(n, k;λ) by means of the following generating functions:

Fy2 (t, k;λ) =
1

(2k)!

(
λet + λ−1e−t + 2

)k
=

∞∑
n=0

y2(n, k;λ)
tn

n!
. (11)

In [14], we gave some combinatorial interpretations for the numbers y1(n, k), y2(n, k) and B(n, k) as well
as the generalization of the central factorial numbers. We also see that these numbers were related to the
rook numbers and polynomials.

We summarize our results as follows: In Section 2, by using functional equations of the generating
fucntions, we derive various identities and relations related to the Stirling numbers, the Euler numbers, the
central factorial numbers, the array polynomials, the numbers y1(n, k;λ) and the numbers y2(n, k;λ).

In Section 3, we give higher-order partial derivative for the generating functions. By using these
functions, we give some combinatorial sums including the numbers y1(n, k;λ) and the numbers y2(n, k;λ)
with their generating functions.

In Seciton 4, we give computation algorithms for the Euler numbers and the central factorial numbers.

2. Functional equations and related identities

By using generating functions for Stirling numbers, Euler numbers, central factorial numbers, array
polynomials, the numbers y1(n, k;λ) and the numbers y2(n, k;λ) with their functional equations, we derive
some identities and relations involving binomial coefficients and these numbers and polynomials. We also
give computation formulas for Euler numbers and polynomials of the first kind and the second kind.

By using (7) and (4), we obtain the following functional equation:

Fy1 (2t, k;−λ2) = (−1)kk!Fy1 (t, k;λ)FS(t, k;λ).
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By using the above equation, we get

∞∑
n=0

2ny1

(
n, k;−λ2

) tn

n!
= (−1)kk!

∞∑
n=0

y1(n, k;λ)
tn

n!

∞∑
n=0

S2 (n, k;λ)
tn

n!
.

By using the Cauchy product in the above equation, we obtain

∞∑
n=0

2ny1

(
n, k;−λ2

) tn

n!
= (−1)kk!

∞∑
n=0

n∑
l=0

(
n
l

)
S2(l, k;λ)y1(n − l, k;λ)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive the following theorem:

Theorem 2.1.

y1(n, k;−λ2) = (−1)kk!2−n
n∑

l=0

(
n
l

)
S2(l, k;λ)y1(n − l, k;λ). (12)

By substituting λ = 1 into (12) and combining (8) and (10), we arrive at the following corollary:

Corollary 2.2.

S2 (n, k) =

n∑
l=0

k∑
j=0

(
n
l

)
2k− j−n(
k − j

)
!
S2 (l, k) S2

(
n − l, j

)
.

By combining (5) with (6) and (11), we obtain the following functional equation:

FA(2t,−k, 2k; 1) = (2k)!FT(t, k)Fy2 (t, k; 1).

Using the above equation, we get

∞∑
n=0

2nSn
2k(−k)

tn

n!
= (2k)!

∞∑
n=0

T(n, k)
t2n

(2n)!

∞∑
n=0

y2 (n, k; 1)
t2n

(2n)!
.

Therefore

∞∑
n=0

2nSn
2k(−k)

tn

n!
= (2k)!

∞∑
n=0

n∑
l=0

(
n
l

)
T( j, k)y2 (n − l, k; 1)

t2n

(2n)!
.

By using the above equation, we arrive at the following theorem:

Theorem 2.3.

S2n
2k (−k) = (2k)!2−2n

n∑
l=0

(
n
l

)
T(l, k)y2 (n − l, k; 1) .

Lemma 2.4. ([9, Lemma 11, Eq-(7)])

∞∑
n=0

∞∑
k=0

A(n, k) =

∞∑
n=0

[ n
2 ]∑

k=0

A(n,n − 2k),

where [x] denotes the greatest integer function.
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By combining (5) and (6) with (7), we get the following functional equation:

FT(t, k) =
k!

(2k)!

k∑
l=0

(2l)!
l!

FT

( t
2
, l
)

FA

(
−

t
2
,

l
2
, k − l; 1

)
.

By using the above equation, we obtain

∞∑
n=0

T(n, k)
t2n

(2n)!
=

k!
(2k)!

k∑
l=0

(2l)!
l!

∞∑
n=0

2−2nT(n, l)
t2n

(2n)!

∞∑
n=0

Sn
k−l

(
l
2
, 1

)
tn

n!
.

By using Lemma 2.4, we get

∞∑
n=0

T(n, k)
t2n

(2n)!
=

k!
(2k)!

k∑
l=0

(2l)!
l!

∞∑
n=0

[ n
2 ]∑

j=0

T
(
j, l

)
Sn−2 j

k−l

(
l
2
, 1

)
2−2 j(
2 j

)
!

tn(
n − 2 j

)
!
.

Comparing the coefficients on both sides of the above equation, we arrive the following theorem:

Theorem 2.5. If n is an even integer, we have

T(n, k) =
(2n)!k!
(2k)!n!

k∑
l=0

[ n
2 ]∑

j=0

(
n
2 j

)
(2l)!
22 jl!

T
(
j, l

)
Sn−2 j

k−l

(
l
2
, 1

)
and if n is an odd integer, we have

k∑
l=0

[ n
2 ]∑

j=0

(
n
2 j

)
(2l)!
22 jl!

T
(
j, l

)
Sn−2 j

k−l

(
l
2
, 1

)
= 0.

By combining (5) with (2), we obtain the following functional equation:

FT (2t, k) =
22k

(2k)!

k∑
j=0

(
k
j

)
(−1)k− jFE2(t,−2 j).

By using the above functional equation, we get

∞∑
n=0

2nT(n, k)
t2n

(2n)!
=

22k

(2k)!

∞∑
n=0

k∑
j=0

(
k
j

)
(−1)k− jE∗(−2 j)

n
t2n

(2n)!
.

Comparing the coefficients of t2n

(2n)! on both sides of the above equation, we arrive at the following theorem:

Theorem 2.6.

T(n, k) =
22k−n

(2k)!

k∑
j=0

(
k
j

)
(−1)k− jE∗(−2 j)

n . (13)

By using (11) and (4), we get the following functional equation:

Fy2 (t, k;−λ) =
k!

(2k)!

k∑
j=0

(−1)kFS(t, j;λ)FS(−t, k − j;λ−1).
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By using the above functional equation, we obtain

∞∑
n=0

y2(n, k;λ)
tn

n!
=

k!
(2k)!

k∑
j=0

(−1)k

 ∞∑
n=0

S2(n, j;λ)
tn

n!

∞∑
n=0

S2

(
n, k − j;λ−1

) (−t)n

n!

 .
By using the Cauchy product in the right-hand side of the above equation, we obtain

∞∑
n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

k!
(2k)!

k∑
j=0

n∑
d=0

(−1)k+n−d
(

n
d

)
S2(d, j;λ)S2

(
n − d, k − j;λ−1

) tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 2.7.

y2(n, k;λ) =
k!

(2k)!

k∑
j=0

n∑
d=0

(−1)k+n−d
(

n
d

)
S2(d, j;λ)S2

(
n − d, k − j;λ−1

)
.

By using (11) and (1), we obtain the following functional equation:

Fy2 (t, k;λ) =
λ−k

(2k)!

k∑
j=0

(
k
j

)
FP1

(
2t,

k
2

; j, λ2

)
.

By using the above equation, we get

∞∑
n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

2nλ−k

(2k)!

k∑
j=0

(
k
j

)
E(−k)

n

(
k
2

;λ2

)
tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 2.8.

y2(n, k;λ) =
2nλ−k

(2k)!

k∑
j=0

(
k
j

)
E(−k)

n

(
k
2

;λ2

)
.

By using (7), (11) and (4), we obtain the following functional equations:

Fy2 (t, k;λ) = Fy1 (t, 2k;λ)
k∑

j=0

(
k
j

)
j!FS

(
−t, j;λ−1

)
(14)

and

Fy2 (t, k;λ) = Fy1 (t, 2k;λ)
k∑

j=0

(−1)k− j
(

k
j

)
j!Fy1

(
−t, j;λ−1

)
. (15)

By using (14), we get
∞∑

n=0

y2(n, k;λ)
tn

n!
=

k∑
j=0

(
k
j

)
j!
∞∑

n=0

y1(n, 2k;λ)
tn

n!

∞∑
n=0

S2(n, j;λ−1)
(−t)n

n!
.

Therefore
∞∑

n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

n∑
l=0

k∑
j=0

(−1)n−l
(

k
j

) (
n
l

)
j!y1(l, 2k;λ)S2(n − l, j;λ−1)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:
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Theorem 2.9.

y2(n, k;λ) =

n∑
l=0

k∑
j=0

(−1)n−l
(

k
j

) (
n
l

)
j!y1(l, 2k;λ)S2(n − l, j;λ−1).

By using (15), we obtain

∞∑
n=0

y2(n, k;λ)
tn

n!
=

k∑
j=0

(−1)k− j
(

k
j

)
j!
∞∑

n=0

y1(n, 2k;λ)
tn

n!

∞∑
n=0

y1(n, j;λ−1)
(−t)n

n!
.

By using the Cauchy product in the above equation, we get

∞∑
n=0

y2(n, k;λ)
tn

n!
=

∞∑
n=0

n∑
l=0

k∑
j=0

(−1)n+k− j−l
(

k
j

) (
n
l

)
j!y1(l, 2k;λ)y1(n − l, j;λ−1)

tn

n!
.

Comparing the coefficients of tn

n! on both sides of the above equation, we arrive at the following theorem:

Theorem 2.10.

y2(n, k;λ)
tn

n!
=

n∑
l=0

k∑
j=0

(−1)n+k− j−l
(

k
j

) (
n
l

)
j!y1(l, 2k;λ)y1(n − l, j;λ−1)

3. Partial differential equations of generating functions for the numbers y1(n, k; λ) and y2(n, k; λ)

In this section, we give higher-order partial differential equation of generating functions for the numbers
y1(n, k;λ) and y2(n, k;λ). By using these equations, we derive some identities and relations of these numbers.

In order to give some combinatorial sums including partial derivative of generating functions for the
numbers y1(n, k;λ) and y2(n, k;λ), we need the following partial derivative equations:

∂
∂t

{
Fy1 (t, 2k;λ)

}
= λetFy1 (t, 2k − 1;λ),

∂2

∂t2

{
Fy1 (t, 2k;λ)

}
= λetFy1 (t, 2k − 1;λ) + λ2e2tFy1 (t, 2k − 2;λ),

∂3

∂t3

{
Fy1 (t, 2k;λ)

}
= λetFy1 (t, 2k − 1;λ) + 3λ2e2tFy1 (t, 2k − 2;λ) + λ3e3tFy1 (t, 2k − 3;λ)

and

∂
∂t

{
Fy1 (−t, j;λ−1)

}
= −λ−1e−tFy1 (−t, j − 1;λ−1),

∂2

∂t2

{
Fy1 (−t, j;λ−1)

}
= λ−1e−tFy1 (−t, j − 1;λ−1) + λ−2e−2tFy1 (−t, j − 2;λ−1),

∂3

∂t3

{
Fy1 (−t, j;λ−1)

}
= −λ−1e−tFy1 (−t, j − 1;λ−1) − 3λ−2e−2tFy1 (−t, j − 2;λ−1)

−λ−3e−3tFy1 (−t, j − 3;λ−1).

Consequently, by using induction method, we get the following lemma:
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Lemma 3.1.

∂m

∂tm

{
Fy1 (t, 2k;λ)

}
=

m∑
l=1

λleltS2 (m, l) Fy1 (t, 2k − l;λ) (16)

and

∂v−m

∂tv−m

{
Fy1 (−t, j;λ−1)

}
=

v−m∑
l=1

(−1)v−m λ−le−ltS2 (v −m, l) Fy1 (−t, j − l;λ−1). (17)

Substituting t = 0 into (16) and (17), we get two combinatorial sums by the following theorem:

Theorem 3.2.

∂m

∂tm

{
Fy1 (t, 2k;λ)

}∣∣∣∣∣
t=0

=

m∑
i=1

λi (λ + 1)2k−i

(2k − i)!
S2 (m, i) (18)

and

∂v−m

∂tv−m

{
Fy1 (−t, j;λ−1)

}∣∣∣∣∣
t=0

=

v−m∑
l=1

(−1)v−m
λ−l

(
λ−1 + 1

) j−l(
j − l

)
!

S2 (v −m, l) . (19)

Applying Leibnitz’s formula for the vth derivative, with respect to t, to (15) and combining with (16)
and (17), we obtain higher-order partial differential equation by the following theorem:

Theorem 3.3.

∂v

∂tv

{
Fy2 (t, k;λ)

}
=

k∑
j=0

(−1)k− j
(

k
j

)
j!

v∑
m=0

(
v
m

)
∂m

∂tm

{
Fy1 (t, 2k;λ)

} ∂v−m

∂tv−m

{
Fy1

(
−t, j;λ−1

)}
. (20)

By substituting t = 0 into equation (20) and combining with (18) and (19), we get combinatorial sums for
higher-order partial derivative of the number y2 (n, k;λ) by the following theorem:

Theorem 3.4.

∂v

∂tv

{
Fy2 (t, k;λ)

}∣∣∣∣∣
t=0

=

k∑
j=0

(−1)k− j
(

k
j

)
j!

v∑
m=0

(
v
m

) m∑
i=1

λi (λ + 1)2k−i

(2k − i)!
S2 (m, i) (21)

×

v−m∑
l=1

(−1)v−m
λ−l

(
λ−1 + 1

) j−l(
j − l

)
!

S2 (v −m, l) .

4. Computation algorithm for the central factorial numbers T(n, k)

In this section, we firstly give a computation algorithm for the numbers E∗(−k)
n . By using (13), we construct

a computation algorithm for the central factorial numbers T(n, k) of the second kind with the help of explicit
formula for the numbers E∗(−2 j)

n .



Y. Simsek / Filomat 32:20 (2018), 6869–6877 6877

Algorithm 1 This algorithm will return the values of the second kind Euler numbers of negative order, E∗(−k)
n given by

equation (3).

procedure Second Kind Euler Numbers Order Negative(n: nonnegative integer, k: natural numbers)
Begin
Lobal variables:
j← 0,E← 0
for all j in {0, 1, 2, . . . , k} do

E← E + Binomial Coef
(
k, j

)
∗ Power

(
j − (k/2) ,n

)
end for
return 2n−k

∗ E
end procedure

By using Algorithm 1, we give the following algorithm to compute the numbers T(n, k):

Algorithm 2 This algorithm will return the values of the central factorial numbers, T(n, k) of the second kind given by
equation (13) with the help of the Algorithm 1.

procedure Second Kind Central Factorial Numbers(n: nonnegative integer, k: natural numbers)
Begin
Lobal variables:
j← 0,T← 0
for all j in {0, 1, 2, . . . , k} do

T← T + Power
(
−1, k − j

)
∗ Binomial Coef

(
k, j

)
∗ Second Kind Euler Numbers Order Negative

(
n, 2 j

)
end for
return

(
22k−n/ (2k)!

)
∗ T

end procedure
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