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On Hermite-Hadamard Type Integral Inequalities for n-times
Differentiable Log-Preinvex Functions

M. A. Latif?, S. S. Dragomir*?

?School of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa
bSchool of Engineering and Science, Victoria University, P. O. Box 14428, Melbourne City, MC8001, Australia

Abstract. In this paper, new Hermite-Hadamard type inequalities for n-times differentiable log-preinvex
functions are established. The established results generalize some of those results proved in recent papers
for differentiable log-preinvex functions and differentiable log-convex functions.

1. Introduction

It is well known in mathematics literature that if f : [ € R — R is a convex mapping and a,b € I with
a <b. Then

b b
f(#) < ﬁf F)dx < w (1.1)

Both the inequalities hold in reversed direction if f is concave. The inequalities (1.1) are known as Hermite-
Hadamard inequalities, a result first noticed by Ch. Hermite in 1883 and rediscovered ten years later
by J. Hadamard. Since the discovery of (1.1) in 1883, Hermite-Hadamard inequality (see [10]) has been
considered the most useful inequality in mathematical analysis. Some of the classical inequalities for means
can be derived from (1.1) for particular choices of the function f. A number of papers have been written on
this inequality providing new proofs, noteworthy extensions, generalizations, refinements, counterparts
and new Hermite-Hadamard-type inequalities and numerous applications, see [4]-[7], [9], [11]-[15], [25],
[271-[30], [32, 33] and the references therein.

In recent years, many mathematicians generalized the classical convexity in many ways and some of
those are given as follows.

Definition 1. [36] A set K C IR" is said to be invex with respect ton: K x K — R" if
u+tn(v,u) € K,VYu,ve K t €[0,1].

The invex set K is also called an n-connected set.
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Definition 2. [36] Let K € R" be an invex set with respect to ) : KX K — R". A function f : K — R is said to be
preinvex with respect to 1, if

flu+tn(,u)) <1 —1t) f(u)+tf(v)
forallu,v € Kand t € [0,1]. The function f is said to be preconcave if and only if —f is preinvex.

It is to be noted that every preinvex function is convex with respect to the map 7 (u,v) = u — v but the
converse is not true see for instance [36].

Definition 3. [36] Let K € IR" be an invex set with respect to ) : KX K — R”". A function f : K — IR is said to be
prequasi-invex with respect to n, if

fu+tn(v,u)) < max{f(u), f(v)},Yu,v e K t € [0,1].

Definition 4. [21] Let K C IR" be an invex set with respect to n : KX K — R". A function f : K — (0, 00) is said to
be logarithmic preinvex with respect to 1, if

flu+tn(,u)) < (f(u))l_t (f(v))t,Vu,v eK te[0,1].

It is clear from the arithmetic-geometric mean inequality that if f : K — (0, ) is logarithmic preinvex
function, we have

flu+tn(,u) < (Fw)' ™ (f@))'
< (1-1) f(u) + tf(v)
<max{f(u), f(v)},

Yu,ve K, te[0,1].
Most recently, Noor [20] has obtained the following Hermite-Hadamard inequalities for the preinvex
and log-preinvex functions.

Theorem 1. [20] Let f : [a,a + n(b,a)] — (0, c0) be a preinvex function on the interval of the real numbers K° (the
interior of K) and a, b € K° with a < a + n(b,a). Then the following inequality holds:

+n(b,a)
f(a+?h@) ba)fW] F)dx < 'fM+f@) (1.2)

Theorem 2. [20] Let f : [a,a + n(b,a)] — (0, c0) be a log-preinvex function. Then

100 F@-f®)
n@a)fm SO s 4 @y —1og F )

The other results connected with (1.2) in which two log-preinvex functions are involved can be found
in [24].
For log-preinvex functions, following Hermite-Hadamard type inequalities were also proved in [31].

Theorem 3. [31] Let K C R be an open invex subset with respect to 1 : K x K — R. Suppose that f : K — Risa
differentiable function. If | f( is log-preinvex on K, for every a,b € K with 1 (b, a) > 0, we have the inequality

+n(b,0) 1/ ,/ ’a
i [ 1 ies n0s) tog [/ ¢ ) <am

snmm (1.3)
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Theorem 4. [31] Let K C R be an open invex subset with respect to 7 : K x K — R. Suppose that f : K = Risa
1 g>1,q €, isalog-preinvex on K, for every a,b € K with n(b,a) > 0, we have the

inequality

‘f( 1’7” ba)

where + = 1 =1

f n(b,a) | n(b,a) f (Ll ’f (b)) 72 (lf’(ll)|)q/2 1/q .
< 7 .
217 (p + 1) g1 | log (|f (b)|) - log((f’(a)D

For more results on Hermite-Hadamard type inequalities for preinvex functions and n-times differ-
entiable preinvex functions, we refer the readers to the recent works of Sarikaya et. al , [31] and Latif
[16].

The main purpose of the present paper is to establish new Hermite-Hadamard type inequalities in
Section 2 that are connected with the right-side and left-side of Hermite-Hadamard inequality for n-
times differentiable log-preinvex functions which generalize those results established for differentiable
log-preinvex functions given in [31].

2. Main Results
In order to prove our main results, we need the following two lemmas:
Lemma 1. [16] Let K C R be an open invex subset with respect ton : KX K — R. Suppose f : K — Ris a function

such that f exists on K forn € N, n > 1. If f™ is integrable on [a,a + 1 (b,a)], where a,b € K with n(b,a) > 0,
the following equality holds

f@)+ f(a+n@®a) 1 +1(b,a) = L) (k= 1) (n, o)
- 5 + o) f f(x)dx+; 2E D) O +1(b,a)

_ D (e

1
o ) "7 (n = 2t) f"a + tn (b,a))dt, (2.1)

where the sum above takes O whenn =1 and n = 2.
Lemma 2. [16] Let K € R be an open invex subset with respect to 1 : KX K — R. Suppose f : K — R s a function

such that f exists on K for n € N, n > 1. If f® is integrable on [a,a + 11 (b, a)], where a,b € K with n(b,a) > 0,
the following equality holds

= [(_1)k + 1] (n (b/a))k 1 1 +n(b,a)
w(,, 1 _
Y 00) ey [ @

_ G "™ (1 (b, a))"
n!

k=0

1< O f(a + tn(b,a)dt, (2.2)

where

, telol
K, (t) :=
t-1", te (%,1]

The following useful results will also help us establishing our results.
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Lemma 3. If p > 0and p # 1, then
1 n+1
DTt (-1f
t'utdt = n! (2.3)
L U ( n+1 HZ (7’1 k)' (ln [,l)k+1
Proof. For n =0, we have

1
-1
0 lny

which coincides with the right hand side of (2.3) for n = 0.
Forn =1, we have

s p 1
t +—,
f H = i e (ng?

and it coincides with the right hand side of (2.3) for n = 1.
Suppose (2.3) is true forn — 1, i.e.

1 n k
_ (=1)"(n - (=1)
n=ltgp -2 27 V¢ 2N —1) Z 24
j; il (lnu) e (n—1-k)! (np)" @4

Now by integration by parts and using (2.4), we have

1
n,t H n n-1, t
fotydt e, ! uldt

N (VO] (1"
Bt G N U 1!
lnp Inu [ (Inp)" + (=) /JZ‘ (n—1—-k)! (In )"

B L ( n+1 | \ ( 1)k+1
= L (n M)n+1 :“Z < (71— 1 - B! (In )

! _ n+1 1 n _
- Tlu + ( 1) n+1/1l. +nl ( 1) k+1
ntng - (In y) ~ (n—k)! (In p)
( ‘rl+l '

n!
(ln [J)n+1 [J Z (1/[ k)' (ln ‘u)k+l
This completes the proof of the lemma. [

Lemmad4. If p > 0and p # 1, then

% _ n+1 | n _ k
f t'utdt = (D—ﬁ +nlu'? ) = (2.5)
0 (Inw)" = 2k (n = k)! (In )™

Proof. Tt follows from Lemma 3 after making use of the substitutiont = 5. [

Lemma5. If u > 0and p # 1, then

' n
f (-0 pldt = ——E 12 ! . (2.6)
(Inu)™ = 2k (n — k) (In )™
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Proof. It follows from Lemma 4 afer making the substitution1 -t =u. O
Lemma 6. [35] For a > 0 and u > 0, we have
1 o0 k-1 k-1
. (D" (nu)
Ia,:=ff“tm= S 1 MY
(@, ) N HZ; @,
where
@r=a@+D)(@+2)..(a+k-1).
Moreover, it holds
m—1
" L (Inp)*! Inu Inule
a,u)-p ) (<1 1 x? < i (' _t
Py s aq2n(m-1)\ ™

We are now ready to give our first result.

Theorem 5. Let K C IR be an open invex subset with respect ton : K x K — R. Suppose f : K — R is a function
such that f® exists on K and f is integrable on [a,a + 1 (b,a)] for n € N, n > 2, where a,b € K with 1 (b,a) > 0.

If | f (”)|q is log-preinvex on K for g > 1, we have the inequality

+1(b,a)
‘f(mf(amw,a»_n(;a)fq f(x>dx—Z( DG fO@+n,a)

2 2(k+ 1)!

Y
< @O () g g, @)

2n! n+1
where
£y < S e[ (70 @) ~in(F @))] < 1 @ 2] @)
g [in (| ®)) ~ n (| @)™ a[in (| ) - In |1 @])]

gy S (@) -l @] -2}
=1 (n — k)lgk+t [ln ()f(n) (b)() —In (|f(”) (a)|)]k+1

Proof. Suppose n > 2. Since K is an invex set with respect to 1, for every a,b € K and t € [0, 1], we have
a +tn(b,a) € K. By the log-preinvexity of | f (”)|q on K, Lemma 1 and Holder inequality, we have

b, +n(b,a)
‘f(a)+f(;+n( a))_n(;ﬂ)f f(x)dx

(n@a»
ol

_f?4y@—UWWJW
2 (k +1)!

! n-1 _ )11/‘7( ! n-1 _ (n) q )
x( fo 171 (n — 2¢) dt f 71 (n = 20) |[fa + tn (b, )| dt
b, 1-1/ 1/q
mﬁ»&ﬁ)%f”W”WWmD(WWWﬂ
1/g

(n (b, a))" )f(n) a)| s ! n-1, ' n,t
- e (n+1) (nfot ydt—Zf(;tydt) 28

O +n(b,a)

1/q
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@l
By Lemma 3, we have

1 1
n f " utdt -2 f tlutdt
0 0

GV o B G ) A o VSt L (-1)"
(Inp)" n.yz n—k)(nu)*  (Inu)™! n.yz n—k)! (In p)**!

k=1 ( k=0 (

where p =

_ ED)"at[np +2] - 2u(np)” Z (1) [Inpu + 2]
- (In ‘u)n+1 < (11— K)! (In )k+1

2.9)

[Fom)
|f @)’

Applying (2.9) in (2.8) and replacing y = # 1, we get the desired inequality (2.7). This completes the

proof of the theorem [

Corollary 1. Suppose the assumptions of Theorem 5 are satisfied and if ¢ = 1, we have the inequality

f(a)+ f(a+n(b,a) 1 +1(b,a) 1) (= 1) (n (b))t
2 YO f f(x)dx - Z 20t D) O +n(b,a)

- )

Ei(n,1), (2.10)

- 2n!
where
E, (n,1) = (-1)" n!{[ln(|f(n) (b)|) -1In (|f(n) (a)l)] +2} 7 @) ) 2|0 v)|
| [ (7 @) =7 @) [in 7 @) ~ [ @)

— | (b)| 2 ¢ 1) ln f(n) (b)D - h‘(lf(n “)D] + 2}
= -0t (| 0)]) - n (0 @))]
Corollary 2. Under the assumptions of Theorem 5, if n = 2, we have the inequality

n(b,a) 1-1/
. (ba)f >d' M))() "Eeo, @

2

where
2{a[in (" @) ~tn(f @] +2}|f" @[ 2{a[in (" ©) - (" @] -2} " O]
7 (i @) - @) 7 [in(7 @) - (7 @))]

Corollary 3. Under the assumptions of Theorem 5, if n = 2 and q = 1, we have the inequality

Ei1(2,9)=

+n(b,a) 2
f(a)+f(;+n(b,a))_n(; a)f' feodi| < WO p o1, 12)
where
e o 2 2 o) -l @) <2l @] 2{fn(r @) -n(r @] -2 @]
14, =

[in(f @) - (I @) [in () ®)) - n (| @|)]
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Remark 1. If n(b,a) = b — a in the inequalities (2.11) and (2.12), one can get inequalities for the bounds of the
difference between middle and the right most terms in the Hermite-Hadamard inequalities (1.1) in terms of second
order derivatives for log-convex functions.

Theorem 6. Let K C R be an open invex subset with respect ton: KX K — R. Suppose f : K — R is a function
such that f® exists on K and f" is integrable on [a,a + 1 (b,a)] for n € N, n > 2, where a,b € K with 1 (b,a) > 0.

If | f (”)|q is log-preinvex on K for g > 1, we have the inequality

f@+ f(a+n(ba) 1 +1(ba) (1) (k - (@, a))
‘ 2 B n(b,a) f: f(x)dx - Z 2(k+1)! f(k)(ﬂ +1(b,a))

(1 @) [/ — 1 - z><2q—1>/<q—1>]“ )|

= 22111
s s o) -mow) Y
e e T e
Proof. By the log-preinvexity of I £ )q on K, Lemma 1 and Holder inequality, we have
f@+f@+na) ) S D) k-1 (n®,a) ®
‘ 2 n(b ﬂ)f f(x)dx_kZ;‘ 2(k+1) f (a+17(b,a))
b, 1-1/q 1/q
< %( fo (n —261/(71) dt) ( fo {00 | F0a + t (b, a))|’ dt)
1-1/q
(1] (b, a))n [n(Zq—l)/(q—l) —(n- 2)(2q_1)/(‘7_1):| 1 1-1/q 1 ~ 1/q
q - . A=) (| rn t
< =T (Zq 1) ( f B (|l () )dt)
(1, a))" [n(zw)/(qfl) —(n _2)<zq—1)/<q—1>] | @) [ y_q g
= t‘7(”‘1) tdr (2.14)
2] 2q 1 \ Harp =
where u = I;E:Ehﬂq # 1. Applying Lemma 6 to the last integral in the inequality (2.14) and simplifying, we

get the required inequality (2.13). O
Corollary 4. Suppose the assumptions of Theorem 6 are satisfied and n = 2. Then

f@+fla+nba) 1 +n(ba) (n(b,a))|f" ®)|
‘ _n(ba)f f(x)dx‘g —2

- ” ” k-1,1/4
terM”eﬂﬂwvwmemM 215
X(Zq—l ka (7 +1), (219
Corollary 5. If n(b,a) = b — a in Corollary 4, we have
f@+f® 1 b-a’|f'®) (g-1\""
‘ 2 _b—afaf(x)dx‘g 2 (Zq—l)
i 0 1 AN
pcy (9 +1), .
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Now we give some results related to left-side of Hermite-Hadamard’s inequality for n-times differen-
tiable log-preinvex functions.

Theorem 7. Let K C IR be an open invex subset with respect to 1 : K x K — R. Suppose f : K — R is a function
such that f® exists on K and f is integrable on [a,a + 1 (b,a)] for n € N, n > 1, where a,b € K with n(b,a) > 0.

If | f (”)|q is log-preinvex on K for g > 1, we have the following inequality

n-1 [(—1)k + 1] (T] (b, a))k 1 a-+1)(b,a)
L 2HL (k + 1)! f(k)( + Eﬂ(b, a)) - 10, f(x)dx
(n(0,)" |f* (@)
T 201/ (1 4 1)1 (1) {[E2 ()] + [Es (m,)]"}), (217)
where
(_1)n+1
E> (n,q) = —
7' [in (90 1 (||
+ ('f ol JW n (1)
|f(n)(a)| 120 g 12nk (1 — k) [ln(‘f(n)(b)‘) _ ln(|f(n)(a)|)]k“
and
o (py|”
Es(n,9) = LA
7 [l @l - (@] o)
(|f(n)(b)|J‘7/2 n .
F@l) 1= g2k n - bt [in (|0 ®)) - In (| fo@)])]

Proof. Suppose n > 1. By using Lemma 2 and the log-preinvexity of | f (”)|q on K forn € N, n > 1, we have

n-l [(—1)k + 1] (T] (b, a))k 1 1 +n(b,a)
(k) - _
;}. 2k+1 (k + 1), f (ﬂ + 277 (br ﬂ)) 1 (b, a) f f (X) dx

n % 1
g(”(bn—'”))[fo t"|f(”)(a+tr](b,a))|dt+f (1-1)" )f(”)(a+tn(b,a))|dt}

@) @[t ) e v
<— "d "utd 1-1)"d —t)" u'd , .
< Mtq U} q U<ﬂt](£aﬂyj 2.18)

n!
n 94
where u = |§(:)(2)|| # 1. Applying Lemma 4 and Lemma 5 to the integrals in the inequality (2.18) and
() (1|1
replacing 1 = 1/{ (n)EZ;:” # 1, we get the desired inequality (2.17). This completes the proof of the theorem. []

Corollary 6. Suppose the assumptions of Theorem 7 are fulfilled and if g = 1, we have

( 1) +1] (T] (b a)) ® 1 1 +1(b,a)
2k+1 (k4 1)! f (’1 + Eﬂ(b,ﬂ)) - m f; f(x)dx

< ()" [f@{[E (0, D] + [Es (0, DI}, (2.19)
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where
n+l 0B\ & k
Ex(n,1) = =D _ [)f(n) b))) (-1) _
[n([fo@)) - n([fof)]™ @) & 2k -0t [in (|0 ®)]) - in (@)
and
) - 12,
E; (1’1, 1) = |f (b)| n+1 N (|f(n)(b)|] : k+1°
[in ([fo@)) - (@) [fo@] @) S 20k r = st [in (| @)]) - in (|10 @))]

Corollary 7. [31] If we take n = 1 in Corollary 6, we have

1 1 +n(b,a)
f(a+§n(b,a))—mfua Fdx| < (0,0 (“ ) “( ) (2.20)
Corollary 8. [31] Ifn(b,a) = b —a in Corollary 7, we have
‘f(ﬂ)_Lfbf(x)dx <@b- “f(b _ ‘f(a (2.21)
2o S o -mira)| |

Theorem 8. Let K C R be an open invex subset with respect ton: K X K — R. Suppose f : K — R is a function
such that f® exists on K and f is integrable on [a,a + 1 (b,a)] for n € N, n > 1, where a,b € K with 1 (b,a) > 0.

If | f (”)|‘7 is log-preinvex on K for g > 1, we have the inequality

D + 1] )
® (g4 = -
21 (k + 1)! f ( * Zn(b,a)) n(,a) J,

(b, a))" ) (b ) o [\72 0 [\I/2
L (n(b,a)) [\/|f (61)| + \/‘f ( )‘J l<|f( )(b)|) <|f( \a )‘)

1 a+1(b,a)

f(x)dx

k=0

2.22
on+l/p (np + 1)1/P ql/qn! In (|f(n)(b)|) ln(‘f(n)(ﬂ)’)‘ ( )

1,1
where - + + = 1.
pa

Proof. From Lemma 2, the Holder integral inequality and the log-preinvexity of | f (”)|q on K, we have

He s t]me) L e
Z 2K+ (k + 1) f (11 + E’?(b/a)) - W f(x)dx

(n(b,a)" |£ (a)l ) RGN 1 N e ]
—l Pdt [f [|f<n>(a)|] dt +(ﬁ (1—t)7’dt] f;(—(ﬂn)(a))] dt

2

ey [Jim@l o] (o) - (ow) "
= 2110 (np + 1)1 gl/an! 1“(|f(”)(b)|)—ln((f(n)(a))) . (2.23)

Which is the required inequality. This completes the proof of the theorem. [
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Corollary 9. Under the assumptions of Theorem 8, if n = 1, we have the inequality

+n(b,a)
‘f(tZ + %n(b,a)) - n(;,a) f () dx

< n(b’a)[‘/‘f/(“ﬂ + \/|f'(b)|J (|f/(b)|)q/2 _ (|f/(a)()m 1/9
T 2P n()f o)) - n(|f @))

. (2.24)

here L +1 =1,
where ; + 4

Corollary 10. If we take 11(b,a) = b —a in (2.24), we get the inequality:

1/q

—a "(a ’ ’ 2 _ (¢ 12
(55)- 5 [ oo = ol irl grop”-gra® |

5 240 (p+ 1) gt |log(|f (0)]) - log (|f @)])

Remark 2. Inequalities (2.24) and (2.25) are the corrected inequalities that are given in Theorem 4 and its related
corollary from [31].

Acknowledgement 1. The authors appreciate anonymous referees for their careful corrections and valuable com-
ments on the original version of this paper.
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