

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

On Hermite-Hadamard Type Integral Inequalities for *n*-times Differentiable Log-Preinvex Functions

M. A. Latifa, S. S. Dragomira,b

^aSchool of Computational and Applied Mathematics, University of the Witwatersrand, Private Bag 3, Wits 2050, Johannesburg, South Africa ^bSchool of Engineering and Science, Victoria University, P. O. Box 14428, Melbourne City, MC8001, Australia

Abstract. In this paper, new Hermite-Hadamard type inequalities for *n*-times differentiable log-preinvex functions are established. The established results generalize some of those results proved in recent papers for differentiable log-preinvex functions and differentiable log-convex functions.

1. Introduction

It is well known in mathematics literature that if $f: I \subseteq \mathbb{R} \to \mathbb{R}$ is a convex mapping and $a, b \in I$ with a < b. Then

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_a^b f(x)dx \le \frac{f(a)+f(b)}{2}.$$
(1.1)

Both the inequalities hold in reversed direction if f is concave. The inequalities (1.1) are known as Hermite-Hadamard inequalities, a result first noticed by Ch. Hermite in 1883 and rediscovered ten years later by J. Hadamard. Since the discovery of (1.1) in 1883, Hermite-Hadamard inequality (see [10]) has been considered the most useful inequality in mathematical analysis. Some of the classical inequalities for means can be derived from (1.1) for particular choices of the function f. A number of papers have been written on this inequality providing new proofs, noteworthy extensions, generalizations, refinements, counterparts and new Hermite-Hadamard-type inequalities and numerous applications, see [4]-[7], [9], [11]-[15], [25], [27]-[30], [32, 33] and the references therein.

In recent years, many mathematicians generalized the classical convexity in many ways and some of those are given as follows.

Definition 1. [36] A set $K \subseteq \mathbb{R}^n$ is said to be invex with respect to $\eta: K \times K \to \mathbb{R}^n$ if

$$u+t\eta(v,u)\in K, \forall u,v\in K,t\in[0,1].$$

The invex set K is also called an η -connected set.

2010 Mathematics Subject Classification. 26D15, 26D99

Keywords. Hermite-Hadamard's inequality, invex set, log-preinvex function, Hölder's inequality.

Received: 11 January 2014; Accepted: 07 February 2014

Communicated by Predrag Stanimirović

Email addresses: m_amer_latif@hotmail.com (M. A. Latif), sever.dragomir@vu.edu.au (S. S. Dragomir)

Definition 2. [36] Let $K \subseteq \mathbb{R}^n$ be an invex set with respect to $\eta : K \times K \to \mathbb{R}^n$. A function $f : K \to \mathbb{R}$ is said to be preinvex with respect to η , if

$$f(u + t\eta(v, u)) \le (1 - t) f(u) + t f(v)$$

for all $u, v \in K$ and $t \in [0, 1]$. The function f is said to be preconcave if and only if -f is preinvex.

It is to be noted that every preinvex function is convex with respect to the map $\eta(u, v) = u - v$ but the converse is not true see for instance [36].

Definition 3. [36] Let $K \subseteq \mathbb{R}^n$ be an invex set with respect to $\eta : K \times K \to \mathbb{R}^n$. A function $f : K \to \mathbb{R}$ is said to be prequasi-invex with respect to η , if

$$f(u + t\eta(v, u)) \le \max\{f(u), f(v)\}, \forall u, v \in K, t \in [0, 1].$$

Definition 4. [21] Let $K \subseteq \mathbb{R}^n$ be an invex set with respect to $\eta : K \times K \to \mathbb{R}^n$. A function $f : K \to (0, \infty)$ is said to be logarithmic preinvex with respect to η , if

$$f(u + t\eta(v, u)) \le (f(u))^{1-t} (f(v))^t, \forall u, v \in K, t \in [0, 1].$$

It is clear from the arithmetic-geometric mean inequality that if $f: K \to (0, \infty)$ is logarithmic preinvex function, we have

$$f(u + t\eta(v, u)) \le (f(u))^{1-t} (f(v))^t$$

$$\le (1 - t) f(u) + t f(v)$$

$$\le \max\{f(u), f(v)\},$$

 $\forall u, v \in K, t \in [0, 1].$

Most recently, Noor [20] has obtained the following Hermite-Hadamard inequalities for the preinvex and log-preinvex functions.

Theorem 1. [20] Let $f : [a, a + \eta(b, a)] \to (0, \infty)$ be a preinvex function on the interval of the real numbers K° (the interior of K) and $a, b \in K^{\circ}$ with $a < a + \eta(b, a)$. Then the following inequality holds:

$$f\left(\frac{2a + \eta(b, a)}{2}\right) \le \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) \, dx \le \frac{f(a) + f(b)}{2}.$$
 (1.2)

Theorem 2. [20] Let $f:[a,a+\eta(b,a)]\to (0,\infty)$ be a log-preinvex function. Then

$$\frac{1}{\eta(b,a)} \int_a^{a+\eta(b,a)} f(x) dx \le \frac{f(a) - f(b)}{\log f(a) - \log f(b)}.$$

The other results connected with (1.2) in which two log-preinvex functions are involved can be found in [24].

For log-preinvex functions, following Hermite-Hadamard type inequalities were also proved in [31].

Theorem 3. [31] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \to \mathbb{R}$. Suppose that $f: K \to \mathbb{R}$ is a differentiable function. If |f'| is log-preinvex on K, for every $a,b \in K$ with $\eta(b,a) > 0$, we have the inequality

$$\left|\frac{1}{\eta(b,a)}\int_{a}^{a+\eta(b,a)}f(x)\,dx - f\left(a + \frac{1}{2}\eta(b,a)\right)\right| \leq \eta(b,a)\left[\frac{\sqrt{\left|f'(b)\right|} - \sqrt{\left|f'(a)\right|}}{\log\left(\left|f'(b)\right|\right) - \log\left(\left|f'(a)\right|\right)}\right]^{2}. \quad (1.3)$$

Theorem 4. [31] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \to \mathbb{R}$. Suppose that $f: K \to \mathbb{R}$ is a differentiable function. If $|f'|^q$, q > 1, $q \in \mathbb{R}$, is a log-preinvex on K, for every $a, b \in K$ with $\eta(b, a) > 0$, we have the inequality

$$\left| f\left(a + \frac{1}{2}\eta(b, a)\right) - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) \, dx \right| \le \frac{\eta(b, a) \sqrt{\left| f'(a) \right|}}{2^{1/p} \left(p + 1\right)^{1/p} q^{1/q}} \left[\frac{\left(\left| f'(b) \right|\right)^{q/2} - \left(\left| f'(a) \right|\right)^{q/2}}{\log\left(\left| f'(b) \right|\right) - \log\left(\left| f'(a) \right|\right)} \right]^{1/q}, \quad (1.4)$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

For more results on Hermite-Hadamard type inequalities for preinvex functions and *n*-times differentiable preinvex functions, we refer the readers to the recent works of Sarikaya et. al , [31] and Latif [16].

The main purpose of the present paper is to establish new Hermite-Hadamard type inequalities in Section 2 that are connected with the right-side and left-side of Hermite-Hadamard inequality for *n*-times differentiable log-preinvex functions which generalize those results established for differentiable log-preinvex functions given in [31].

2. Main Results

In order to prove our main results, we need the following two lemmas:

Lemma 1. [16] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose $f : K \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on K for $n \in \mathbb{N}$, $n \ge 1$. If $f^{(n)}$ is integrable on $[a, a + \eta(b, a)]$, where $a, b \in K$ with $\eta(b, a) > 0$, the following equality holds

$$-\frac{f(a) + f(a + \eta(b, a))}{2} + \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx + \sum_{k=2}^{n-1} \frac{(-1)^{k} (k - 1) (\eta(b, a))^{k}}{2 (k + 1)!} f^{(k)}(a + \eta(b, a))$$

$$= \frac{(-1)^{n-1} (\eta(b, a))^{n}}{2n!} \int_{0}^{1} t^{n-1} (n - 2t) f^{(n)}(a + t\eta(b, a)) dt, \quad (2.1)$$

where the sum above takes 0 when n = 1 and n = 2.

Lemma 2. [16] Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose $f : K \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on K for $n \in \mathbb{N}$, $n \ge 1$. If $f^{(n)}$ is integrable on $[a, a + \eta (b, a)]$, where $a, b \in K$ with $\eta (b, a) > 0$, the following equality holds

$$\sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right] (\eta(b,a))^k}{2^{k+1} (k+1)!} f^{(k)} \left(a + \frac{1}{2} \eta(b,a) \right) - \frac{1}{\eta(b,a)} \int_a^{a+\eta(b,a)} f(x) dx$$

$$= \frac{(-1)^{n+1} (\eta(b,a))^n}{n!} \int_0^1 K_n(t) f^{(n)}(a+t\eta(b,a)) dt, \quad (2.2)$$

where

$$K_n(t) := \left\{ \begin{array}{ll} t^n, & t \in \left[0, \frac{1}{2}\right] \\ & \\ \left(t-1\right)^n, & t \in \left(\frac{1}{2}, 1\right] \end{array} \right..$$

The following useful results will also help us establishing our results.

Lemma 3. *If* $\mu > 0$ *and* $\mu \neq 1$ *, then*

$$\int_0^1 t^n \mu^t dt = \frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}} + n! \mu \sum_{k=0}^n \frac{(-1)^k}{(n-k)! (\ln \mu)^{k+1}}.$$
 (2.3)

Proof. For n = 0, we have

$$\int_0^1 \mu^t dt = \frac{\mu - 1}{\ln \mu},$$

which coincides with the right hand side of (2.3) for n = 0.

For n = 1, we have

$$\int_0^1 t \mu^t dt = \frac{\mu}{\ln \mu} - \frac{\mu}{(\ln \mu)^2} + \frac{1}{(\ln \mu)^2},$$

and it coincides with the right hand side of (2.3) for n = 1.

Suppose (2.3) is true for n-1, i.e.

$$\int_0^1 t^{n-1} \mu^t dt = \frac{(-1)^n (n-1)!}{(\ln \mu)^n} + (n-1)! \mu \sum_{k=0}^{n-1} \frac{(-1)^k}{(n-1-k)! (\ln \mu)^{k+1}}.$$
 (2.4)

Now by integration by parts and using (2.4), we have

$$\int_{0}^{1} t^{n} \mu^{t} dt = \frac{\mu}{\ln \mu} - \frac{n}{\ln \mu} \int_{0}^{1} t^{n-1} \mu^{t} dt$$

$$= \frac{\mu}{\ln \mu} - \frac{n}{\ln \mu} \left[\frac{(-1)^{n} (n-1)!}{(\ln \mu)^{n}} + (n-1)! \mu \sum_{k=0}^{n-1} \frac{(-1)^{k}}{(n-1-k)! (\ln \mu)^{k+1}} \right]$$

$$= \frac{\mu}{\ln \mu} + \frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}} + n! \mu \sum_{k=0}^{n-1} \frac{(-1)^{k+1}}{(n-1-k)! (\ln \mu)^{k+2}}$$

$$= \frac{n! \mu}{n! \ln \mu} + \frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}} + n! \mu \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)! (\ln \mu)^{k+1}}$$

$$= \frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}} + n! \mu \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)! (\ln \mu)^{k+1}}.$$

This completes the proof of the lemma. \Box

Lemma 4. *If* $\mu > 0$ *and* $\mu \neq 1$ *, then*

$$\int_0^{\frac{1}{2}} t^n \mu^t dt = \frac{(-1)^{n+1} n!}{(\ln \mu)^{n+1}} + n! \mu^{1/2} \sum_{k=0}^n \frac{(-1)^k}{2^{n-k} (n-k)! (\ln \mu)^{k+1}}.$$
 (2.5)

Proof. It follows from Lemma 3 after making use of the substitution $t = \frac{u}{2}$.

Lemma 5. *If* $\mu > 0$ *and* $\mu \neq 1$ *, then*

$$\int_{\frac{1}{2}}^{1} (1-t)^{n} \mu^{t} dt = \frac{n! \mu}{(\ln \mu)^{n+1}} - n! \mu^{1/2} \sum_{k=0}^{n} \frac{1}{2^{n-k} (n-k)! (\ln \mu)^{k+1}}.$$
 (2.6)

Proof. It follows from Lemma 4 afer making the substitution 1 - t = u. \square

Lemma 6. [35] For $\alpha > 0$ and $\mu > 0$, we have

$$I(\alpha,\mu) := \int_0^1 t^{\alpha-1} \mu^t dt = \mu \sum_{k=1}^{\infty} \frac{(-1)^{k-1} (\ln \mu)^{k-1}}{(\alpha)_k} < \infty,$$

where

$$(\alpha)_k = \alpha (\alpha + 1) (\alpha + 2) \dots (\alpha + k - 1).$$

Moreover, it holds

$$\left|I\left(\alpha,\mu\right)-\mu\sum_{k=1}^{m}\left(-1\right)^{k-1}\frac{\left(\ln\mu\right)^{k-1}}{\left(\alpha\right)_{k}}\right|\leq\frac{\left|\ln\mu\right|}{\alpha\sqrt{2\pi\left(m-1\right)}}\left(\frac{\left|\ln\mu\right|e}{m-1}\right)^{m-1}.$$

We are now ready to give our first result.

Theorem 5. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose $f : K \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a + \eta(b, a)]$ for $n \in \mathbb{N}$, $n \ge 2$, where $a, b \in K$ with $\eta(b, a) > 0$. If $|f^{(n)}|^q$ is log-preinvex on K for $q \ge 1$, we have the inequality

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx - \sum_{k=2}^{n-1} \frac{(-1)^{k} (k - 1) (\eta(b, a))^{k}}{2 (k + 1)!} f^{(k)}(a + \eta(b, a)) \right| \\
\leq \frac{(\eta(b, a))^{n}}{2n!} \left(\frac{n - 1}{n + 1} \right)^{1 - 1/q} [E_{1}(n, q)]^{1/q}, \quad (2.7)$$

where

$$E_{1}(n,q) = \frac{(-1)^{n} n! \left\{ q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right] + 2 \right\} \left| f^{(n)}(a) \right|^{q}}{q^{n+1} \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]^{n+1}} - \frac{2 \left| f^{(n)}(b) \right|^{q}}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(a) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(a) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(a) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - \frac{1}{q \left[\ln \left(\left| f^{(n)}(a) \right| \right)$$

Proof. Suppose $n \ge 2$. Since K is an invex set with respect to η, for every $a,b \in K$ and $t \in [0,1]$, we have $a + tη(b,a) \in K$. By the log-preinvexity of $|f^{(n)}|^q$ on K, Lemma 1 and Hölder inequality, we have

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx \right|
- \sum_{k=2}^{n-1} \frac{(-1)^{k} (k - 1) (\eta(b, a))^{k}}{2 (k + 1)!} f^{(k)} (a + \eta(b, a)) \right| \le \frac{(\eta(b, a))^{n}}{2n!}
\times \left(\int_{0}^{1} t^{n-1} (n - 2t) dt \right)^{1-1/q} \left(\int_{0}^{1} t^{n-1} (n - 2t) \left| f^{(n)} (a + t\eta(b, a)) \right|^{q} dt \right)^{1/q}
\le \frac{(\eta(b, a))^{n}}{2n!} \left(\frac{n-1}{n+1} \right)^{1-1/q} \left(\int_{0}^{1} t^{n-1} (n - 2t) \left(\left| f^{(n)} (a) \right| \right)^{q(1-t)} \left(\left| f^{(n)} (b) \right| \right)^{qt} dt \right)^{1/q}
= \frac{(\eta(b, a))^{n} \left| f^{(n)} (a) \right|}{2n!} \left(\frac{n-1}{n+1} \right)^{1-1/q} \left(n \int_{0}^{1} t^{n-1} \mu^{t} dt - 2 \int_{0}^{1} t^{n} \mu^{t} dt \right)^{1/q}, \quad (2.8)$$

where $\mu = \frac{|f^{(n)}(b)|^q}{|f^{(n)}(a)|^q} \neq 1$. By Lemma 3, we have

$$n \int_{0}^{1} t^{n-1} \mu^{t} dt - 2 \int_{0}^{1} t^{n} \mu^{t} dt$$

$$= \frac{(-1)^{n} n!}{(\ln \mu)^{n}} - n! \mu \sum_{k=1}^{n} \frac{(-1)^{k}}{(n-k)! (\ln \mu)^{k}} - \frac{2 (-1)^{n+1} n!}{(\ln \mu)^{n+1}} - 2n! \mu \sum_{k=0}^{n} \frac{(-1)^{k}}{(n-k)! (\ln \mu)^{k+1}}$$

$$= \frac{(-1)^{n} n! [\ln \mu + 2] - 2\mu (\ln \mu)^{n}}{(\ln \mu)^{n+1}} - n! \mu \sum_{k=1}^{n} \frac{(-1)^{k} [\ln \mu + 2]}{(n-k)! (\ln \mu)^{k+1}}. \quad (2.9)$$

Applying (2.9) in (2.8) and replacing $\mu = \frac{\left|f^{(n)}(b)\right|^q}{\left|f^{(n)}(a)\right|^q} \neq 1$, we get the desired inequality (2.7). This completes the proof of the theorem \Box

Corollary 1. Suppose the assumptions of Theorem 5 are satisfied and if q = 1, we have the inequality

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx - \sum_{k=2}^{n-1} \frac{(-1)^{k} (k - 1) (\eta(b, a))^{k}}{2 (k + 1)!} f^{(k)}(a + \eta(b, a)) \right| \leq \frac{(\eta(b, a))^{n}}{2n!} E_{1}(n, 1), \quad (2.10)$$

where

$$E_{1}(n,1) = \frac{(-1)^{n} n! \left\{ \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right] + 2 \right\} \left| f^{(n)}(a) \right|}{\left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]^{n+1}} - \frac{2 \left| f^{(n)}(b) \right|}{\left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]} - n! \left| f^{(n)}(b) \right| \sum_{k=1}^{n} \frac{(-1)^{k} \left\{ \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right] + 2 \right\}}{(n-k)! \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]^{k+1}}.$$

Corollary 2. *Under the assumptions of Theorem 5, if* n = 2*, we have the inequality*

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) \, dx \right| \le \frac{(\eta(b, a))^{2}}{4} \left(\frac{1}{3} \right)^{1 - 1/q} \left[E_{1}(2, q) \right]^{1/q}, \quad (2.11)$$

where

$$E_{1}(2,q) = \frac{2\left\{q\left[\ln\left(\left|f''(b)\right|\right) - \ln\left(\left|f''(a)\right|\right)\right] + 2\right\}\left|f''(a)\right|^{q}}{q^{3}\left[\ln\left(\left|f''(b)\right|\right) - \ln\left(\left|f''(a)\right|\right)\right]^{3}} + \frac{2\left\{q\left[\ln\left(\left|f''(b)\right|\right) - \ln\left(\left|f''(a)\right|\right)\right] - 2\right\}\left|f''(b)\right|^{q}}{q^{3}\left[\ln\left(\left|f''(b)\right|\right) - \ln\left(\left|f''(a)\right|\right)\right]^{3}}.$$

Corollary 3. *Under the assumptions of Theorem 5, if* n = 2 *and* q = 1*, we have the inequality*

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) \, dx \right| \le \frac{(\eta(b, a))^{2}}{4} \left[E_{1}(2, 1) \right], \quad (2.12)$$

where

$$E_{1}\left(2,1\right) = \frac{2\left\{\left[\ln\left(\left|f''\left(b\right)\right|\right) - \ln\left(\left|f''\left(a\right)\right|\right)\right] + 2\right\}\left|f''\left(a\right)\right|}{\left[\ln\left(\left|f''\left(b\right)\right|\right) - \ln\left(\left|f''\left(a\right)\right|\right)\right]^{3}} + \frac{2\left\{\left[\ln\left(\left|f''\left(b\right)\right|\right) - \ln\left(\left|f''\left(b\right)\right|\right) - 2\right\}\left|f''\left(b\right)\right|\right]}{\left[\ln\left(\left|f''\left(b\right)\right|\right) - \ln\left(\left|f''\left(a\right)\right|\right)\right]^{3}}.$$

Remark 1. If $\eta(b,a) = b - a$ in the inequalities (2.11) and (2.12), one can get inequalities for the bounds of the difference between middle and the right most terms in the Hermite-Hadamard inequalities (1.1) in terms of second order derivatives for log-convex functions.

Theorem 6. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose $f : K \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a + \eta(b, a)]$ for $n \in \mathbb{N}$, $n \ge 2$, where $a, b \in K$ with $\eta(b, a) > 0$. If $|f^{(n)}|^q$ is log-preinvex on K for q > 1, we have the inequality

$$\frac{\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx - \sum_{k=2}^{n-1} \frac{(-1)^{k} (k - 1) (\eta(b, a))^{k}}{2 (k + 1)!} f^{(k)}(a + \eta(b, a)) \right| \\
\leq \frac{(\eta(b, a))^{n} \left[n^{(2q-1)/(q-1)} - (n - 2)^{(2q-1)/(q-1)} \right]^{1-1/q} \left| f^{(n)}(b) \right|}{2^{2-1/q} n!} \\
\times \left(\frac{q - 1}{2q - 1} \right)^{1-1/q} \left(\sum_{k=1}^{\infty} (-q)^{k-1} \frac{\left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]^{k-1}}{(q(n - 1) + 1)_{k}} \right)^{1/q}. \quad (2.13)$$

Proof. By the log-preinvexity of $|f^{(n)}|^q$ on K, Lemma 1 and Hölder inequality, we have

$$\frac{\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx - \sum_{k=2}^{n-1} \frac{(-1)^{k} (k - 1) (\eta(b, a))^{k}}{2 (k + 1)!} f^{(k)}(a + \eta(b, a)) \right| \\
\leq \frac{(\eta(b, a))^{n}}{2n!} \left(\int_{0}^{1} (n - 2t)^{q/(q - 1)} dt \right)^{1 - 1/q} \left(\int_{0}^{1} t^{q(n - 1)} \left| f^{(n)}(a + t\eta(b, a)) \right|^{q} dt \right)^{1/q} \\
\leq \frac{(\eta(b, a))^{n} \left[n^{(2q - 1)/(q - 1)} - (n - 2)^{(2q - 1)/(q - 1)} \right]^{1 - 1/q}}{2^{2 - 1/q} n!} \left(\frac{q - 1}{2q - 1} \right)^{1 - 1/q} \left(\int_{0}^{1} t^{q(n - 1)} \left(\left(\left| f^{(n)}(a) \right| \right)^{q(1 - t)} \left(\left| f^{(n)}(b) \right| \right)^{qt} \right) dt \right)^{1/q}} \\
= \frac{(\eta(b, a))^{n} \left[n^{(2q - 1)/(q - 1)} - (n - 2)^{(2q - 1)/(q - 1)} \right]^{1 - 1/q} \left| f^{(n)}(a) \right|}{2^{2 - 1/q} n!} \left(\frac{q - 1}{2q - 1} \right)^{1 - 1/q} \left(\int_{0}^{1} t^{q(n - 1)} \mu^{t} dt \right)^{1/q}, \quad (2.14)$$

where $\mu = \frac{|f^{(n)}(b)|^q}{|f^{(n)}(a)|^q} \neq 1$. Applying Lemma 6 to the last integral in the inequality (2.14) and simplifying, we get the required inequality (2.13). \square

Corollary 4. Suppose the assumptions of Theorem 6 are satisfied and n = 2. Then

$$\left| \frac{f(a) + f(a + \eta(b, a))}{2} - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx \right| \leq \frac{(\eta(b, a))^{2} |f''(b)|}{2} \times \left(\frac{q - 1}{2q - 1} \right)^{1 - 1/q} \left(\sum_{k=1}^{\infty} \frac{(-q)^{k-1} \left[\ln\left(|f''(b)|\right) - \ln\left(|f''(a)|\right) \right]^{k-1}}{(q + 1)_{k}} \right)^{1/q}.$$
(2.15)

Corollary 5. If $\eta(b, a) = b - a$ in Corollary 4, we have

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(x) dx \right| \leq \frac{(b - a)^{2} \left| f''(b) \right|}{2} \left(\frac{q - 1}{2q - 1} \right)^{1 - 1/q} \\
\times \left(\sum_{k=1}^{\infty} \frac{(-q)^{k-1} \left[\ln \left(\left| f''(b) \right| \right) - \ln \left(\left| f''(a) \right| \right) \right]^{k-1}}{(q + 1)_{k}} \right)^{1/q} . \quad (2.16)$$

Now we give some results related to left-side of Hermite-Hadamard's inequality for *n*-times differentiable log-preinvex functions.

Theorem 7. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta : K \times K \to \mathbb{R}$. Suppose $f : K \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a + \eta(b, a)]$ for $n \in \mathbb{N}$, $n \ge 1$, where $a, b \in K$ with $\eta(b, a) > 0$. If $|f^{(n)}|^q$ is log-preinvex on K for $q \ge 1$, we have the following inequality

$$\left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right] (\eta (b, a))^k}{2^{k+1} (k+1)!} f^{(k)} \left(a + \frac{1}{2} \eta (b, a) \right) - \frac{1}{\eta (b, a)} \int_a^{a+\eta(b, a)} f(x) dx \right| \\ \leq \frac{(\eta (b, a))^n \left| f^{(n)}(a) \right|}{2^{(n+1)(q-1)/q} (n+1)^{1-1/q} (n!)^{1-1/q}} \left\{ \left[E_2 (n, q) \right]^{1/q} + \left[E_3 (n, q) \right]^{1/q} \right\}, \quad (2.17)$$

where

$$E_{2}(n,q) = \frac{(-1)^{n+1}}{q^{n+1} \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]^{n+1}} + \left(\frac{\left| f^{(n)}(b) \right|}{\left| f^{(n)}(a) \right|} \right)^{q/2} \sum_{k=0}^{n} \frac{(-1)^{k}}{q^{k+1} 2^{n-k} (n-k)! \left[\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right) \right]^{k+1}}$$

and

$$E_{3}(n,q) = \frac{\left|f^{(n)}(b)\right|^{q}}{q^{n+1}\left[\ln\left[\left|f^{(n)}(b)\right|\right] - \ln\left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}\left|f^{(n)}(a)\right|^{q}} - \left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{q/2} \sum_{k=0}^{n} \frac{1}{q^{k+1}2^{n-k}(n-k)!\left[\ln\left(\left|f^{(n)}(b)\right|\right) - \ln\left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}.$$

Proof. Suppose $n \ge 1$. By using Lemma 2 and the log-preinvexity of $|f^{(n)}|^q$ on K for $n \in \mathbb{N}$, $n \ge 1$, we have

$$\left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right] (\eta (b, a))^k}{2^{k+1} (k+1)!} f^{(k)} \left(a + \frac{1}{2} \eta (b, a) \right) - \frac{1}{\eta (b, a)} \int_a^{a+\eta(b, a)} f(x) dx \right| \\
\leq \frac{(\eta (b, a))^n}{n!} \left[\int_0^{\frac{1}{2}} t^n \left| f^{(n)} (a + t \eta (b, a)) \right| dt + \int_{\frac{1}{2}}^1 (1 - t)^n \left| f^{(n)} (a + t \eta (b, a)) \right| dt \right] \\
\leq \frac{(\eta (b, a))^n \left| f^{(n)} (a) \right|}{n!} \left[\left(\int_0^{\frac{1}{2}} t^n dt \right)^{1-1/q} \left(\int_0^{\frac{1}{2}} t^n \mu^t dt \right)^{1/q} + \left(\int_{\frac{1}{2}}^1 (1 - t)^n dt \right)^{1-1/q} \left(\int_{\frac{1}{2}}^1 (1 - t)^n \mu^t dt \right)^{1/q} \right], \quad (2.18)$$

where $\mu = \frac{\left|f^{(n)}(b)\right|^q}{\left|f^{(n)}(a)\right|} \neq 1$. Applying Lemma 4 and Lemma 5 to the integrals in the inequality (2.18) and replacing $\mu = \frac{\left|f^{(n)}(b)\right|^q}{\left|f^{(n)}(a)\right|^q} \neq 1$, we get the desired inequality (2.17). This completes the proof of the theorem. \square

Corollary 6. Suppose the assumptions of Theorem 7 are fulfilled and if q = 1, we have

$$\left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right] (\eta (b, a))^k}{2^{k+1} (k+1)!} f^{(k)} \left(a + \frac{1}{2} \eta (b, a) \right) - \frac{1}{\eta (b, a)} \int_a^{a+\eta(b, a)} f(x) \, dx \right| \\ \leq \left(\eta (b, a) \right)^n \left| f^{(n)}(a) \right| \left\{ \left[E_2 (n, 1) \right] + \left[E_3 (n, 1) \right] \right\}, \quad (2.19)$$

where

$$E_{2}(n,1) = \frac{(-1)^{n+1}}{\left[\ln\left(\left|f^{(n)}(b)\right|\right) - \ln\left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}} + \left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{1/2} \sum_{k=0}^{n} \frac{(-1)^{k}}{2^{n-k} (n-k)! \left[\ln\left(\left|f^{(n)}(b)\right|\right) - \ln\left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}$$

and

$$E_{3}(n,1) = \frac{\left|f^{(n)}(b)\right|}{\left[\ln\left(\left|f^{(n)}(b)\right|\right) - \ln\left(\left|f^{(n)}(a)\right|\right)\right]^{n+1}\left|f^{(n)}(a)\right|} - \left(\frac{\left|f^{(n)}(b)\right|}{\left|f^{(n)}(a)\right|}\right)^{1/2} \sum_{k=0}^{n} \frac{1}{2^{n-k} (n-k)! \left[\ln\left(\left|f^{(n)}(b)\right|\right) - \ln\left(\left|f^{(n)}(a)\right|\right)\right]^{k+1}}.$$

Corollary 7. [31] If we take n = 1 in Corollary 6, we have

$$\left| f\left(a + \frac{1}{2}\eta(b, a)\right) - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) \, dx \right| \le \eta(b, a) \left[\frac{\sqrt{|f'(b)|} - \sqrt{|f'(a)|}}{\ln\left(|f'(b)|\right) - \ln\left(|f'(a)|\right)} \right]^{2}. \quad (2.20)$$

Corollary 8. [31] If $\eta(b, a) = b - a$ in Corollary 7, we have

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right| \le (b-a) \left[\frac{\sqrt{|f'(b)|} - \sqrt{|f'(a)|}}{\ln\left(|f'(b)|\right) - \ln\left(|f'(a)|\right)} \right]^{2}. \tag{2.21}$$

Theorem 8. Let $K \subseteq \mathbb{R}$ be an open invex subset with respect to $\eta: K \times K \to \mathbb{R}$. Suppose $f: K \to \mathbb{R}$ is a function such that $f^{(n)}$ exists on K and $f^{(n)}$ is integrable on $[a, a + \eta(b, a)]$ for $n \in \mathbb{N}$, $n \ge 1$, where $a, b \in K$ with $\eta(b, a) > 0$. If $|f^{(n)}|^q$ is log-preinvex on K for q > 1, we have the inequality

$$\left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right] (\eta(b,a))^k}{2^{k+1} (k+1)!} f^{(k)} \left(a + \frac{1}{2} \eta(b,a) \right) - \frac{1}{\eta(b,a)} \int_a^{a+\eta(b,a)} f(x) dx \right| \\
\leq \frac{\left(\eta(b,a) \right)^n \left[\sqrt{\left| f^{(n)}(a) \right|} + \sqrt{\left| f^{(n)}(b) \right|} \right]}{2^{n+1/p} (np+1)^{1/p} q^{1/q} n!} \left[\frac{\left(\left| f^{(n)}(b) \right| \right)^{q/2} - \left(\left| f^{(n)}(a) \right| \right)^{q/2}}{\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right)} \right]^{1/q}, \quad (2.22)$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. From Lemma 2, the Hölder integral inequality and the log-preinvexity of $|f^{(n)}|^q$ on K, we have

$$\left| \sum_{k=0}^{n-1} \frac{\left[(-1)^k + 1 \right] (\eta (b, a))^k}{2^{k+1} (k+1)!} f^{(k)} \left(a + \frac{1}{2} \eta (b, a) \right) - \frac{1}{\eta (b, a)} \int_a^{a+\eta(b, a)} f(x) dx \right| \\
\leq \frac{(\eta (b, a))^n \left| f^{(n)}(a) \right|}{n!} \left[\left(\int_0^{\frac{1}{2}} t^{np} dt \right)^{\frac{1}{p}} \left(\int_0^{\frac{1}{2}} \left(\frac{\left| f^{(n)}(b) \right|}{\left| f^{(n)}(a) \right|} \right)^{qt} dt \right)^{\frac{1}{q}} + \left(\int_{\frac{1}{2}}^1 (1 - t)^{np} dt \right)^{\frac{1}{p}} \left(\int_{\frac{1}{2}}^1 \left(\frac{\left| f^{(n)}(b) \right|}{\left| f^{(n)}(a) \right|} \right)^{qt} dt \right)^{\frac{1}{q}} \right] \\
= \frac{(\eta (b, a))^n \left[\sqrt{\left| f^{(n)}(a) \right|} + \sqrt{\left| f^{(n)}(b) \right|} \right]}{2^{n+1/p} (np+1)^{1/p} q^{1/q} n!} \left[\frac{\left(\left| f^{(n)}(b) \right| \right)^{q/2} - \left(\left| f^{(n)}(a) \right| \right)^{q/2}}{\ln \left(\left| f^{(n)}(b) \right| \right) - \ln \left(\left| f^{(n)}(a) \right| \right)} \right]^{1/q}. \quad (2.23)$$

Which is the required inequality. This completes the proof of the theorem. \Box

Corollary 9. *Under the assumptions of Theorem 8, if* n = 1*, we have the inequality*

$$\left| f\left(a + \frac{1}{2}\eta(b, a)\right) - \frac{1}{\eta(b, a)} \int_{a}^{a + \eta(b, a)} f(x) dx \right| \\
\leq \frac{\eta(b, a) \left[\sqrt{|f'(a)|} + \sqrt{|f'(b)|}\right]}{2^{1 + 1/p} (p + 1)^{1/p} q^{1/q}} \left[\frac{\left(\left|f'(b)\right|\right)^{q/2} - \left(\left|f'(a)\right|\right)^{q/2}}{\ln\left(\left|f'(b)\right|\right) - \ln\left(\left|f'(a)\right|\right)} \right]^{1/q}, \quad (2.24)$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Corollary 10. *If we take* $\eta(b, a) = b - a$ *in* (2.24), *we get the inequality:*

$$\left| f\left(\frac{a+b}{2}\right) - \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \right| \leq \frac{(b-a) \left[\sqrt{\left| f'(a) \right|} + \sqrt{\left| f'(b) \right|} \right]}{2^{1+1/p} \left(p+1\right)^{1/p} q^{1/q}} \left[\frac{\left(\left| f'(b) \right| \right)^{q/2} - \left(\left| f'(a) \right| \right)^{q/2}}{\log \left(\left| f'(b) \right| \right) - \log \left(\left| f'(a) \right| \right)} \right]^{1/q}. \quad (2.25)$$

Remark 2. Inequalities (2.24) and (2.25) are the corrected inequalities that are given in Theorem 4 and its related corollary from [31].

Acknowledgement 1. The authors appreciate anonymous referees for their careful corrections and valuable comments on the original version of this paper.

References

- [1] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality through prequsi-invex functions, RGMIA Research Report Collection, 14(2011), Article 48, 7 pp.
- [2] A. Barani, A.G. Ghazanfari, S.S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl. 2012, 2012:247 doi:10.1186/1029-242X-2012-247.
- [3] A. Ben-Israel and B. Mond, What is invexity?, J. Austral. Math. Soc., Ser. B, 28(1986), No. 1, 1-9.
- [4] S.S. Dragomir and R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and trapezoidal formula, Appl. Math. Lett., 11(5) (1998), 91-95.
- [5] S. S. Dragomir and C. E. M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, RGMIA Monographs, Victoria University, 2000.
- [6] S. S. Dragomir and B. Mond, Integral inequalities of Hadamard type for log-convex functions, Demonst. Math., 31 (1998), 354–364.
- [7] Wei-Dong Jiang, Da-Wei Niu, Yun Hua, and Feng Qi, Generalizations of Hermite-Hadamard inequality to *n*-time differentiable functions which are *s*-convex in the second sense, Analysis (Munich) 32 (2012), 1001–1012; Available online at http://dx.doi.org/10.1524/anly.2012.1161.
- [8] M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, J. Math. Anal. Appl. 80 (1981) 545-550.
- [9] Shu-Hong, Bo-Yan Xi and Feng Qi, Some new inequalities of Hermite-Hadamard type for *n*-times differentiable functions which are *m*-convex, Analysis (Munich) 32 (2012), no. 3, 247-262; Available online at http://dx.doi.org/10.1524/anly.2012.1167.
- [10] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considerée par Riemann, J. Math Pures Appl., 58 (1893), 171–215.
- [11] Dah-Yang Hwang, Some inequalities for *n*-time differentiable mappings and applications, Kyugpook Math. J. 43(2003), 335-343
- [12] I. Iscan, Ostrowski type inequalites for functions whose derivatives are preinvex, arXiv:1204.2010v1.
- [13] U.S. Kırmacı, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 147 (2004), 137-146.
- [14] U.S. Kırmacı and M.E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comp., 153 (2004), 361-368.
- [15] U.S. Kırmacı, Improvement and further generalization of inequalities for differentiable mappings and applications, Computers and Math. with Appl., 55 (2008), 485-493.
- [16] M. A. Latif, On Hermite-Hadamard type integral inequalities for *n*-times differentiable preinvex functions with applications, Stud. Univ. Babeş-Bolyai Math. 58(2013), No. 3, 325–343.
- [17] M. A. Latif, Some inequalities for differentiable prequasiinvex functions with applications, Konuralp Journal of Mathematics Volume 1, No. 2 pp. 17-29 (2013).
- [18] M. A. Latif and S. S. Dragomir, Some weighted integral inequalities for differentiable preinvex and prequasiinvex functions with applications, J. Inequal Appl. 2013, 2013:575 doi:10.1186/1029-242X-2013-575.
- [19] S. R. Mohan and S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl. 189 (1995), 901–908.

- [20] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126-131.
- [21] M. A. Noor, Variational-like inequalities, Optimization, 30 (1994), 323–330.
- [22] M. A. Noor, Invex equilibrium problems, J. Math. Anal. Appl., 302 (2005), 463–475.
- [23] M. A. Noor, Some new classes of nonconvex functions, Nonl. Funct. Anal. Appl.,11(2006),165-171
- [24] M. A. Noor, On Hadamard integral inequalities involving two log-preinvex functions, J. Inequal. Pure Appl. Math., 8(2007), No. 3, 1-6, Article 75.
- [25] C.E.M. Pearce and J. Pečarić, Inequalities for differentiable mappings with application to special means and quadrature formulae, Appl. Math. Lett., 13(2) (2000), 51–55.
- [26] R. Pini, Invexity and generalized Convexity, Optimization 22 (1991) 513-525.
- [27] M. Z. Sarikaya, A. Saglam and H. Yıldırım, New inequalities of Hermite-Hadamard type for functions whose second derivatives absolute values are convex and quasi-convex, International Journal of Open Problems in Computer Science and Mathematics (IJOPCM), 5(3), 2012.
- [28] M. Z. Sarikaya, A. Saglam and H. Yıldırım, On some Hadamard-type inequalities for *h*-convex functions, Journal of Mathematical Inequalities, Volume 2, Number 3 (2008), 335-341.
- [29] M. Z. Sarikaya, M. Avci and H. Kavurmaci, On some inequalities of Hermite-Hadamard type for convex functions, ICMS Iternational Conference on Mathematical Science. AIP Conference Proceedings 1309, 852 (2010).
- [30] M. Z. Sarikaya and N. Aktan, On the generalization some integral inequalities and their applications Mathematical and Computer Modelling, Volume 54, Issues 9-10, November 2011, Pages 2175-2182.
- [31] M. Z. Sarikaya, H. Bozkurt and N. Alp, On Haermite-Hadamard type integral inequalities for preinvex and log-preinvex functions, Contemporary Analysis and Applied Mathematics, Vol.1, No.2, 237-252, 2013.
- [32] M. Z. Sarikaya, E. Set and M. E. Ozdemir, On some new inequalities of Hadamard type involving *h*-convex functions, Acta Mathematica Universitatis Comenianae, Vol. LXXIX, 2(2010), pp. 265-272.
- [33] A. Saglam, M. Z. Sarikaya and H. Yildirim, Some new inequalities of Hermite-Hadamard's type, Kyungpook Mathematical Journal, 50(2010), 399-410.
- [34] T. Weir, and B. Mond, Preinvex functions in multiple objective optimization, Journal of Mathematical Analysis and Applications, 136 (1998) 29-38.
- [35] J. Wang, J. Deng, M. Fečkan, Exploring s-e-condition and applications to some Ostrowski type inequalities via Hadamard fractional integrals. Math. Slovaca (2013, in press)
- [36] X. M. Yang and D. Li, On properties of preinvex functions, J. Math. Anal. Appl. 256 (2001) 229-241.