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Abstract. In this paper, we show that in the class of graphs of order n and given (vertex or edge) connectivity
equal to k (or at most equal to k), 1 < k < n —1, the graph K + (K; U K;_¢_1) is the unique graph such that
zeroth-order general Randi¢ index, general sum-connectivity index and general Randi¢ connectivity index
are maximum and general hyper-Wiener index is minimum provided a > 1. Also, for 2-connected (or
2-edge connected) graphs and a > 0 the unique graph minimizing these indices is the n-vertex cycle C,,.

1. Introduction

Let G be a simple graph having vertex set V(G) and edge set E(G). For a vertex u € V(G), d(u) denotes
the degree of u and N(u) the set of vertices adjacent with u. The distance between vertices 1 and v of a
connected graph, denoted by d(u, v), is the length of a shortest path between them. For two vertex-disjoint
graphs G and H, the join G + H is obtained by joining by edges each vertex of G to all vertices of H and the
union G U H has vertex set V(G) U V(H) and edge set E(G) U E(H).

The connectivity of a graph G, written x(G), is the minimum size of a vertex set S such that G — S is
disconnected or has only one vertex. A graph G is said to be k-connected if its connectivity is at least k.
Similarly, the edge-connectivity of G, written «’(G), is the minimum size of a disconnecting set of edges.
For every graph G we have x(G) < «’(G). For other notations in graph theory, we refer [23].

The Randi¢ index R(G), proposed by Randi¢ [19] in 1975, one of the most used molecular descriptors in
structure-property and structure-activity relationship studies [9, 10, 14, 18, 20, 22], was defined as

RG) = ) (@wd@) ™.

uveE(G)

The general Randi¢ connectivity index (or general product-connectivity index), denoted by R,, of G was
defined by Bollobds and Erdos [3] as

Ry = Ro(G) = ), (@wd())",

uveE(G)
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where a is a real number. Then R_;; is the classical Randi¢ connectivity index and for a = 1itis also known
as second Zagreb index. For an extensive history of this index see [21].
This concept was extended to the general sum-connectivity index x,(G) in [26], which is defined by

XaG) = ) (@) +d@)),

uveE(G)

where « is a real number. The sum-connectivity index x_1/2(G) was proposed in [25].
The zeroth-order general Randi¢ index, denoted by °R,(G) was defined in [13] and [14] as

where « is a real number. For a = 2 this index is also known as first Zagreb index. This sum, which is just
the sum of powers of vertex degrees, was much studied in mathematical literature ( see [1, 4-6, 17]).

Thus, the general Randi¢ connectivity index generalizes both the ordinary Randi¢ connectivity index
and the second Zagreb index, while the general sum-connectivity index generalizes both the ordinary
sum-connectivity index and the first Zagreb index [26].

We shall also study the extremal properties in graphs of given connectivity of another general index.
We introduce here this new index, called general hyper-Wiener index, denoted by WW,(G) and defined for
any real a by

1
WW,(G) = Z @A, )" + d(u, v)*).
2
{u,0}CV(G)

For a = 1 this index was introduced by Randi¢ as an extension of the Wiener index for trees [20] and defined
for cyclic structures by Klein et al. [15] . Several extremal properties of the sum-connectivity and general
sum-connectivity index for trees, unicyclic graphs and general graphs were given in [7, 8, 25, 26].

Gutman and Zhang [11] proved that among all n-vertex graphs with (vertex or edge) connectivity k,
the graph Ky + (Kj U Kj,_¢-1), which is the graph obtained by joining by edges k vertices of K, to a new
vertex, is the unique graph having minimum Wiener index. This property was extended to Zagreb and
hyper-Wiener indices by Behtoei, Jannesari and Taeri [2] and to the first and second Zagreb indices when
connectivity is at most k by Li and Zhou [16].

In this paper, we further study the extremal properties of this graph relatively to zeroth-order general
Randi¢ index, general sum-connectivity index and general Randi¢ connectivity index provided « > 1 and
general hyper-Wiener index for any a # 0. Also, for 2-(vertex or edge)-connected graphs of order n and
a > 0 the unique graph minimizing these indices is the n-vertex cycle C,,.

2. Main Results

Theorem 2.1. Let G be an n-vertex graph, n > 3, with vertex connectivity k, 1 <k <n—-1and a > 1. Then
OR4(G), xa(G) and R,(G) are maximum if and only if G = Ky + (K1 U K1)

Proof. Let G be an n-vertex graph with x(G) = k such that °R,(G) is maximum. Since a > 0, by addition of
new edges this index strictly increases. If k = n — 1 then G is a complete graph K;, and we have nothing to
prove. Otherwise, k < n — 2, there exists a disconnecting set S C V(G) such that |S| = k and G — S has at least
two connected components. Since °R,(G) is maximum it follows that G — S has two components, C; and C,,
which are complete subgraphs. Also S U C; and S U C; induce complete subgraphs. By setting |C1| = x we
get|Cal =n —k—xand G = Ky + (K U K,__,). In this case we have "R,(G) = k(n — 1)* + ¢(x), where ¢(x) =
x(k+x—=1)*+(n—-k—-x)(n—1-x)*. Since p(x) = p(n—k—x), where 1 < x <n—k—1, ¢ has the axis of symmetry
x = (n—k)/2. Its derivative equals ¢’ (x) = (k+x—1)*"L(k—1+x(1+a))—(n—1-x)*"}(n(1+a)—1-ak-x(1+a)). By
the symmetry of ¢ we can only consider the case when x > (n—k)/2. In this case (k+x—1)*"! > (n—1-x)*"1,
which implies that ¢’(x) > (n — 1 — x)*"1(2x + k — n)(1 + a). We have ¢’((n —k)/2) = 0 and ¢’(x) > 0 for
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x > (n—k)/2. It follows that ¢(x) is maximum only for x = 1 or x = n — k — 1. In both cases the extremal
graph is isomorphic to Ky + (Kj U Kj_¢-1).

As above, if x,(G) is maximum, it follows that G = Kj + (K, U K;;—¢_y) and x,(G) = (;)(Zn -2+ (5)2%(k +x -
1) + (”_12‘_")2‘1(11 —1-x)%+kx(n+k+x—-2)*+k(n—k—x)(2n —2 — x)*. Since n,2% and k are constant, it is
necessary to find the maximum when 1 < x <n —k — 1, of the functions:

P1(x) = (;)(k+x—l)“+("_§_x)(n—1—x)"‘ and @a(x) = x(n+k+x-2)*+(n—k—x)(2n—2-x)*. Both functions have the
axis of symmetry x = (n—k)/2. As for p(x) we get ¢, ((n—k)/2) = 0Oand ¢} (x) > (2n=2-x)*"12x+k-n)(a+1) > 0
for x > (n — k)/2. Hence @, (x) is maximum only forx =lorx=n—-k—-1.

Similarly, 29} (x) = @x = 1)(k+x = 1)* + a(x* = x)(k +x = 1)""1 = (2n -2k - 2x - 1)(n —x = 1)* —a((n —k — x)* -
n+k+x)(n—x-1)*"1 If x > (n - k)/2 we obtain 2¢/ (x) > (n —x = 1)* '2x —n+k)2n -3+ a(n—k—-1)) >0
for x > (n — k)/2. The same conclusion follows, ¢1(x) is maximum only for x = 1 or x = n — k — 1 and the
extremal graph is the same as for °R,(G).

It remains to see what happens if R,(G) is maximum. In this case also G = Ki + (K, U Kj;_¢—y) and
Ra(G) = () =12 + Q) +x =12 + (" E ) —x = 1)** +kx(n = 1)*(k + x = 1)* + k(n — 1)*(n —k = x)(n —x - 1)*.
The sum of the last two terms equals k(1n—1)"¢(x) and we have seen that this function is maximum if and only
if x = 1orx = n—k-1. To finish, itis necessary to find the maximum of {(x) = (;)(k+x—1)** +(””2"")(n—x—1)2“.
This function is exactly @1(x) with a replaced by 2a. It follows that for x > (n — k)/2 we have 2¢’(x) >
(n—x—1)>"12x+k—n)2n - 3 + 2a(n — k — 1)) > 0 and the extremal graph is the same. [J

Theorem 2.2. Let G be an n-vertex graph, n > 3, with vertex connectivity k, 1 < k < n —1. Then WW,(G) is
minimum for a > 0 and maximum for a < 0 if and only if G = K + (K1 U Kj—¢—1).

Proof. We will prove that }y, ,cv(c) d(1,v)* is minimum for @ > 0 and maximum for a« < 0 only for
Ky + (Kj U K;—-1). Since by addition of edges this sum strictly decreases for a > 0 and strictly increases for
a < 0, it follows, as above, that every extremal graph G is isomorphic to Ky + (K, U K;,_¢—y). All distances in
this graph are 1 or 2, the distance d(1, v) = 2 if and only if u € C; and v € C,. It follows that

n

d(u,v)* = (2

) +x(n—-k—-x)2* - 1).
{u,0}CV(G)

We have 2¢ — 1 > 0 for @ > 0 and the reverse inequality holds for @ < 0. Consequently, x(n — k — x) must be
minimum, which impliesx =lorx=n—-k—-1. O

Corollary 2.3. Let G be an n-vertex graph, n > 3, with edge connectivity k, 1 <k <n—-1and a > 1. Then
OR4(G), xa(G) and R(G) are maximum if and only if G = Ky + (K1 U K1)

Proof. Suppose that x(G) = p < k = «’(G). Since H = K + (K; UK,,_¢_1) consists of a vertex adjacent to exactly
k vertices of K,,_1, it follows that °R,(H), x.(H) and R, (H) are strictly increasing as functions of k. We get that
the values of these indices in the set of graphs G of order equal to n and x(G) = p < k, by Theorem 2.1, are
bounded above by the values of these indices for Kj + (K; U K,,_¢—1). Since this graph has edge-connectivity
equal to k, the proof is complete. [J

Note that in the statements of Theorem 2.1 and Corollary 2.3 we can replace (vertex or edge) connectivity
k by (vertex or edge) connectivity less than or equal to k.

Corollary 2.4. Let G be an n-vertex graph, n > 3, with edge connectivity k, 1 < k < n—1. Then WW,(G) is
minimum for a > 0 and maximum for a < 0 if and only if G = K + (K1 U Kj—¢—1).

Proof. The proof can be done as above, since expression x(n — k — x)(2* — 1) is decreasing in k for @ > 0 and
increasing for @ < 0.
O

Corollary 2.5. Let G be an n-vertex graph, n > 3, with (vertex or edge) connectivity k, 2 <k < n—1. Then OR_1(G)
is minimum if and only if G = Ky + (K1 U Kjy—-1).
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Proof. In this case @ = —1 and we obtain ¢’(x) = (k- 1)((k+x—-1)2—(n—-1-x)"2) <0 forx > (n—k)/2.
It follows that minimum of °R_1(G) is reached only for x = 1 or x = n — k — 1. For edge connectivity note
1 1

that % +k(55 - 55+ % is strictly decreasing in k. For k = 1 the graph Gy = Ky + (K; U K;—k—) has

OR1(Gy) =2+ L foreveryl <x<n-k-1. O

n

If @ > 0 and G is a connected graph minimizing °R,(G), x»(G) and R,(G), then G must be minimally
connected, i. e., G must be a tree. For a > 0 in [12] it was proved that among trees with n > 5 vertices,
the path P, has minimum general Randi¢ index and in [26] it was shown that the same property holds for
general sum-connectivity index for trees with n > 4 vertices.

In order to see what happens for 2-connected graphs we need some definitions related to Whitney’s
characterization of 2-connected graphs [23, 24]. An ear of a graph G is a maximal path whose internal
vertices (if any) have degree 2 in G and an ear decomposition of G is a decomposition Py, . .., Py such that P
isacycleand P; fori > lisanear of Py U...UP;. Similarly, a closed ear in G is a cycle C such that all vertices
of C except one have degree 2 in G. A closed-ear decomposition of G is a decomposition Py, . .., Py such that
Pyisacycle and P; for i > 11is either an ear or a closed ear in P U...UP;. A graph is 2-connected if and only
if it has an ear decomposition and it is 2-edge-connected if and only if it has a closed-ear decomposition.

Theorem 2.6. Let G be a 2-(connected or edge-connected) graph with n > 3 vertices. Then for a > 0, °R4(G), x4(G)
and R,(G) are minimum if and only if G = C,,.

Proof. We shall prove the theorem only for 2-connected graphs and general sum-connectivity index, because
in the remaining cases the proof is similar. The proof is by induction. The unique 2-connected graph of order
n = 3is C3. Suppose thatn > 4 and for any graph G of order m < n we have x,(G) > m4“ and equality holds if
and only if G = C;,. Let H be a 2-connected graph of order n which isnot a cycle, such that ), (H) is minimum.
It has an ear decomposition Py, ..., Pr with k > 1. Py cannot be an edge, since by deleting this edge the
resulting graph is still 2-connected and has a smaller value of x,,. Denoteby r > 1 the number of inner vertices
of Py and by u and v the common vertices of Py with PoU...UP,_;. Let H’ denote the subgraph of H of order
n — r deduced by deleting the inner vertices of Pr. Let Ny (u)\{v} = {u1, ..., us} and Ny (0)\{u} = {v1, ..., 04},
where s,t > 2 if uv ¢ E(H) and s,t > 1 otherwise. We have x,(H) = x.(H’) + (dg(u) + 2)* + (du(v) + 2)* +
(r = D4 + Li[(dr(w) + du(u))® = @) + du(s) = D1+ Ling [@du(©) + du(©@))* = (du(0) + dr(0;) — 1)°]. 1f
uv € E(H), then we must add (dg(u) + dp(v))* — (du(u) + dug(v) — 2)* > 0. By the induction hypothesis, we
have x,(H) > (n — D)4 + (dg(u) + 2)* + (dy(v) + 2)* > (n — 1)4* + 2 - 5* > nd* = x,(C,), a contradiction. [
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