

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Extremal Topological Indices for Graphs of Given Connectivity

Ioan Tomescu^a, Misbah Arshad^b, Muhammad Kamran Jamil^b

^aFaculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania. ^b Abdus Salam School of Mathematical Sciences, 68B New Muslim Town, GC University, Lahore, Pakistan

Abstract. In this paper, we show that in the class of graphs of order n and given (vertex or edge) connectivity equal to k (or at most equal to k), $1 \le k \le n-1$, the graph $K_k + (K_1 \cup K_{n-k-1})$ is the unique graph such that zeroth-order general Randić index, general sum-connectivity index and general Randić connectivity index are maximum and general hyper-Wiener index is minimum provided $\alpha \ge 1$. Also, for 2-connected (or 2-edge connected) graphs and $\alpha > 0$ the unique graph minimizing these indices is the n-vertex cycle C_n .

1. Introduction

Let G be a simple graph having vertex set V(G) and edge set E(G). For a vertex $u \in V(G)$, d(u) denotes the degree of u and N(u) the set of vertices adjacent with u. The distance between vertices u and v of a connected graph, denoted by d(u,v), is the length of a shortest path between them. For two vertex-disjoint graphs G and H, the join G + H is obtained by joining by edges each vertex of G to all vertices of H and the union $G \cup H$ has vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$.

The connectivity of a graph G, written $\kappa(G)$, is the minimum size of a vertex set S such that G - S is disconnected or has only one vertex. A graph G is said to be k-connected if its connectivity is at least k. Similarly, the edge-connectivity of G, written $\kappa'(G)$, is the minimum size of a disconnecting set of edges. For every graph G we have $\kappa(G) \leq \kappa'(G)$. For other notations in graph theory, we refer [23].

The Randić index R(G), proposed by Randić [19] in 1975, one of the most used molecular descriptors in structure-property and structure-activity relationship studies [9, 10, 14, 18, 20, 22], was defined as

$$R(G) = \sum_{uv \in E(G)} (d(u)d(v))^{-1/2}.$$

The general Randić connectivity index (or general product-connectivity index), denoted by R_{α} , of G was defined by Bollobás and Erdös [3] as

$$R_{\alpha} = R_{\alpha}(G) = \sum_{uv \in E(G)} (d(u)d(v))^{\alpha},$$

2010 Mathematics Subject Classification. Primary 05C35; Secondary 05C40

Keywords. General sum-connectivity index, general Randić connectivity index, zeroth-order general Randić index, general hyper-Wiener index, vertex connectivity, edge connectivity, 2-connected graphs

Received: 10 January 2014; Accepted: 23 February 2014

Communicated by Francesco Belardo

Research partially supported by Higher Education Commission, Pakistan.

Email addresses: ioan@fmi.unibuc.ro (Ioan Tomescu), misbah_arshad15@yahoo.com (Misbah Arshad),

m.kamran.sms@gmail.com (Muhammad Kamran Jamil)

where α is a real number. Then $R_{-1/2}$ is the classical Randić connectivity index and for $\alpha = 1$ it is also known as second Zagreb index. For an extensive history of this index see [21].

This concept was extended to the general sum-connectivity index $\chi_{\alpha}(G)$ in [26], which is defined by

$$\chi_{\alpha}(G) = \sum_{uv \in E(G)} (d(u) + d(v))^{\alpha},$$

where α is a real number. The sum-connectivity index $\chi_{-1/2}(G)$ was proposed in [25]. The zeroth-order general Randić index, denoted by ${}^{0}R_{\alpha}(G)$ was defined in [13] and [14] as

$${}^{0}R_{\alpha}(G) = \sum_{u \in V(G)} d(u)^{\alpha},$$

where α is a real number. For $\alpha = 2$ this index is also known as first Zagreb index. This sum, which is just the sum of powers of vertex degrees, was much studied in mathematical literature (see [1, 4–6, 17]).

Thus, the general Randić connectivity index generalizes both the ordinary Randić connectivity index and the second Zagreb index, while the general sum-connectivity index generalizes both the ordinary sum-connectivity index and the first Zagreb index [26].

We shall also study the extremal properties in graphs of given connectivity of another general index. We introduce here this new index, called general hyper-Wiener index, denoted by $WW_{\alpha}(G)$ and defined for any real α by

$$WW_{\alpha}(G) = \frac{1}{2} \sum_{\{u,v\} \subseteq V(G)} (d(u,v)^{\alpha} + d(u,v)^{2\alpha}).$$

For $\alpha = 1$ this index was introduced by Randić as an extension of the Wiener index for trees [20] and defined for cyclic structures by Klein et al. [15]. Several extremal properties of the sum-connectivity and general sum-connectivity index for trees, unicyclic graphs and general graphs were given in [7, 8, 25, 26].

Gutman and Zhang [11] proved that among all n-vertex graphs with (vertex or edge) connectivity k, the graph $K_k + (K_1 \cup K_{n-k-1})$, which is the graph obtained by joining by edges k vertices of K_{n-1} to a new vertex, is the unique graph having minimum Wiener index. This property was extended to Zagreb and hyper-Wiener indices by Behtoei, Jannesari and Taeri [2] and to the first and second Zagreb indices when connectivity is at most k by Li and Zhou [16].

In this paper, we further study the extremal properties of this graph relatively to zeroth-order general Randić index, general sum-connectivity index and general Randić connectivity index provided $\alpha \ge 1$ and general hyper-Wiener index for any $\alpha \ne 0$. Also, for 2-(vertex or edge)-connected graphs of order n and $\alpha > 0$ the unique graph minimizing these indices is the n-vertex cycle C_n .

2. Main Results

Theorem 2.1. Let G be an n-vertex graph, $n \ge 3$, with vertex connectivity k, $1 \le k \le n-1$ and $\alpha \ge 1$. Then ${}^0R_{\alpha}(G)$, $\chi_{\alpha}(G)$ and $R_{\alpha}(G)$ are maximum if and only if $G \cong K_k + (K_1 \cup K_{n-k-1})$.

Proof. Let *G* be an *n*-vertex graph with $\kappa(G) = k$ such that ${}^0R_\alpha(G)$ is maximum. Since $\alpha > 0$, by addition of new edges this index strictly increases. If k = n - 1 then *G* is a complete graph K_n and we have nothing to prove. Otherwise, $k \le n - 2$, there exists a disconnecting set $S \subset V(G)$ such that |S| = k and G - S has at least two connected components. Since ${}^0R_\alpha(G)$ is maximum it follows that G - S has two components, C_1 and C_2 , which are complete subgraphs. Also $S \cup C_1$ and $S \cup C_2$ induce complete subgraphs. By setting $|C_1| = x$ we get $|C_2| = n - k - x$ and $G \cong K_k + (K_x \cup K_{n-k-x})$. In this case we have ${}^0R_\alpha(G) = k(n-1)^\alpha + \varphi(x)$, where $\varphi(x) = x(k+x-1)^\alpha + (n-k-x)(n-1-x)^\alpha$. Since $\varphi(x) = \varphi(n-k-x)$, where $1 \le x \le n-k-1$, φ has the axis of symmetry x = (n-k)/2. Its derivative equals $\varphi'(x) = (k+x-1)^{\alpha-1}(k-1+x(1+\alpha)) - (n-1-x)^{\alpha-1}(n(1+\alpha)-1-\alpha k-x(1+\alpha))$. By the symmetry of φ we can only consider the case when $x \ge (n-k)/2$. In this case $(k+x-1)^{\alpha-1} \ge (n-1-x)^{\alpha-1}$, which implies that $\varphi'(x) \ge (n-1-x)^{\alpha-1}(2x+k-n)(1+\alpha)$. We have $\varphi'((n-k)/2) = 0$ and $\varphi'(x) > 0$ for

x > (n-k)/2. It follows that $\varphi(x)$ is maximum only for x = 1 or x = n-k-1. In both cases the extremal graph is isomorphic to $K_k + (K_1 \cup K_{n-k-1})$.

As above, if $\chi_{\alpha}(G)$ is maximum, it follows that $G \cong K_k + (K_x \cup K_{n-k-x})$ and $\chi_{\alpha}(G) = \binom{k}{2}(2n-2)^{\alpha} + \binom{x}{2}2^{\alpha}(k+x-1)^{\alpha} + \binom{n-k-x}{2}2^{\alpha}(n-1-x)^{\alpha} + kx(n+k+x-2)^{\alpha} + k(n-k-x)(2n-2-x)^{\alpha}$. Since $n, 2^{\alpha}$ and k are constant, it is necessary to find the maximum when $1 \le x \le n-k-1$, of the functions:

 $\varphi_1(x) = \binom{x}{2}(k+x-1)^{\alpha} + \binom{n-k-x}{2}(n-1-x)^{\alpha}$ and $\varphi_2(x) = x(n+k+x-2)^{\alpha} + (n-k-x)(2n-2-x)^{\alpha}$. Both functions have the axis of symmetry x = (n-k)/2. As for $\varphi(x)$ we get $\varphi_2'((n-k)/2) = 0$ and $\varphi_2'(x) \ge (2n-2-x)^{\alpha-1}(2x+k-n)(\alpha+1) > 0$ for x > (n-k)/2. Hence $\varphi_2(x)$ is maximum only for x = 1 or x = n-k-1.

Similarly, $2\varphi_1'(x) = (2x-1)(k+x-1)^{\alpha} + \alpha(x^2-x)(k+x-1)^{\alpha-1} - (2n-2k-2x-1)(n-x-1)^{\alpha} - \alpha((n-k-x)^2-n+k+x)(n-x-1)^{\alpha-1}$. If $x \ge (n-k)/2$ we obtain $2\varphi_1'(x) \ge (n-x-1)^{\alpha-1}(2x-n+k)(2n-3+\alpha(n-k-1)) > 0$ for x > (n-k)/2. The same conclusion follows, $\varphi_1(x)$ is maximum only for x = 1 or x = n-k-1 and the extremal graph is the same as for ${}^0R_{\alpha}(G)$.

It remains to see what happens if $R_{\alpha}(G)$ is maximum. In this case also $G \cong K_k + (K_x \cup K_{n-k-x})$ and $R_{\alpha}(G) = \binom{k}{2}(n-1)^{2\alpha} + \binom{x}{2}(k+x-1)^{2\alpha} + \binom{n-k-x}{2}(n-x-1)^{2\alpha} + kx(n-1)^{\alpha}(k+x-1)^{\alpha} + k(n-1)^{\alpha}(n-k-x)(n-x-1)^{\alpha}$. The sum of the last two terms equals $k(n-1)^{\alpha}\phi(x)$ and we have seen that this function is maximum if and only if x=1 or x=n-k-1. To finish, it is necessary to find the maximum of $\psi(x)=\binom{x}{2}(k+x-1)^{2\alpha}+\binom{n-k-x}{2}(n-x-1)^{2\alpha}$. This function is exactly $\phi_1(x)$ with α replaced by 2α . It follows that for x>(n-k)/2 we have $2\psi'(x)>(n-x-1)^{2\alpha-1}(2x+k-n)(2n-3+2\alpha(n-k-1))>0$ and the extremal graph is the same. \square

Theorem 2.2. Let G be an n-vertex graph, $n \ge 3$, with vertex connectivity k, $1 \le k \le n-1$. Then $WW_{\alpha}(G)$ is minimum for $\alpha > 0$ and maximum for $\alpha < 0$ if and only if $G \cong K_k + (K_1 \cup K_{n-k-1})$.

Proof. We will prove that $\sum_{\{u,v\}\subseteq V(G)}d(u,v)^{\alpha}$ is minimum for $\alpha>0$ and maximum for $\alpha<0$ only for $K_k+(K_1\cup K_{n-k-1})$. Since by addition of edges this sum strictly decreases for $\alpha>0$ and strictly increases for $\alpha<0$, it follows, as above, that every extremal graph G is isomorphic to $K_k+(K_x\cup K_{n-k-x})$. All distances in this graph are 1 or 2, the distance d(u,v)=2 if and only if $u\in C_1$ and $v\in C_2$. It follows that

$$\sum_{\{u,v\}\subset V(G)} d(u,v)^{\alpha} = \binom{n}{2} + x(n-k-x)(2^{\alpha}-1).$$

We have $2^{\alpha} - 1 > 0$ for $\alpha > 0$ and the reverse inequality holds for $\alpha < 0$. Consequently, x(n - k - x) must be minimum, which implies x = 1 or x = n - k - 1.

Corollary 2.3. Let G be an n-vertex graph, $n \ge 3$, with edge connectivity k, $1 \le k \le n-1$ and $\alpha \ge 1$. Then ${}^0R_{\alpha}(G)$, $\chi_{\alpha}(G)$ and $R_{\alpha}(G)$ are maximum if and only if $G \cong K_k + (K_1 \cup K_{n-k-1})$.

Proof. Suppose that $\kappa(G) = p \le k = \kappa'(G)$. Since $H = K_k + (K_1 \cup K_{n-k-1})$ consists of a vertex adjacent to exactly k vertices of K_{n-1} , it follows that ${}^0R_\alpha(H)$, $\chi_\alpha(H)$ and $R_\alpha(H)$ are strictly increasing as functions of k. We get that the values of these indices in the set of graphs G of order equal to n and $\kappa(G) = p \le k$, by Theorem 2.1, are bounded above by the values of these indices for $K_k + (K_1 \cup K_{n-k-1})$. Since this graph has edge-connectivity equal to k, the proof is complete. \square

Note that in the statements of Theorem 2.1 and Corollary 2.3 we can replace (vertex or edge) connectivity k by (vertex or edge) connectivity less than or equal to k.

Corollary 2.4. Let G be an n-vertex graph, $n \ge 3$, with edge connectivity k, $1 \le k \le n-1$. Then $WW_{\alpha}(G)$ is minimum for $\alpha > 0$ and maximum for $\alpha < 0$ if and only if $G \cong K_k + (K_1 \cup K_{n-k-1})$.

Proof. The proof can be done as above, since expression $x(n-k-x)(2^{\alpha}-1)$ is decreasing in k for $\alpha>0$ and increasing for $\alpha<0$.

Corollary 2.5. Let G be an n-vertex graph, $n \ge 3$, with (vertex or edge) connectivity k, $0 \le k \le n-1$. Then $0 R_{-1}(G)$ is minimum if and only if $0 \le K_k + (K_1 \cup K_{n-k-1})$.

Proof. In this case $\alpha = -1$ and we obtain $\varphi'(x) = (k-1)((k+x-1)^{-2} - (n-1-x)^{-2}) < 0$ for x > (n-k)/2. It follows that minimum of ${}^0R_{-1}(G)$ is reached only for x = 1 or x = n-k-1. For edge connectivity note that $\frac{1}{k} + k(\frac{1}{n-1} - \frac{1}{n-2}) + \frac{n-1}{n-2}$ is strictly decreasing in k. For k = 1 the graph $G_x = K_k + (K_x \cup K_{n-k-x})$ has ${}^0R_{-1}(G_x) = 2 + \frac{1}{n-1}$ for every $1 \le x \le n-k-1$. \square

If $\alpha > 0$ and G is a connected graph minimizing ${}^0R_{\alpha}(G)$, $\chi_{\alpha}(G)$ and $R_{\alpha}(G)$, then G must be minimally connected, i. e., G must be a tree. For $\alpha > 0$ in [12] it was proved that among trees with $n \ge 5$ vertices, the path P_n has minimum general Randić index and in [26] it was shown that the same property holds for general sum-connectivity index for trees with $n \ge 4$ vertices.

In order to see what happens for 2-connected graphs we need some definitions related to Whitney's characterization of 2-connected graphs [23, 24]. An ear of a graph G is a maximal path whose internal vertices (if any) have degree 2 in G and an ear decomposition of G is a decomposition P_0, \ldots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is an ear of $P_0 \cup \ldots \cup P_i$. Similarly, a closed ear in G is a cycle G such that all vertices of G except one have degree 2 in G. A closed-ear decomposition of G is a decomposition P_0, \ldots, P_k such that P_0 is a cycle and P_i for $i \ge 1$ is either an ear or a closed ear in $P_0 \cup \ldots \cup P_i$. A graph is 2-connected if and only if it has an ear decomposition and it is 2-edge-connected if and only if it has a closed-ear decomposition.

Theorem 2.6. Let G be a 2-(connected or edge-connected) graph with $n \ge 3$ vertices. Then for $\alpha > 0$, ${}^0R_{\alpha}(G)$, $\chi_{\alpha}(G)$ and $R_{\alpha}(G)$ are minimum if and only if $G \cong C_n$.

Proof. We shall prove the theorem only for 2-connected graphs and general sum-connectivity index, because in the remaining cases the proof is similar. The proof is by induction. The unique 2-connected graph of order n = 3 is C_3 . Suppose that $n \ge 4$ and for any graph G of order m < n we have $\chi_\alpha(G) \ge m4^\alpha$ and equality holds if and only if $G \cong C_m$. Let H be a 2-connected graph of order n which is not a cycle, such that $\chi_\alpha(H)$ is minimum. It has an ear decomposition P_0, \ldots, P_k with $k \ge 1$. P_k cannot be an edge, since by deleting this edge the resulting graph is still 2-connected and has a smaller value of χ_α . Denote by $r \ge 1$ the number of inner vertices of P_k and by u and v the common vertices of P_k with $P_0 \cup \ldots \cup P_{k-1}$. Let H' denote the subgraph of H of order n - r deduced by deleting the inner vertices of P_k . Let $N_{H'}(u)\setminus\{v\} = \{u_1, \ldots, u_s\}$ and $N_{H'}(v)\setminus\{u\} = \{v_1, \ldots, v_t\}$, where $s, t \ge 2$ if $uv \notin E(H)$ and $s, t \ge 1$ otherwise. We have $\chi_\alpha(H) = \chi_\alpha(H') + (d_H(u) + 2)^\alpha + (d_H(v) + 2)^\alpha + (r - 1)4^\alpha + \sum_{i=1}^s [(d_H(u) + d_H(u_i))^\alpha - (d_H(u) + d_H(u_i) - 1)^\alpha] + \sum_{i=1}^t [(d_H(v) + d_H(v_i))^\alpha - (d_H(v) + d_H(v_i) - 1)^\alpha]$. If $uv \in E(H)$, then we must add $(d_H(u) + d_H(v))^\alpha - (d_H(u) + d_H(v) - 2)^\alpha > 0$. By the induction hypothesis, we have $\chi_\alpha(H) > (n - 1)4^\alpha + (d_H(u) + 2)^\alpha + (d_H(v) + 2)^\alpha \ge (n - 1)4^\alpha + 2 \cdot 5^\alpha > n4^\alpha = \chi_\alpha(C_n)$, a contradiction. \square

Acknowledgements

The authors thank the referee for valuable suggestions which improved the first version of this paper.

References

- [1] R. Ahlswede, G. O. Katona, Graphs with maximal number of adjacent pairs of edges, Acta Math. Acad. Sci. Hungar. 32(1978)
- [2] A. Behtoei, M. Jannesari, B. Taeri, Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity, Appl. Math. Lett. 22(2009) 1571–1576.
- [3] B. Bollobás, P. Erdös, Graphs of extremal weights, Ars Combin. 50 (1998) 225–233.
- [4] D. de Caen, An upper bound on the sum of squares of degrees in a graph, Discrete Math. 185 (1998) 245–248.
- [5] S. Cioabă, Sum of powers of the degrees of a graph, Discrete Math. 306 (2006) 1959–1964.
- [6] K. Ch. Das, Maximizing the sum of the squares of the degrees of a graph, Discrete Math. 285 (2004) 57–66.
- [7] Z. Du, B. Zhou, N. Trinajstić, Minimum general sum-connectivity index of unicyclic graphs, J. Math. Chem. 48 (2010) 697–703.
- [8] Z. Du, B. Zhou, N. Trinajstić, On the general sum-connectivity index of trees, Appl. Math. Lett. 24 (2011) 402–405.
- [9] R. Garcia Domenech, J. Gálvez, J. V. de Julián Ortiz, L. Pogliani, Some new trends in chemical graph theory, Chem. Rev. 108 (2008) 1127–1169.
- [10] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujevac, Kragujevac, 2008.
- [11] I. Gutman, S. Zhang, Graph connectivity and Wiener index, Bull. Acad. Serbe Sci. Arts Cl. Math. Natur. 133 (2006) 1-5.
- [12] Y. Hu, X. Li, Y. Yuan, Trees with minimum general Randić index, MATCH Commun. Math. Comput. Chem. 52 (2004) 119–128.
- [13] H. Hua, H. Deng, Unicycle graphs with maximum and minimum zeroth-order general Randić indices, J. Math. Chem. 41 (2007) 173–181.
- [14] L. B. Kier, L. H. Hall, Molecular connectivity in structure activity analysis, Wiley, New York, 1986.

- [15] D. Klein, I. Lukovits, I. Gutman, On the definition of hyper-Wiener index for cycle-containing structures, J. Chem. Inf. Comput. Phys. Chem. Sci. 35(1995) 50–52.
- [16] S. Li, H. Zhou, On the maximum and minimum Zagreb indices of graphs with connectivity at most k, Appl. Math. Lett. 23 (2010) 128–132.
- [17] V. Nikiforov, The sum of the squares of degrees: Sharp asymptotics, Discrete Math. 307 (2007) 3187–3193.
- [18] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827–3858.
- [19] M. Randić, On characterization of molecular branching, J. Am. Chem. Soc. 97 (1975) 6609–6615.
- [20] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett. 211 (1993) 478–483.
- [21] M. Randić, On history of the Randić index and emerging hostility toward chemical graph theory, MATCH Commun. Math. Comput. Chem. 59 (2008) 5–124.
- [22] R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.
- [23] D. B. West, Introduction to Graph Theory, (2nd Edition), Prentice-Hall, 2001.
- [24] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932) 150-168.
- [25] B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46 (2009) 1252–1270.
- [26] B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47 (2010) 210-218.