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Abstract. Quasi Einstein manifold is a simple and natural generalization of an Einstein manifold. The
object of the present paper is to study some geometric properties of generalized quasi Einstein manifolds.
Two non-trivial examples have been constructed to prove the existence of a generalized quasi Einstein
manifold.

1. Introduction

A Riemannian or a semi-Riemannian manifold (Mn, 1), n = dimM ≥ 2, is said to be an Einstein manifold
if the following condition

S =
r
n
1, (1)

holds on M, where S and r denote the Ricci tensor and the scalar curvature of (Mn, 1) respectively. According
to ([1], p. 432), (1) is called the Einstein metric condition. Einstein manifolds play an important role in
Riemannian Geometry as well as in general theory of relativity. Also Einstein manifolds form a natural
subclass of Riemannian or semi-Riemannian manifolds by a curvature condition imposed on their Ricci
tensor ([1], p. 432-433). For instance, every Einstein manifold belongs to the class of Riemannian manifolds
(Mn, 1) realizing the following relation :

S(X,Y) = a1(X,Y) + bA(X)A(Y), (2)

where a, b are smooth functions and A is a non-zero 1-form such that

1(X,U) = A(X), (3)

for all vector fields X.
A non-flat Riemannian manifold (Mn, 1) (n > 2) is defined to be a quasi Einstein manifold [3] if its Ricci

tensor S of type (0, 2) is not identically zero and satisfies the condition (2). We shall call A the associated
1-form and the unit vector field U is called the generator of the manifold. Such a manifold is denoted by
(QE)n.
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Quasi Einstein manifolds arose during the study of exact solutions of the Einstein field equations as
well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For instance,
the Robertson-Walker spacetime are quasi Einstein manifolds. Also quasi Einstein manifolds can be taken
as a model of the perfect fluid spacetime in general relativity[7]. So quasi Einstein manifolds have some
importance in the general theory of relativity.

The study of quasi Einstein manifolds was continued by M.C.Chaki [3], S.Guha [11], U.C.De and
G.C.Ghosh ([5], [6]), P.Debnath and A.Konar [9], Özgür and Sular [21], Özgür [18] and many others. In a
recent paper [25] Shaikh, Kim and Hui studied Lorentzian quasi Einstein manifolds

Several authors have generalized the notion of quasi Einstein manifold such as generalized quasi Einstein
manifolds ([4], [20]), nearly quasi Einstein manifolds [8], generalized Einstein manifolds[2], super quasi
Einstein manifolds [19], pseudo quasi Einstein manifolds [24] and N(k)-quasi Einstein manifolds ([17], [21],
[18], [27], [13]).

In 2001, Chaki [4] introduced the notion of generalized quasi Einstein manifolds. A non-flat Riemannian
manifold (Mn, 1) (n > 2) is called a generalized quasi Einstein manifold if its Ricci tensor S of type (0, 2) is
non-zero and satisfies the condition

S(X,Y) = a1(X,Y) + bA(X)A(Y) + c(A(X)B(Y) + A(Y)B(X)), (4)

where a, b, c are certian non-zero scalars and A, B are two non-zero 1-form. The unit vector fields U and V
corresponding to the 1-forms A and B respectively, defined by

1(X,U) = A(X), 1(X,V) = B(X),

for every vector field X are orthogonal, that is, 1(U,V) = 0. Such as n-dimensional manifold is denoted
by G(QE)n. The vector fields U and V are called the generators of the manifold and a, b, c are called the
associated scalars. If c = 0, then the manifold reduces to a quasi Einstein manifold (QE)n. It may be
mentioned that De and Ghosh [5] introduced the same notion in another way. In 2008, De and Gazi [8]
introduced nearly quasi Einstein manifolds N(QE)n and prove the existence of such a manifold by several
examples.

A non-flat Riemannian manifold (Mn, 1) (n > 2) is called a nearly quasi Einstein manifold if the Ricci
tensor S is non-zero and satisfies the condition

S(X,Y) = a1(X,Y) + bE(X,Y),

where E is a symmetric tensor of type (0, 2).
In a Riemannian manifold (Mn, 1) (n > 3) the Weyl conformal curvature tensor C of type (1, 3) is defined by

C(X,Y)Z = R(X,Y)Z −
1

n − 2
[1(Y,Z)QX − 1(X,Z)QY

+S(Y,Z)X − S(X,Z)Y]

+
r

(n − 1)(n − 2)
[1(Y,Z)X − 1(X,Z)Y],

where R, S, r denotes the Riemannian curvature tensor, the Ricci tensor of type (0, 2) and the scalar
curvature of the manifold respectively and Q is the symmetric endomorphism of the tangent space at each
point corresponding to the Ricci tensor S, that is, 1(QX,Y) = S(X,Y). If the dimension n = 3, then the
conformal curvature tensor vanishes identically. The conformal curvature tensor have been studied by
several authors in several ways such as ([12], [14], [15], [16], [26]) and many others.

The importance of a G(QE)n lies in the fact that a four-dimensional semi-Riemannian manifold is relevant
to study of a general relativistic fluid spacetime admitting heat flux [23], where U is taken as the velocity
vector of the fluid and V is taken as the heat flux vector field.
In the present paper we have studied G(QE)n. The paper is organized as follows:
After introduction in Section 2, we study some basic results of G(QE)n. We prove that if the generator U or
V is a parallel vector field, then G(QE)n reduces to a (QE)n. A necessary condition is obtained for a G(QE)n
to be conformally conservative. Section 3 is devoted to study Ricci-semisymmetric G(QE)n. In the next
section we consider Ricci-recurrent G(QE)n. Finally, we construct two non-trivial examples of a G(QE)n.
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2. Basic results

Suppose the generator U is a parallel vector field, then R(X,Y)U = 0. Hence

S(X,U) = 0. (5)

Putting Y = U in (4) gives

S(X,U) = aA(X) + bA(X) + cB(X)
= (a + b)1(X,U) + c1(X,V). (6)

Using (5) in (6) we get

(a + b)1(X,U) + c1(X,V) = 0. (7)

Putting X = V in (7) yields c = 0. That is, G(QE)n reduces to a (QE)n. Again if V is a parallel vector field,
then S(X,V) = 0. Setting Y = V in (4), we obtain

S(X,V) = a1(X,V) + bA(X)A(V) + c(A(X)B(V) + A(V)B(X))
= aB(X) + cA(X), since A(V) = 1(U,V) = 0. (8)

Putting X = U in (8) gives

aB(U) + cA(V) = 0

which implies c = 0, since B(U) = 1(U,V) = 0. In this case also G(QE)n reduces to a (QE)n.
This leads to the following :

Theorem 2.1. In a G(QE)n if either of the generators U,V is parallel, then the manifold reduces to a quasi Einstein
manifold.

Corollary 2.1. If the generator U of a G(QE)n is a parallel vector field, then a + b = 0.

Theorem 2.2. In a G(QE)n, QU is orthogonal to U iff a + b = 0.

Proof. In the equation (5) let us set Y = U. Then we get

S(X,U) = a1(X,U) + bA(X)A(U) + c(A(X)B(U) + A(U)B(X)).

Again putting X = U, we obtain S(U,U) = a + b and hence 1(QU,U) = a + b, which implies that QU is
orthogonal to U if and only if a + b = 0.

Theorem 2.3. A necessary condition for a G(QE)n to be conformally conservative is

2(n − 1)dc(U) = (n − 2)da(U) + (2n + 1)db(U).

Proof. A Riemannian manifold of dimension > 3 is said to be of conservative conformal curvature tensor if
divC = 0 where ‘div’ denotes divergence. It is known[10] that divC = 0 implies

(∇XS)(Y,Z) − (∇ZS)(Y,X) =
1

2(n − 1)
[dτ(X)1(Y,Z) − dτ(Z)1(X,Y)]. (9)

Putting X = Y = U and Z = V in (9) we get

(∇US)(U,V) − (∇VS)(U,U) =
1

2(n − 1)
[dτ(U)1(U,V) − dτ(V)1(U,U)]. (10)
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From (4) we obtain

r = an + b (11)

and

S(U,V) = c. (12)

Using (11) and (12) in (10), we get

∇Uc − ∇V(a + b) =
1

2(n − 1)
[−nda(U) − db(U)].

That is,

2(n − 1)dc(U) − (n − 2)da(U) − (2n + 1)db(U) = 0.

This completes the proof.

3. Ricci-semisymmetric G(QE)n

A Riemannian manifold is said to be Ricci-semisymmetric if R · S = 0 holds. In this section we study
Ricci-semisymmetric G(QE)n and prove the following theorem:

Theorem 3.1. A Ricci-semisymmetric G(QE)n is either nearly quasi Einstein manifold N(QE)n or, A(R(X,Y)V) = 0.

Proof. Suppose that R · S = 0. Then we get

S(R(X,Y)Z,W) + S(Z,R(X,Y)W) = 0.

Now using (4) we get

a1(R(X,Y)Z,W) + bA(R(X,Y)Z)A(W) + c{A(R(X,Y)Z)B(W)
+A(W)B(R(X,Y)Z)} + a1(Z,R(X,Y)W) + bA(Z)A(R(X,Y)W) (13)
+c{A(Z)B(R(X,Y)W) + A(R(X,Y)W)B(Z)} = 0.

Taking W = U and Z = V in (13), we obtain

bA(R(X,Y)V) = 0, since B(R(X,Y)V) = 1(R(X,Y)V,V) = 0.

Then either b = 0 or, A(R(X,Y)V) = 0.
If b = 0, from (4) we get

S(X,Y) = a1(X,Y) + c{A(X)B(Y) + A(Y)B(X)} = a1(X,Y) + cE(X,Y),

where E(X,Y) = A(X)B(Y) + A(Y)B(X) is a symmetric tensor. Hence either the manifold is a nearly quasi
Einstein manifold N(QE)n or, A(R(X,Y)V) = 0.
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4. Nature of the associated 1-forms of a G(QE)n

In this section, we assume that the associated scalars a, b, c are constants and we enquire under what
conditions the associated 1-forms A, B to be closed. Let us suppose that the manifold G(QE)n satisfies
Codazzi type of Ricci tensor, that is, the Ricci tensor satisfies

(∇XS)(Y,Z) = (∇YS)(X,Z). (14)

Using (4) in (14) we get

b[(∇XA)YA(Z) + A(Y)(∇XA)Z] + c[(∇XA)YB(Z)
+A(Y)(∇XB)Z + (∇XA)ZB(Y) + A(Z)(∇XB)Y]

= b[(∇YA)XA(Z) + A(X)(∇YA)Z] + c[(∇YA)XB(Z) (15)
+A(X)(∇YB)Z + (∇YA)ZB(X) + A(Z)(∇YB)X].

Putting Z = U in (15) and using (∇XA)U = 0, since U is a unit vector, we obtain

b[(∇XA)Y − (∇YA)X] = c[A(X)(∇YB)U + (∇YB)X
−A(Y)(∇XB)U − (∇XB)Y]. (16)

Now suppose ∇YU ⊥ V, then

(∇XB)U = 0. (17)

Using (17) in (16), we get

b(dA)(X,Y) = −c(dB)(X,Y).

Hence we can state the following :

Theorem 4.1. If a G(QE)n with associated scalars as constants satisfies Codazzi type of Ricci tensor, then the
associated 1-form A is closed if and only if B is closed, provided ∇YU ⊥ V.

Next suppose the 1-form A is closed. Then

(∇XA)Y − (∇YA)X = 0.

which implies

1(∇XU,Y) + 1(∇YU,X) = 0, (18)

Hence the vector field U is irrotational. Putting X = U in (18), we get

1(∇UU,Y) + 1(∇YU,U) = 0.

Since U is a unit vector, 1(∇YU,U) = 0. Hence

1(∇UU,Y) = 0

which implies ∇UU = 0, that is, the integral curves of the vector field U are geodesic.
Thus we can state the following :

Corollary 4.1. If a G(QE)n with associated scalars as constants satisfies Codazzi type of Ricci tensor, then the vector
field U is irrotational and the integral curves of the vector field U are geodesic provided 1-form B is closed and
∇YU ⊥ V.
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5. Ricci-recurrent G(QE)n

A Riemannian manifold is said to be Ricci-recurrent [22] if the Ricci tensor is non-zero and satisfies the
condition

(∇XS)(Y,Z) = D(X)S(Y,Z),

where D is a non-zero 1-form.
Let (Mn, 1) be a G(QE)n manifold. If U is a parallel vector field, then ∇XU = 0, from which it follows that
R(X,Y)U = 0. Therefore S(Y,U) = 0. Then from Theorem 1 and Corollary 1, we get c = 0 and a + b = 0.
Therefore we can rewrite the equation (4) in the following form:

S(X,Y) = a[1(X,Y) − A(X)A(Y)].

Taking the covariant derivative of the above equation with respect to Z, we obtain

(∇ZS)(X,Y) = da(Z)[1(X,Y) − A(X)A(Y)],

since ∇XU = 0 implies that (∇ZA)(X) = 0. Therefore (∇ZS)(X,Y) =
da(Z)

a S(X,Y), i.e., the manifold (Mn, 1) is
Ricci-recurrent.

Conversely, suppose that G(QE)n is Ricci-recurrent. Then

(∇XS)(Y,Z) = D(X)S(Y,Z), D(X) , 0.

But

(∇XS)(Y,Z) = XS(Y,Z) − S(∇XY,Z) − S(Y,∇XZ).

Therefore

D(X)S(Y,Z) = XS(Y,Z) − S(∇XY,Z) − S(Y,∇XZ). (19)

Putting Y = Z = U in (19), we obtain

D(X)(a + b) = X(a + b) − S(∇XU,U) − S(U,∇XU). (20)

From the equation (4), we obtain

S(∇XU,U) = a1(∇XU,U) + bA(∇XU) + cB(∇XU)
= (a + b)A(∇XU) + cB(∇XU)

Hence from (20), we get

X(a + b) −D(X)(a + b) = 2(a + b)A(∇XU) + 2cB(∇XU). (21)

Since A(U) = 1 implies 1(∇XU,U) = 0, i.e., A(∇XU) = 0, therefore from (21) B(∇XU) = 0 if and only if
d(a + b)(X) = (a + b)D(X). But B(∇XU) = 0 implies that either U is a parallel vector field or ∇XU ⊥ V.

Thus we can state the following:

Theorem 5.1. A G(QE)n is a Ricci-recurrent manifold provided the generator U is a parallel vector field. Conversely,
if a G(QE)n is a Ricci-recurrent manifold, then either the vector field U is parallel or, ∇XU ⊥ V.
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6. Examples of generalized quasi Einstein manifolds

Example 6.1. We consider a Riemannian manifold (R4,1) endowed with the metric 1 given by

ds2 = 1i jdxidx j = (1 + 2q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2 ]

where q = ex1

k2 and k is a non-zero constant and i, j = 1, 2, 3, 4.
The only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor

are

Γ1
11 =

q
1 + 2q

, Γ1
22 = −

q
1 + 2q

, Γ1
33 = −

q
1 + 2q

,

Γ1
44 = −

q
1 + 2q

, Γ2
12 =

q
1 + 2q

, Γ3
13 =

q
1 + 2q

,

Γ4
14 =

q
1 + 2q

,

R1221 = R1331 = R1441 =
q

1 + 2q
,

R2332 = R2442 = R3443 =
q2

1 + 2q
,

R11 =
3q

(1 + 2q)2 ,

R22 = R33 = R44 =
q

1 + 2q
.

The scalar curvature is 6q(1+q)
(1+2q)3 which is non-zero and non-constant. We take scalars a, b and c as follows :

a =
q

(1 + 2q)2 , b =
3q

(1 + 2q)3 −
q

(1 + 2q)2 , c =
q

1 + 2q
.

We choose the 1-forms as follows :

Ai(x) =

{ √
1 + 2q, for i=1

0, for i=2, 3, 4

and

Bi(x) =


√

1+2q
3 , for i=2, 3, 4

0, for i=1

We have,

R11 = a111 + bA1A1 + c(A1B1+A1B1), (22)

R22 = a122 + bA2A2 + c(A2B2 + A2B2), (23)

R33 = a133 + bA3A3 + c(A3B3+A3B3), (24)

R44 = a144 + bA4A4 + c(A4B4 + A4B4). (25)
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R.H.S. of (22) is 3q
(1+2q)2 = R11 = L.H.S of (22).

R.H.S. of (23) is q
(1+2q) = R22 = L.H.S of (23).

Similarly we can show that the (24) and (25) are also true. We shall now show that the 1-forms are unit
and orthogonal.

1i jAiA j = 111A1A1 + 122A2A2 + 133A3A3 + 144A4A4 = 1,

1i jBiB j = 111B1B1 + 122B2B2 + 133B3B3 + 144B4B4 = 1

and

1i jAiB j = 111A1B1 + 122A2B2 + 133A3B3 + 144A4B4 = 0.

So, the manifold under consideration is a generalized quasi Einstein manifold.

Example 2. We consider the 3-dimensional manifold M =
{(

x, y, z
)
∈ R3

}
, where

(
x, y, z

)
are the standart

coordinates in R3. Let {e1, e2, e3} be linearly independent global frame on M given by

e1 =
∂
∂x
− y

∂
∂z
, e2 =

∂
∂y
, e3 =

∂
∂z
.

Let 1 be the Riemannian metric defined by 1 (e1, e3) = 1 (e2, e3) = 1 (e1, e2) = 0 and 1 (e1, e1) = 1 (e2, e2) =
1 (e3, e3) = 1.

Let ∇ be the Levi-Civita connection with respect to the Riemannian metric 1 and R be the curvature
tensor of 1. Then we have

[e1, e2] = e3, [e1, e3] = 0, [e2, e3] = 0.

The Riemannian connection ∇ of the metric 1 is given by

21(∇XY,Z) = X1 (Y,Z) + Y1(Z,X) − Z1(X,Y) (26)
−1(X, [Y,Z]) − 1(Y, [X,Z]) + 1(Z, [X,Y]),

which is known as Koszul’s formula. This formula yields

∇e1 e1 = 0, ∇e1 e2 =
1
2

e3, ∇e1 e3 = −
1
2

e2,

∇e2 e1 = −
1
2

e3, ∇e2 e2 = 0, ∇e2 e3 =
1
2

e1,

∇e3 e1 = −
1
2

e2, ∇e3 e2 =
1
2

e1, ∇e3 e3 = 0.

It is known that

R(X,Y)Z = ∇X∇YZ − ∇Y∇XZ − ∇[X,Y]Z. (27)

With the help of the above results and using (27), we can easily calculate the non-vanishing components of
the curvature tensor as follows:

R(e2, e3)e3 =
1
4

e2, R(e1, e3)e3 =
1
4

e1, R(e1, e2)e2 = −
3
4

e1,

R(e2, e3)e2 = −
1
4

e3, R(e1, e3)e1 = −
1
4

e3, R(e1, e2)e1 =
3
4

e2,
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and the components which can be obtained from these by the symmetric properties from which, we can
easily calculate the non-vanishing components of the Ricci tensor S as follows:

S(e1, e1) = −
1
2
, S(e2, e2) = −

1
2
, S(e3, e3) =

1
2
,

and the scalar curvature is − 1
2 . Since {e1, e2, e3} is a frame field, any vector field X,Y ∈ χ(M) can be written as

X = a′1e1 + b′1e2 + c′1e3,

and

Y = a′2e1 + b′2e2 + c′2e3,

where a′i , b
′

i , c
′

i ∈ Ru such that a′1a′2 + b′1b′2 + c′1c′2 , 0. Hence

S(X,Y) = −
1
2

(a′1a′2 + b′1b′2 − c′1c′2)

1(X,Y) = a′1a′2 + b′1b′2 + c′1c′2

We choose the associated scalars as follows:

a = 1, b = −
3
2

and c = −
1
2
.

We also choose two associated 1-forms as follows:

A(X) =
(
a′1a′2 + b′1b′2

) 1
2 , ∀X.

B(X) =
c′1c′2

2
(
a′1a′2 + b′1b′2

) 1
2

, ∀X.

By virtue of the definition and chosen of two scalars and 1-forms, we can say that
(
M3, 1

)
is a generalized

quasi Einstein manifold whose associated scalars are constants.
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