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Abstract. Quasi Einstein manifold is a simple and natural generalization of an Einstein manifold. The
object of the present paper is to study some geometric properties of generalized quasi Einstein manifolds.

Two non-trivial examples have been constructed to prove the existence of a generalized quasi Einstein
manifold.

1. Introduction

A Riemannian or a semi-Riemannian manifold (M", g), n = dimM > 2, is said to be an Einstein manifold
if the following condition

r

S=-4 @
holds on M, where S and r denote the Ricci tensor and the scalar curvature of (M", g) respectively. According
to ([1], p. 432), (1) is called the Einstein metric condition. Einstein manifolds play an important role in
Riemannian Geometry as well as in general theory of relativity. Also Einstein manifolds form a natural
subclass of Riemannian or semi-Riemannian manifolds by a curvature condition imposed on their Ricci
tensor ([1], p. 432-433). For instance, every Einstein manifold belongs to the class of Riemannian manifolds
(M", g) realizing the following relation :

5(XY) =ag(X,Y) + bBAX)A(Y), (2)
where a4, b are smooth functions and A is a non-zero 1-form such that
g(X u) = AX), 3)

for all vector fields X.

A non-flat Riemannian manifold (M", g) (n > 2) is defined to be a quasi Einstein manifold [3] if its Ricci
tensor S of type (0, 2) is not identically zero and satisfies the condition (2). We shall call A the associated
1-form and the unit vector field U is called the generator of the manifold. Such a manifold is denoted by

(QE)n.
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Quasi Einstein manifolds arose during the study of exact solutions of the Einstein field equations as
well as during considerations of quasi-umbilical hypersurfaces of semi-Euclidean spaces. For instance,
the Robertson-Walker spacetime are quasi Einstein manifolds. Also quasi Einstein manifolds can be taken
as a model of the perfect fluid spacetime in general relativity[7]. So quasi Einstein manifolds have some
importance in the general theory of relativity.

The study of quasi Einstein manifolds was continued by M.C.Chaki [3], S.Guha [11], U.C.De and
G.C.Ghosh ([5], [6]), P.Debnath and A.Konar [9], C)Zgﬁr and Sular [21], Ozgijr [18] and many others. In a
recent paper [25] Shaikh, Kim and Hui studied Lorentzian quasi Einstein manifolds

Several authors have generalized the notion of quasi Einstein manifold such as generalized quasi Einstein
manifolds ([4], [20]), nearly quasi Einstein manifolds [8], generalized Einstein manifolds[2], super quasi
Einstein manifolds [19], pseudo quasi Einstein manifolds [24] and N(k)-quasi Einstein manifolds ([17], [21],
(18], [27], [13]).

In 2001, Chaki [4] introduced the notion of generalized quasi Einstein manifolds. A non-flat Riemannian
manifold (M", g) (n > 2) is called a generalized quasi Einstein manifold if its Ricci tensor S of type (0, 2) is
non-zero and satisfies the condition

S5(X,Y) =ag(X,Y) + bAX)A®Y) + c(AX)B(Y) + A(Y)B(X)), 4)

where a4, b, ¢ are certian non-zero scalars and A, B are two non-zero 1-form. The unit vector fields U and V
corresponding to the 1-forms A and B respectively, defined by

gxu) = AX), g(X,V)=B(X),

for every vector field X are orthogonal, that is, g(U, V) = 0. Such as n-dimensional manifold is denoted
by G(QE),. The vector fields U and V are called the generators of the manifold and 4, b, c are called the
associated scalars. If ¢ = 0, then the manifold reduces to a quasi Einstein manifold (QE),. It may be
mentioned that De and Ghosh [5] introduced the same notion in another way. In 2008, De and Gazi [8]
introduced nearly quasi Einstein manifolds N(QE), and prove the existence of such a manifold by several
examples.

A non-flat Riemannian manifold (M", g) (n > 2) is called a nearly quasi Einstein manifold if the Ricci
tensor S is non-zero and satisfies the condition

S(X,Y) = ag(X, Y) + bE(X, Y),

where E is a symmetric tensor of type (0, 2).
In a Riemannian manifold (M", g) (n > 3) the Weyl conformal curvature tensor C of type (1, 3) is defined by

CX,NZ = R(X, V)Z ~ —[g(1, 2)QX - g(X, 2)QY
+S(Y, 2)X - S(X, Z)Y]

’
+(n D=2 [9(Y, 2)X - 9(X, 2)Y],

where R, S, r denotes the Riemannian curvature tensor, the Ricci tensor of type (0,2) and the scalar
curvature of the manifold respectively and Q is the symmetric endomorphism of the tangent space at each
point corresponding to the Ricci tensor S, that is, g(QX,Y) = S(X,Y). If the dimension n = 3, then the
conformal curvature tensor vanishes identically. The conformal curvature tensor have been studied by
several authors in several ways such as ([12], [14], [15], [16], [26]) and many others.

The importance of a G(QE), lies in the fact that a four-dimensional semi-Riemannian manifold is relevant
to study of a general relativistic fluid spacetime admitting heat flux [23], where U is taken as the velocity
vector of the fluid and V is taken as the heat flux vector field.

In the present paper we have studied G(QE),. The paper is organized as follows:

After introduction in Section 2, we study some basic results of G(QE),. We prove that if the generator U or
V is a parallel vector field, then G(QE), reduces to a (QE),,. A necessary condition is obtained for a G(QE),
to be conformally conservative. Section 3 is devoted to study Ricci-semisymmetric G(QE),. In the next
section we consider Ricci-recurrent G(QE),. Finally, we construct two non-trivial examples of a G(QE),.
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2. Basic results
Suppose the generator U is a parallel vector field, then R(X, Y)U = 0. Hence
S(X, U) = 0. 5)
Putting Y = U in (4) gives
SX U) = aAX)+bAX) + cB(X)

= (@+bgXU)+cgX, V). (6)
Using (5) in (6) we get
(a+bgX,U)+cg(X, V) =0. (7)

Putting X = V in (7) yields ¢ = 0. That is, G(QE), reduces to a (QE),. Again if V is a parallel vector field,
then S(X, V) = 0. Setting Y = V in (4), we obtain

S(X, V)

ag(X, V) + bA(X)A(V) + c(A(X)B(V) + A(V)B(X))
aB(X) + cA(X), since A(V)=g(lL V) =0. (8)

Putting X = U in (8) gives
aB(U)+cA(V)=0

which implies ¢ = 0, since B(U) = g(U, V) = 0. In this case also G(QE), reduces to a (QE),.
This leads to the following :

Theorem 2.1. In a G(QE), if either of the generators U, V is parallel, then the manifold reduces to a quasi Einstein
manifold.

Corollary 2.1. If the generator U of a G(QE), is a parallel vector field, then a + b = 0.
Theorem 2.2. In a G(QE),, QU is orthogonal to U iffa + b = 0.
Proof. In the equation (5) let us set Y = U. Then we get

S(X, U) = ag(X, U) + bAX)AU) + c(AX)B(U) + A(U)B(X)).

Again putting X = U, we obtain S(U, U) = a + b and hence g(QU, U) = a + b, which implies that QU is
orthogonal to Uifand onlyifa+b=0. O

Theorem 2.3. A necessary condition for a G(QE), to be conformally conservative is
2(n = 1)dc(U) = (n = 2)da(U) + (2n + 1)db(U).

Proof. A Riemannian manifold of dimension > 3 is said to be of conservative conformal curvature tensor if
divC = 0 where ‘div’ denotes divergence. It is known[10] that divC = 0 implies

(VaS)Y,2) = (V2S)(%,X) = 5e=slde(X09(1, Z) = de(Z)g(X, V) ©)

Putting X =Y = Uand Z = V in (9) we get

(VuS)U, V) = (VyS)U, U) = ﬁ[ddu)g(u, V) =d(V)g(U, U)]. (10)
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From (4) we obtain

r=an+b (11)
and
S(ULV) =c. (12)

Using (11) and (12) in (10), we get

Vuc - Vy(a +b) = [~nda(U) — db(LD)].

1
2(n—1)
That is,

2(n — D)de(U) — (n — 2)da(U) — 2n + 1)db(U) = 0.

This completes the proof. [J

3. Ricci-semisymmetric G(QE),

A Riemannian manifold is said to be Ricci-semisymmetric if R - S = 0 holds. In this section we study
Ricci-semisymmetric G(QE), and prove the following theorem:

Theorem 3.1. A Ricci-semisymmetric G(QE), is either nearly quasi Einstein manifold N(QE), or, A(R(X, Y)V) = 0.

Proof. Suppose that R - S = 0. Then we get
S(R(X, Y)Z,W) + S(Z,R(X, Y)W) = 0.
Now using (4) we get

ag(R(X, Y)Z, W) + bAR(X, Y)Z)A(W) + c{A(R(X, Y)Z)B(W)
+A(W)B(R(X, Y)Z)} + ag(Z, R(X, Y)W) + bA(Z)AR(X, Y)W) (13)
+lA(Z)B(R(X, Y)W) + A(R(X, Y)W)B(Z)} = 0.

Taking W = U and Z = V in (13), we obtain
bA(R(X,Y)V) =0, since B(R(X, Y)V) = g(R(X, V)V, V) = 0.

Then either b = 0 or, A(R(X, Y)V) = 0.
If b = 0, from (4) we get

S(X,Y) =ag(X,Y) + cfAX)B(Y) + A(Y)B(X)} =ag(X,Y) + cE(X,Y),

where E(X,Y) = A(X)B(Y) + A(Y)B(X) is a symmetric tensor. Hence either the manifold is a nearly quasi
Einstein manifold N(QE), or, AR(X,Y)V)=0. O
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4. Nature of the associated 1-forms of a G(QE),

In this section, we assume that the associated scalars 4, b, c are constants and we enquire under what
conditions the associated 1-forms A, B to be closed. Let us suppose that the manifold G(QE), satisfies
Codazzi type of Ricci tensor, that is, the Ricci tensor satisfies

(VxS)(Y, Z) = (VyS)(X, 2). (14)
Using (4) in (14) we get

BI(VxA)YA(Z) + A(Y)(VxA)Z] + c[(VxA)YB(Z)
+A(Y)(VxB)Z + (VxA)ZB(Y) + A(Z)(VxB)Y]

= B[(VyA)XA(Z) + AX)(VyA)Z] + c[(VyA)XB(Z) (15)
+AX)(VyB)Z + (VyA)ZB(X) + A(Z)(VyB)X].

Putting Z = U in (15) and using (VxA)U = 0, since U is a unit vector, we obtain
b[(VxA)Y — (VyA)X] = c[AX)(VyB)U + (VyB)X
-A(Y)(VxB)U — (VxB)Y]. (16)

Now suppose VyU L V, then

(VxB)U = 0. (17)
Using (17) in (16), we get

b(dA)(X,Y) = —c(dB)(X, Y).
Hence we can state the following :

Theorem 4.1. If a G(QE), with associated scalars as constants satisfies Codazzi type of Ricci tensor, then the
associated 1-form A is closed if and only if B is closed, provided VyU L V.

Next suppose the 1-form A is closed. Then
(VxA)Y — (VyA)X = 0.
which implies
g(VxUu Y) + g(VyU X) = 0, (18)
Hence the vector field U is irrotational. Putting X = U in (18), we get

g(Vull,Y) + g(Vy U, U) = 0.

Since U is a unit vector, g(VyU, U) = 0. Hence

gVul,Y) =0

which implies VU = 0, that is, the integral curves of the vector field U are geodesic.
Thus we can state the following :

Corollary 4.1. If a G(QE), with associated scalars as constants satisfies Codazzi type of Ricci tensor, then the vector
field U is irrotational and the integral curves of the vector field U are geodesic provided 1-form B is closed and
vyu L V.
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5. Ricci-recurrent G(QE),

A Riemannian manifold is said to be Ricci-recurrent [22] if the Ricci tensor is non-zero and satisfies the
condition

(VxS)(Y, Z) = D(X)S(Y, 2),

where D is a non-zero 1-form.

Let (M", g) be a G(QE), manifold. If U is a parallel vector field, then VxU = 0, from which it follows that
R(X,Y)U = 0. Therefore S(Y, U) = 0. Then from Theorem 1 and Corollary 1, we getc = 0 and a + b = 0.
Therefore we can rewrite the equation (4) in the following form:

S(XY) =a[g(X,Y) - AX)AY)].
Taking the covariant derivative of the above equation with respect to Z, we obtain

(VzS)(X, Y) = da(Z)[g(X, Y) = A)ANY)],
since VxU = 0 implies that (VzA)(X) = 0. Therefore (Vz5)(X,Y) = @S(X, Y), i.e., the manifold (M", g) is
Ricci-recurrent.

Conversely, suppose that G(QE), is Ricci-recurrent. Then

(VxS)(Y, Z) = D(X)S(Y, Z), D(X) # 0.

But
(VxS)(Y, Z) = XS(Y, Z) = S(VxY, Z) = 5(Y, VxZ).
Therefore
D(X)S(Y, Z) = X5(Y, Z) = 5(VxY, Z) = 5(Y, VxZ). (19)

Putting Y = Z = U in (19), we obtain
D(X)(a + b) = X(a + b) - S(VxU, U) - S(U, VxU). (20)

From the equation (4), we obtain

S(VxUU) = ag(VxU, U) +bA(VxU) + cB(VxU)
(@ + b)A(VxU) + cB(VxU)

Hence from (20), we get
X(a+b) — D(X)(a +Db) = 2(a + b)A(VxU) + 2cB(VxU). (21)
Since A(U) = 1 implies g(VxU, U) = 0, i.e.,, A(VxU) = 0, therefore from (21) B(VxU) = 0 if and only if

d(a + b)(X) = (a + b)D(X). But B(VxU) = 0 implies that either U is a parallel vector field or VxU L V.
Thus we can state the following;:

Theorem 5.1. A G(QE), is a Ricci-recurrent manifold provided the generator U is a parallel vector field. Conversely,
if a G(QE), is a Ricci-recurrent manifold, then either the vector field U is parallel or, VxU L V.
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6. Examples of generalized quasi Einstein manifolds
Example 6.1. We consider a Riemannian manifold (R*,g) endowed with the metric g given by
ds? = gydx'dx = (1 +2q)[(dx")* + (dx*)* + (dx°)* + (dx*)? |
where g = %1 and k is a non-zero constantand i,j = 1,2, 3, 4.

The only non-vanishing components of the Christoffel symbols, the curvature tensor and the Ricci tensor
are

q

I, = ——, Iy=——7,T})=-
1 1+29" 2 1+29 "3 1+29
q 2 q 3 q
Iy = ——=, Ih=—",Th=—+
u 1+2¢" 12 1429 "B 1+29
4 _ q
T = 1+2q
_ _ _ 1
Ri221 = Rysz1 = Ry = T+27'
e
Rz = Ry = Raus = T+27'
3q
R = —,
" (1 +29)?
Ry = Rszs =Ry = T+27
The scalar curvature is fff;};’i which is non-zero and non-constant. We take scalars a, b and c as follows :

e M 4
(1+29)% (1+29° (1+29)?2 1+2q

We choose the 1-forms as follows :

A) = { VI+2g, for i=1

0, for i=2,3,4
and
Bi(x) = { B4 for i=2,3,4
, for i=1

We have,

Ri1 = ag1 + bA1A1 + c(A1B1+A1B1), (22)

Rap = agm + bAyA; + c(A2B2 + A2Ba), (23)

Raz = agss + bA3As + c(A3B3+A3Bs), (24)

R44 =4aga + bA4A4 + C(A4B4 + A4B4). (25)
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R.H.S. of (22) is = Ry = L.H.S of (22).

R.H.S. of (23) is ﬁ = Ry = L.H.S of (23).

Similarly we can show that the (24) and (25) are also true. We shall now show that the 1-forms are unit
and orthogonal.

_3q
(1+24)?

gIAA; = gUAL1AL + g7 AAr + 9P AZAs + gH ALAL = 1,

9"B;B; = g"'B1B1 + g*ByB; + B3B3 + g**ByBs = 1

and

glelB] = gllAlBl + gzzAsz + 933A333 + g44A4B4 =0.

So, the manifold under consideration is a generalized quasi Einstein manifold.

Example 2. We consider the 3-dimensional manifold M = {(x, y,z) € R3}, where (x, y, z) are the standart
coordinates in R3. Let {e1, €5, €3} be linearly independent global frame on M given by

LA A
ax Yo T ey T o

e =

Let g be the Riemannian metric defined by g(e1,e3) = g(ez,e3) = g(e1,e2) = 0 and g(er,e1) = glez, 2) =

gles,es) = 1.
Let V be the Levi-Civita connection with respect to the Riemannian metric g and R be the curvature
tensor of g. Then we have

[e1,e2] =e3,[e1,e3] = 0,[e2,e3] = 0.

The Riemannian connection V of the metric g is given by

2(xY,7) = Xg(%,2)+Ye(Z,X) - Zg(X,Y) 26)
_g(X/ [Y/ Z]) - g(Y/ [X/ Z]) + g(z/ [X/ Y])/

which is known as Koszul’s formula. This formula yields

1 1
VE]el = 0’ Vflez = 563/ Vele?) = _562/
1
Vezel = —563, VEZEZ =0, V8233 = Eel'
Ve.e = —1(3 V..eo = 16 V.ex=0
estl — 22/ 632_21/ 363 = U.

It is known that
R(X,Y)Z = VxVyZ — VyVxZ — Vix y|Z. (27)

With the help of the above results and using (27), we can easily calculate the non-vanishing components of
the curvature tensor as follows:

1 1 3
R(ep, e3)es = 1% R(e1,e3)ez = 1% R(e1,e2)er = iy
1 1 3
R(er, e3)e; = — 1% R(e1, e3)er = — 1% R(e1,e2)er = 1%
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the components which can be obtained from these by the symmetric properties from which, we can

easily calculate the non-vanishing components of the Ricci tensor S as follows:

and

and

1 1 1
S(elrel) = _E/ 5(62/62) = _El 5(63163) = E/

the scalar curvature is —%. Since {e1, €2, €3} is a frame field, any vector field X, Y € x(M) can be written as

X =aje; +bjey + cles,

Y = ajer + byer + ches,

where a], b}, ¢} € R* such that ajay + bib’ +c1¢; # 0. Hence

1
SXY) = 2(ala2 +bib, - cicy)
gX,Y) = aja,+bibj +cic)

We choose the associated scalars as follows:

azl,bz—g and c=—%.

We also choose two associated 1-forms as follows:

AX) = @%+HM% VX.

! A

cC
B(X) —12 VX

4q@+m@f

By virtue of the definition and chosen of two scalars and 1-forms, we can say that (M3, g) is a generalized
quasi Einstein manifold whose associated scalars are constants.
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