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Abstract. Inspired by the works of [11], [6], and [14], we introduce a method to solve solution of the
general split feasibility problem. In the last section, we give the general constrained minimization problem
and a lemma to show the relationship between these problems. The method utilized to solve this problem

is presented. Our results expand some results of Ceng, Ansari and Yao [2] and modify the results of Xu
[17].

1. Introduction

Given closed convex subset C € Hy, Q C H, of Hilbert space Hy, H, and let A : Hy — H; be abounded
linear operator. The split feasibility problem (SFP) is to find a point x € C and Ax € Q. This problem was
introduced by Censor and Elfving [5].

Such models were successfully developed for instance in radiation therapy treatment planning, sensor
networks, resolution enhancement.
In 2012, Ceng, Ansari and Yao [2] introduced the following lemma to solve SFP;

Lemma 1.1. Given x* € H;, the following statements are equivalent.

i) x* solves the SFP;

ii) x* = Pc (I = AA* (I = Po) A)x*, where A" is adjoint of A;

iii) x* solves the variational inequality problem (VIP) of finding x* € C such that {y — x*,Vg(x*)) = 0, for all
y € Cand Vg = A (I-Pg) A.

Many authors use this lemma to prove their results, see for example, [3], [8].

Letp,q € N. For each 1 <i < p, let C; be a nonempty closed convex subset of a real Hilbert space H;.
For each 1 < j < g, let Q; be a nonempty closed convex subset of another real Hilbert space H, and let
Aj : Hi = H; be a bounded linear operator. Suppose that K is another nonempty closed convex subset
of Hy. The constrained multiple-set split convex feasibility problem (MSCFP) raised by Masad and Reich [11] is
finding a point x* € K such that

|4
x*eﬂc,-andA]-x*eQ,-, 1<j<q. (1)
i=1

2010 Mathematics Subject Classification. Primary 47H09; Secondary 47H10, 90C33.

Keywords. General split feasibility problem, constrained minimization problem, fixed point problem.

Received: 01 March 2018; Revised: 25 September 2018; Accepted: 10 January 2019

Communicated by Marko Petkovi¢

This research was supported by Research and Innovation Services of King Mongkut's Institute of Technology Ladkrabang.
Email address: beawrock@hotmail.com (Atid Kangtunyakarn)



A. Kangtunyakarn / Filomat 33:1 (2019), 233-243 234
The MSCFP introduced by Censor et al. [6] and Xu [14] is a special case of (1), which is formulated as
finding x* € Hy such that

p q
X e Q C:and Ax" € ﬂl Q, )
i= j=

where A is abounded linear operator from Hy to Hy. If p = g = 1, (2 ) isreduced to SFP. Let A, B : H; — H; be
bounded linear operators. Inspired by (1), (2) and SFP, we introduce the general split feasibility problem which
is to find a point x* € C and Ax*, Bx* € Q. The set of this solution is denoted by I' = {x € C : Ax, Bx € Q}.

By applying Mann s iterative algorithm with SFP, Xu [17] proved the best following result;

Theorem 1.2. Assume that SFP is consistent and y € (O, ﬁ) Let {x,} be defined by the following averaged CQ
algorithm:

Xpe1 = (1 —ay) xy + a0, Pc (I — YA (I - PQ)A) Xy,

for all n > 0 where {a,} is a sequence in a interval [0, satisfying the condition

e
—Z_a” =
2+ylAl

n=1

2+V||A||2]

Then {x,} converges weakly to a solution of SFP.

The such theorem is used as a model for proving some result to solve the split feasibility problem, see
for example, [2, 3, 7].

In the next section, we prove the important lemma as a tool for proving the theorem that solves the
general split feasibility problem.

The purpose of this research, we introduce a new method for solving the general split feasibility problem
and apply our main theorem to prove the theorem related to the general constrained minimization problem
in the last section. Our results expand some results of Ceng, Ansari and Yao [2] and modify the results of
Xu [17].

2. Preliminaries

In order to prove our main theorem. Therefore, these tools are needed.

Throughout this research, we uses the symbol \\ — 77 and \\ — /7 represent strong and weak conver-
gence, respectively. Let C be a subset of a real Hilbert space H. A mapping T : C — C is called a-contractive
if there exists a € [0,1] such that ||Tx — Ty|| < allx — y|| for all x, y € C. A mapping T is calll nonexpansive if
a = 1. The fixed point problem of T is to find a point x* € C such that Tx* = x*. The set of all fixed point of T
is denoted by F(T). A mapping A : C — H is called a-inverse strongly monotone if there exists @ > 0 such
that al]Ax — Ay|* < (Ax — Ay,x — y) forall x,y € C.

The variational inequality problem (VIP) is a well known problem. That is to find a point @. € C such that

(y—@.,Go.) 20, forall y € C, 3)

where G : C — H is a mapping. The set of all solutions of (3) is denoted by VI(C, G).

The variational inequality problem has been applied in various fields such as industry, finance, eco-
nomics, social, ecology, regional, pure and applied sciences; see, [9],[10].

Let C be a closed convex subset of a real Hilbert space H and let Pc be the metric projection of H onto C
i.e., for x € H, Pcx satisfies the property

llx = Pex|l = min [lx — ylI.
yeC
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The following lemma is a property of Pc.

Lemma 2.1. (See [13]) Given x € H and y € C. Then Pcx = y if and only if there holds the inequality
(x-—y,y—2z)>0, VzeC

Lemma 2.2. (See [12]) Let H be a Hilbert space, let C be nonempty closed convex subset of H and let A be a mapping
of Cinto H. Let u € C. Then for A >0,

ueVI(CA) ©u=Pc(I-AA)u

where Pc is the metric projection of H onto C.

Lemma 2.3. (See [16]) Let {s,} be a sequence of nonnegative real number satisfying
Sus1 = (1 —an)spy + anPn, Yn 20

where {a, ), {Bn} satisfy the conditions

M e c0,1], Y @, =

n=1
(2) limsuppf, <0or Z latnBnl < oo.
n—co =1

Then lim;, 0 8, = 0.

Lemma 2.4. (See [15].) Let {s,} be a sequence of nonnegative real numbers satisfying
Spr1 = (1 —ay)sy +6,, ¥Ynz=0

where {a,) is a sequence in (0,1) and {0,} is a sequence such that

(e8]

M) Y an=,

n=1

) mnam92300r§:m4<w.

n—oo n n=1

Then lim;, 0 S, = 0.

Lemma 2.5. Let Hy and H, be real Hilbert spaces and C,Q be nonempty closed convex subsets of Hy and H,,
respectively. Let A,B : Hi — Hj be bounded linear operators with A*, B* are adjoint of A and B, respectively with
I' # 0. Then the followings are equivalent.

i)x €T,

ii) PC(I—a[A* (I_PQ)A + Y (I_PQ)B])x* =x",Ya>0,

2 2

where La, Lp are spectal redius of A*A and B*B, respectively with a € (0, %) and L = max{L4, Lg}.

Proof. Let the conditions holds
i) = ii) Let x* € I', we have x* € C and Ax*, Bx* € Q. It implies that

(1-Pg)Ax =0 =(I-Pg)Bx".
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Then
A*(1-Pg)Ax B'(I-Pg)Bx
2 - 2 =0
It follow that

I—-a

+

Pc A _ZPQ)A B (1 ;PQ)BDX* _

A'(1-Pg)A . B'(1-Pg)B
2 2

ii) = i) Let PC(I—a ])x* =x"and letw € ', we have w € C and Aw, Bw € Q.

From i) = ii), we have

Pc(I —a

Then, we have

2
2

*

IA

—w|

| A*(1-Pg)Ax B'(I-Pg) Bx*)
X

f—w— +
e ;

A (I-Pg) Ax' . B (I- Pq)Bx'
2 2

A (1-Po) Ax B (1-Po)Bx|
2 2

. 2
= |lx* —w||” - 2a{x" —w,

2

+a

IA

Il = wll* — a(Ax* - Aw, (I - Pg) Ax") — a(Bx" — Buw, (I - Pq) Bx")

az * *112 az % 112
+E”A (I = Po)Ax™|I + EHB (I = Po)Bx7||

IN

llx* = wl* - a(Ax" = PAx', (I - Po) Ax") — a(PoAx" — Aw, (I - Po) Ax")
—a(Bx" - PBx', (I - Pg) Bx") — a(PoBx" — Buw, (I - Pg) Bx")

a?L § a?L §
+7||(1 — Po)Ax'|* + 7“(1 — Pg)Bx’||?
a

* aL * L *
< =l - a(1 - I - Po)AX'IP = (1 = I - Po)B' I

It implies that Ax* = PoAx*, Bx* = PoBx* € Q.
It follows that

X = Pc[l—a[A*(I_PQ)A + B*(I_PQ)B]]JC* =Pcx* € C

2 2

Hencex* eI'. O

Example 2.6. Let H; = R, H, = Rand let C = ITI(a,al — 1) = {x = (x1,x2) € Hy : a1x1 + axxp = ay — ap for
all a = (a1,a2) € Hy and Q = [-2,3] € Hy. Defined mappings A,B : Hi — Hy by Ax = x1,Bx = x, for all
x = (x1,x2) € Hy. It is obvious that (1,-1) € T.
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. A*(I-Pg)A B*(I-Pg)B
Next, we will show that PC(I - /\( > + > ))(1, -1)=(1,-1).

From the definition of A, B, we can defined adjoint operators A*,B* : H, — Hy of A,Bby A*z = (z,0),B*z = (0, 2)
forall z € Hy. From the definition of C, We can defined metric projection Pc : Hy — C by

mz1 +arzo — (a1 —a
Pez = (a1, z) - (WA B2 ) g @
a3 + a3
forall z = (z1,22) € Hi.
From A, A*, B and B*, we have
AY(I-Pg)A(1,-1) A0
and
B*(I-Pp)B(1,-1) B0
Q — = (0, 0) (6)

2 2

From (4) (5) and (6 ), we have
A*(I-Pg)A B*(I-Pg)B
2 T 2 ))

PC(I - )\( Pe(1, 1)

a —ap — (a1 — ap)

’2 2
a1+a2

Remark 2.7. The result of this example is guaranteed by Lemma 2.5.

a,-1-( Jiar, a2

a,-1).

3. Main results

Theorem 3.1. Let Hy and H; be real Hilbert spaces and let C, Q be nonempty closed convex subsets of Hy and H,,
respectively. Let A,B : Hi — H, be bounded linear operators with A*, B* are adjoint of A and B, respectively and
L = max{La, Lp}, where La and Ly are special radius of A*A and B*B and let D : C — H; be d-inverse strongly
monotone. Assume that T N\ VI(C,D) # 0. Let the sequence {x,} generated by x, € C and

i o),

(7)

Xn+1 :anf(xn)"'ﬁan(I_/\D)xn+7/nPC[aI_‘1 5 5

for all n € N, where {a,} ,{Bn}, {yn} € (0,1) with ay + B + yn = Land f : C — C is a-contractive mapping with
a € (0,1). Suppose that the following conditions hold;

o)

i) lim «a,, =0, E ay, = 00,
n—oo
n=1

ity ¢ < Pn,yn<d, forsomec,d >0,

i) Ae(0,2d),ae (o, %)

i0) Yl =l Y I = fual < oo,
n=1 n=1

Then the sequence {x,} converges strongly to xo = Pravic,p)f(xo).
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A (1-Pg)A . B'(I-Pg)B

Proof. Putting Vg = 5 5

1
. First, we show that Vg is Z—inverse strongly monotone.

Letx,y € C. SinceVg:A*(I_sz)A+B*(I_2PQ)B,wehave
A (I-Pg)Ax B*(I-Pg)Bx A*(I-Pg)Ay B (I-Po)B
OO Rl ) el ) O ) e G LT
A'(I-Pg)Ax  A*(I-Pg)Ay B'(I-Pq)Bx B*(I-Pg)By
= = B 2 i 2 B a—

< %HA* (1-Pg)Ax - A* (I - Po) Ayll* + %HB* (1-Pg)Bx - B* (I - Pg) BylP

L 2 L 2
< 5l (1-Pg)Ax - (I- Po) AylP + oL (1-Pg)Bx - (I-Pg)BylP. ®)
From property of Pc, we have
(I = Po)Ax — (I = Po)Ayl* = ((I-Pg)Ax — (I — Pg)Ay, (I — Pg)Ax — (I — Pp)Ay)
= ((I-Pg)Ax — (I = Pg)Ay, Ax — Ay — (PoAx — PoAy))
= (A"~ Po)Ax - A'(I - P)Ay,x - y)
—<(I - PQ)AJC - (I - PQ)Ay, PQAX - PQAy>
= (A"(I-Po)Ax - A(I- P)Ay,x ~ )
—<(I - PQ)Ax, PQAx - PQA]/)
+<(I - PQ)Ay, PQAX - PQA]/)
< (A"~ Po)Ax — A'(I - P)Ay,x — y). ©)
By using the same method as (9), we have
(I = Po)Bx — (I — Pq)Byl* < (B*(I — Pg)Bx — B*(I — Pp)By, x — y). (10)
Substitute (9), (10) into (8), we have

IA

Vg (x) — Vg (y) I %(A*(I — Pg)Ax — A*(I - Po)Ay,x — y)

+I§<B*(I — Pg)Bx — B*(I — Pg)By, x — y)

A*(I - Pp)A B*(I — Pp)B A*(I - Pp)A B*(I — Pp)B
_y ( 2Q)x+ ( ZQ)X_( ( 2Q)y+ ( 2Q) y),x_w
= L{Vg(x)-Vg(y),x—y).

1
So, we have Vg is Z-inverse strongly monotone. From the definition of Vg, we have

IPc (I - aVg)x — Pc (I —aVg) yll?

IA

lx—y—a(Vg(x) - Vg ()P
= |x—yl? —2a(x - y, Vg (x) = Vg (y)) + @*IVg (x) = Vg (y) I

< lx= gl = ZIVg () - Vg ()P + @INg ) - Vg (I

2
= lx=ylP -a( - a)IVg @) - Vg ()P
llx = yli%, (11)
for all x, y € C. By using the same method as (11), we have

IPc (I = AD)x — Pc (I - AD) yll < [lx = ylI, (12)

IN
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forall x,y € C.
From the definition of x,, (11) and (12), we have

£ () = 2|| + BullPc (I = AD) x, — zl| + yu ||[Pc (I — aVg) x — 2|

w1 =2l <

< an(lelxn —zll +lf(z) - ZII) + BullPc (I = AD) x, — 2|l + yu ||[Pc (I — aVg) x4 — 2|
< (I-an1=-a)llx, —zll + aullf(z) -zl
< maX{Hxl -z|l, w}r

1-«a

foralln € Nand z € I' N VI(C, D). By induction, we conclude that the sequence {x,} is bounded.
From (7), we have

tuer = 2%all - <l = atneal || fGeun)|| + @ 1w = xu-all + |Bn = Bua| 1P (I = AD) x|
+BullPc (I = AD) x, — Pc (I = AD) xyall + [yn = yuca|IPc (1 = aVg) x|
+yullPc (1 —aVg) x, — Pc (1 —aVg) x|
< (1= (1= ) ot = Xl + lotn = || 1) + [Ba = Buea| IIPc (T = AD) x4

+[yn = yua| IPc (1 = aVg) xuall.

From the conditions i), iv) and Lemma 2.4, we have
Tim {1 — 24/ = 0. (13)

We can rewrite (7) by
Xn+1 = anf(xn) + (1 —a,) Exxy, (14)

,Bn Vn

where E,,

PC (I-AD) + PC(I —aVyg) foralln € IN.

Since P (I - /\D) and Pc(I—- an) are nonexpanswe mappings, we have E, is a nonexpansive mappings, for
alln € N.
It is easy to see that

F(Pc(I - AD)) N F(Pc(I —aVg) € F(Ey), (15)

for all n € IN.
From Lemma 2.2 and 2.5, we have

F(Pc(I-AD))NF(Pc(I-aVg)=TNVI(C,D) #0.
Letzg e F(E,), foralln € Nand z € I' " VI(C, D), we have

llzo —zIP < ﬁ . o IPc (1-AD)zy —z|* +

(ﬁ—ni;n) IPc (1 = AD) 2o — Pc (I - aVyg) zoll®

,BnYn

_an

2
< llzo =2l -

7 S|IPc (1 = AD) 2o — Pc (I - aVg) zoll*.

From condition iii), we can conclude that P¢c (1 — AD) zg = Pc (I — aVyg) zo.
Since zg € F (E,), for all n € IN, we have

Bn
1-

Zo = Pc (I-—AD)zy + T P PC(I —aVg)zo = Pc (I = AD) zg = Pc(I —aVg)zp
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So, we get

20 € F(Pc(I—-AD))NF(Pc(I-aVg) =T NVI(C,D).
It follows that

F(E,) CF(Pc(I-AD))NF(Pc(I—aVyg).
Then

F(E,) = F(Pc (I - AD)) N F(Pc(I - aVg), (16)
for all n € IN. From (14), we have

Xn+1 = Xn = Qn(f(xn) = Xu) + (1 = ) (Enx — Xy). 17)
From (13) and condition i), we have

lim ||E,x, — x| = 0. (18)
n—00

Since the sequence {x,} is bounded in a real Hilbert space H;, there exists a subsequence {x,,} of {x,}
converges weakly to w, where w € C.

From the condition i) we may assume that g,, —» fand y,, = y ask — co with 8,y € [¢,d].

It follows that

( P, Vo ):ﬁ+y.

1= lim
l-a, 1-a,

k—oo

Putting E = BPc (I — AD)+yPc(I-aVyg). Itis easy to see that E is a nonexpansive mapping. By using method
as F(E,) = F(Pc (I - AD)) N F(Pc(I - aVg), we have

F(E) =F(Pc(I-AD))NF(Pc(I—-aVyg). (19)
From the definition of E,, and E, we have

ﬁ”k

1-ay,

- ﬁ) Pc(I—-AD)xy, + ( Vm )/) Pc(I—aVg)xy,.
1-ay,

Eyxn, — Ex, = (
From limy_,e By, = B, limk— ¥, = ¥ and condition i), we have

im [|E,, %y, — Ex,y ]| = 0. (20)
From (18) and (20), we have

lim [1x,, — Ex,, | = 0. (21)

Assume that w ¢ I' N VI(C, D). From (19), Lemma 2.2 and 2.5, we have w ¢ F(E). From Opial’s conditions
and (21), we have

lim [|x,, —w|| < lim ||x, — Ew|
k—co k—o0

< im ([, — Ex,, ]I+ 1Ex,, - Eel]

< lim [|x,, — wll.
k— 00
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This is a contradiction. Then w € I' N\ VI(C, D).
Since the sequence {x,} is bounded, we have

lim sup(f(xo) — xo, X, — X0) = I}i_)fg’(f(xo) — Xo, X, — X0) = {f(x0) — X0, w — x0) <0, (22)

n—o0

where xg = Prayicp) f(¥o).
From (7), we have

, A'(I-Pg)A B'(I-Pg)B ,
IXne1 —x0ll® = llanf(xy) +puPc (= AD)x, + yPc|I—a 5 + 7 X — Xo|
A*(I-Pg)A  B*(I-Pp)B
< |IBu(Pc (I = AD) x, — x0) + Vn(PC I-a ( 5 ) + ( 5 ) Dxn - 9(o)ll2
+2an<f(xn) — X0, Xp+1 — X0)
< (1= @) lxn = xoll® + 20, f(x0) — X0, Xns1 — Xo) + 2atatllxcy — Xollllx+1 — Xoll
< (1= an)?llxn — xolP* + 2, f(x0) — X0, Xns1 — Xo) + Anatllxy, — Xol* + anallxs1 — xoll*
It implies that

1
1t — Xoll? + ——(f(x0) — Xo, Xre1 — xo>).

20, (1 —« 20, (1 — « a
I|xn+1—xO||2S(l—M)len—xOII2+ ol )(2(110() 1-a

1-a,a 1-a,a

From Lemma 2.3, condition i) and (22), we obtain that the sequence {x,} converges strongly to xy =
Praviiep) f(x0). This complete the proof. [

Using Theorem 3.1, we can solve split feasibility problem.

Theorem 3.2. Let Hy and H; be real Hilbert spaces and let C, Q be nonempty closed convex subsets of Hy and H,,
respectively. Let A : Hi — Hy be bounded linear operator with A* is adjoint of A where L is special radius of A*A
and let D : C — H; be d-inverse strongly monotone. Assume that Tx NVI(C,D) # 0, whereTs = {x € C: Ax € Q}.
Let the sequence {x,} generated by x, € C and

Xn+1 = anf(xn) +ﬁnPC (I_ /\D)xn +7/nPC (I—Q(A* (I—PQ)A))X,,,

for all n € N, where {a,},{Bn},{ys} € (0,1) with a, + B, + yn = 1and f : C — C is a-contractive mapping with
a € (0,1). Suppose that the following conditions hold;

[ee)

i) lim a, =0, E ay, = 09,
n—oo 1
p—

il) ¢ <Py, vn<d, forsomec,d >0,

iy Ae(0,2d),a¢€ (0, %)

(o) (o]
iU) Z |an - an—lll Z |ﬁn - ﬁn—1| < ©00.
n=1 n=1

Then the sequence {x,} converges strongly to xo = Pr,nvic,p)f(xo).

Remark 3.3. If we take D = 0 in Theorem 3.2, we have

Xps1 = Anf(Xn) + PuXyn + VnPc (I —-a (A* (I - PQ) A)) X, (23)

for all n € IN, which is modification iterative scheme {x,} in Theorem 1.2 and by Theorem 3.2, we have the sequence
{xn} generated by (23) converges strongly to a solution of SFP under the sufficient conditions of Theorem 3.2.
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4. Application
Let C € Hy,Q € H; of Hilbert space H1, H, and let A : Hy — H; be a bounded linear operator.

Let g : Hi — R be a continuous differentiable function. The minimization problem;
: 1 2
min g (x) i= Il - Po)AxIP, 24)
is to find a point x* € C such that g (x*) < g (x) forall x € C.

From studying the minimization problem, we introduce the general constrained minimization problem as
follows,

(25)

The set of all solution of (25) is denoted by I'; = {x" € C: g(x*) < g(x), Yx € C}.
The following results show the relationship between the general split feasibility problem and the general
constrained minimization problem.

Lemma 4.1. Let Hy and H, be real Hilbert space and C,Q be nonempty closed convex subsets of Hy and H,,
respectively. Let A,B : Hi — H be bounded linear operators with A*, B* are adjoint of A and B, respectively and

H(I - PQ)AxH2 ||(1 ) Bx”2

let g : Hi — R be a continuous differentiable function defined by g(x) = 1 + 1 for all
x € Hy. Assume that T' # 0. Then the followings are equivalent.
Nx erT,
ity x* € Ty
Proof. ii) = i) Letx* € Iy and let x € I', we get x € C and AX, Bx € Q.
Since x* € I'y, we have
Ax* — PoAx*||> ||Bx* = PoBx'|*  ||Ay — PoAyll*  |IBy — PoByll*
I 0 |I+|| 0 IISIIy Qy||+||y lell (26)
4 4 4 4
forally € C.
Since x € C, we have
Ax* — PoAx*|*  ||Bx* — PoBx*|>  ||Ax — PoAX|>  |IBx — PoBx|l?
I oAX|l +|| oBXI |l oAX|| +I| 0 ||_ 27)

4 4 - 4 4
Since Ax, Bx € Q, we have Ax = PoAx and Bx = PpBx.
From (27), we have
lJAx* — PoAx*|>  ||Bx* — PoBx*|?
1 + 1 =0

It implies that Ax* = PoAx* € Q and Bx* = PgBx* € Q.

Since x* € Ty, we have x* € C.

Hence x* € T

i) = ii) Let x* € I, we have x* € C and Ax*, Bx* € Q. Then, we have

”Ax* — PoAx* . HBx* — PoBx* o< ”Ay - PQA]/”2 . HB]/ - PQBy”2
4 4 4 4
forall y € C. It implies that x* € Ty. [

2 2
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A (I-Pg)A  B'(I-Pg)B
Remark 4.2. We observe that Vg = 5 + 5 , where A* and B* are adjoint of A and B,

respectively and Vg is a gradient of g. From Lemma 2.5 and 4.1, we have Ty = T = VI(C, Vg), where T # (.

Theorem 4.3. Let Hy and H; be real Hilbert spaces and let C, Q be nonempty closed convex subsets of Hy and Hy,
respectively. Let A,B : Hi — H, be bounded linear operators with A*, B* are adjoint of A and B, respectively and
L = max{La, Lg}, where L and Ly are special radius of A*A and B*B. Let the function g : Hy — R be differentiable

H(I - PQ)Ax” ) ”(1 - Py) Bx”2

continuous function defined by g (x) = and let D : C — Hj be d-inverse strongly

monotone. Assume that T N VI(C,D) # 0. Let the sequence {x,} generated by x; € C and
Xp+1 = Qn f(xn) + BuPc (I = AD) x, + yuPc (I — aVg) x,,

for all n € N, where {a,},{Bn},{yn} € (0,1) with a, + B, + yn = Land f : C — C is a-contractive mapping with
a € (0,1). Suppose that the following conditions hold;

[ee)
i) lim a,, =O,Z‘an = 00,
n=1

n—oo
il) ¢ <Py, vn<d, forsomec,d >0,

iy Ae(0,2d),a¢€ (0, %)

(o) [e9]
iU) Z Ian - an—llr Z |ﬁn - ﬁn—1| < 0o.
n=1 n=1

Then the sequence {x,} converges strongly to xo = Pr,avicp) f(x0).

Proof. From Theorem 3.1 and Lemma 4.1, we can conclude Theorem 4.3. [
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