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Abstract. In this paper, we introduce a generalization of divided differences and apply it for constructing
a new class of interpolation formulae. By studying the existence and uniqueness of the introduced class,
we also consider some special cases of it and investigate the interpolating function corresponding to this
class at coincident points leading to an extension of Taylor interpolation. Some numerical examples are
also included.

1. Introduction

Let Ψ(x; a0, . . . , an) be a family of functions of a single variable x with n + 1 free parameters {a j}
n
j=0. The

interpolation problem for Ψ consists of determining {a j}
n
j=0 so that for n + 1 given real or complex pairs of

distinct numbers {(x j, f j)}nj=0 we have

Ψ(x j; a0, . . . , an) = f j. (1)

Relation (1) leads to a linear interpolation problem if Ψ depends linearly on the parameters ai, i.e., [22]

Ψ(x; a0, . . . , an) ≡ a0Ψ0(x) + · · · + anΨn(x).

Interpolation problems are basic tools for approximating functions and quadrature rules (cf. [14], [13]).
For history of interpolation problems see e.g. [3].

Newton’s formula for constructing an interpolating polynomial is well-known [4], i.e.,

Pn(x) =

n∑
j=0

[x0, . . . , x j] f
j−1∏
k=0

(x − xk), x ∈ [a, b], (2)

where
−1∏
k=0

( · ) = 1 and [x0, . . . , x j] f is jth order divided difference associated with f .
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Divided differences play a fundamental role in interpolation and approximation by polynomials and
spline theory; for a recent survey see [2].

By using the uniqueness of an interpolating polynomial, it can be proved that [10]

[x0, . . . , xn] f =
[x1, . . . , xn] f − [x0, . . . , xn−1] f

xn − x0
=

n∑
j=0

f (x j)
w′n(x j)

, (3)

where wn(x) = (x − x0) . . . (x − xn).
Also, it is clear that [19] we have

[x0, . . . , xk] f =

V
(

p0 , . . . , pk−1 , f
x0 , . . . , xk−1 , xk

)
V
(

p0 , . . . , pk−1 , pk

x0 , . . . , xk−1 , xk

) , (4)

where

V
(

f0 , . . . , fk
x0 , . . . , xk

)
= det fi(x j) =

∣∣∣∣∣∣∣∣∣
f0(x0) · · · f0(xk)
...

...
fk(x0) · · · fk(xk)

∣∣∣∣∣∣∣∣∣ ,
and p j(x) = x j.

Newton’s formula (2) was generalized by Mülbach using a linear family of functions forming a complete
Chebyshev system [19]. In fact, the base of any ordinary divided differences is the classical complete
Chebyshev system. This means that the generalized divided differences of a function f can be derived by
replacing the aforesaid system with an arbitrary Chebyshev-system (φ0, . . . , φk) via (4) as follows

[
φ0 , . . . , φk

x0 , . . . , xk

∣∣∣∣∣ f
]

=

V
(
φ0 , . . . , φk−1 , f
x0 , . . . , xk−1 , xk

)
V
(
φ0 , . . . , φk−1 , φk

x0 , . . . , xk−1 , xk

) . (5)

Mülbach proved that the divided differences (5) satisfy a recurrence relation [19] similar to (3) as

[
φ0 , . . . , φk

x0 , . . . , xk

∣∣∣∣∣ f
]

=

[
φ0 , . . . , φk−1

x1 , . . . , xk

∣∣∣∣∣ f
]
−

[
φ0 , . . . , φk−1

x0 , . . . , xk−1

∣∣∣∣∣ f
]

[
φ0 , . . . , φk−1

x1 , . . . , xk

∣∣∣∣∣ φk

]
−

[
φ0 , . . . , φk−1

x0 , . . . , xk−1

∣∣∣∣∣ φk

] ,
where[

φ0

x0

∣∣∣∣∣ f
]

=
f (x0)
φ0(x0)

and
[
φ0

x0

∣∣∣∣∣ φk

]
=
φk(x0)
φ0(x0)

.

The general interpolation problem, proposed by Davis [7], is the most general case including all above-
mentioned cases, because it is concerned with reconstructing functions on a basis of certain functional
information, which are linear in many cases. Hence, many new interpolation formulae can be constructed
using linear operators [12]. See also [9, 11, 18] in this regard.

Let Π be a linear space of dimension n + 1 and L0,L1, . . . ,Ln be n + 1 given linear functionals defined on
Π, which are independent in Π∗ (the algebraic conjugate space of Π). For a given set of values w0,w1, . . . ,wn,
we can find an element f ∈ Π such that

L j( f ) = w j j = 0, 1, . . . ,n. (6)
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According to Theorem 2.5.1 of [7, p. 35], there exist uniquely n + 1 independent elements of the space Π
p∗0, . . ., p∗n, such that Li(p∗j) = δi, j. Thus, for any p ∈ Π

p =

n∑
j=0

w jp∗j,

is the unique solution of the problem (6) in the space Π.
The aim of this paper is to introduce a new class of interpolation formulae extending Newton’s formula.

In the next section, we define the generalized divided difference operator. In Section 3, a certain space
of functions, which is the base of constructing new class of interpolation formulae is introduced. In this
direction, existence and uniqueness of the interpolating function, as well as the remainder formula, are
considered for the introduced interpolation class. Section 3.1 is devoted to some special cases. In Section 4,
we study our problem at coincident points, which leads to a generalization of Taylor interpolation. Finally,
some numerical examples are given in Section 5.

2. Generalized divided difference operator

Let Λ =
{
λ1, λ2, . . .

}
be a system of monotonous continuous functions defined on [a, b] and let

Λ0 = ∅ and Λn =
{
λ1, . . . , λn

}
, n ∈N.

For such systems of functions we will say that they are regular systems.
Also, for a fixed n ∈N, let Xn be a set of different points in [a, b], i.e., Xn = {x0, x1, . . . , xn}.
We introduce now the so-called generalized divided difference operator of order k with respect to the system Λ:

Definition 2.1. The generalized divided difference operator of order k (≥ 1) with respect to the system Λ at
the points x0, . . . , xk−1, x (x ∈ [a, b] and different from other points) is given by

[x0, . . . , xk−1, x]Λk f =
[x0, . . . , xk−2, x]Λk−1 f − [x0, . . . , xk−1]Λk−1 f

λk(x) − λk(xk−1)
, (7)

where [x]∅ f = f (x).

The formula (7) can be used recursively for computing the generalized divided differences. For example,
for n = 4 the computation is arranged in Table 1, where [xi]∅ f = f (xi), i = 0, 1, 2, 3, 4.

Table 1: The generalized divided differences for n = 4

x0 f (x0) [x0, x1]Λ1
f [x0, x1, x2]Λ2

f [x0, x1, x2, x3]Λ3
f [x0, x1, x2, x3, x4]Λ4

f

x1 f (x1) [x0, x2]Λ1
f [x0, x1, x3]Λ2

f [x0, x1, x2, x4]Λ3
f

x2 f (x2) [x0, x3]Λ1
f [x0, x1, x4]Λ2

f

x3 f (x3) [x0, x4]Λ1
f

x4 f (x4)
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Remark 2.2. According to (3) the standard divided differences are symmetric functions of their arguments.
However, for the generalized divided differences it holds only for ones of order one, i.e.,

[xi, x j]Λ1
f =

f (x j) − f (xi)
λ1(x j) − λ1(xi)

=
f (xi) − f (x j)
λ1(xi) − λ1(x j)

= [x j, xi]Λ1
f .

In general, the the generalized divided differences of order k are symmetric only with respect to two last
arguments, i.e.,

[xi, xi+1, . . . , xi+k−2, xi+k−1, xi+k]Λk
f = [xi, xi+1, . . . , xi+k−2, xi+k, xi+k−1]Λk

f .

3. Generalized interpolation formula

First we introduce the so-called generalized Newton functions Nk (w.r.t. the system Λ), k = 0, 1, . . . ,n, as

N0(x) = 1, Nk(x) =

k∏
ν=1

(
λν(x) − λν(xν−1)

)
, 1 ≤ k ≤ n, (8)

which are linearly independent. Note that Nk+1(x) = Nk(x)
(
λk+1(x) − λk+1(xk)

)
, as well as that for k ≥ 1 we

have

Nk(x j) = 0 for j ≤ k − 1 and Nk(x j) , 0 for j ≥ k.

Using these generalized Newton functions as a basis {Nk(x)}nk=0, we generate an (n + 1)-dimensional
linear subspace Πn = span{N0,N1, . . . ,Nn} of C[a, b] and consider its element

Gn(x; f ; Λ) =

n∑
k=0

dkNk(x), (9)

for which the following interpolation conditions at n + 1 given points (interpolation nodes),

Gn(xν; f ; Λ) = f (xν), ν = 0, 1, . . . ,n, (10)

are satisfied.
Introducing (n + 1)-dimensional vectors

d = [d0 d1 · · · dn]T and f = [ f (x0) f (x1) · · · f (xn)]T,

as well as the matrix

L =


N0(x0) 0 · · · 0

N0(x1) N1(x1) · · · 0
...

. . .
...

N0(xn) N1(xn) · · · Nn(xn)

 ,
of order n + 1, it is easy to see that the interpolation function (9) exists uniquely, because of

det L =

n∏
k=0

Nk(xk) =

n∏
k=1

k∏
ν=1

(
λν(xk) − λν(xν−1)

)
, 0.

Denote by

G∗n(x; f ; Λ) =

n∑
k=0

d∗kNk(x), (11)
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the unique interpolation function for the conditions (10). Evidently,

[d∗0 d∗1 · · · d∗n]T = L−1f.

In order to find an appropriate representation of (11) we suppose that an expansion of the form

f (x) =

n∑
k=0

d∗kNk(x) + An+1(x)Nn+1(x), (12)

holds, where Nn+1(x) is defined in the same way as in (8), i.e.,

Nn+1(x) =
(
λ1(x) − λ1(x0)

)(
λ2(x) − λ2(x1)

)
· · ·

(
λn+1(x) − λn+1(xn)

)
,

and it reduces to zero at the interpolation nodes xν ∈ Xn. Because of the interpolation conditions (10), the
term An+1(x) in (12) is the coefficient of the remainder term of our interpolation formula (11) at an arbitrary
point x ∈ [a, b]. It is clear that for f ∈ Πn the formula (12) holds with An+1(x) ≡ 0. In the sequel, we show
that (12) holds in general.

Setting x = x0 in (12), evidently we have d∗0 = f (x0), so that (12) becomes

[x0, x]Λ1
f = d∗1 + d∗2

(
λ2(x) − λ2(x1)

)
+ · · · + d∗n

(
λ2(x) − λ2(x1)

)
· · ·

(
λn(x) − λn(xn−1)

)
+ An+1(x)

(
λ2(x) − λ2(x1)

)
· · ·

(
λn+1(x) − λn+1(xn)

)
.

Now, for x = x1 we get d∗1 = [x0, x1]Λ1
f .

Continuing this process we obtain d∗2 = [x0, x1, x2]Λ2
f . In general, by induction, we can prove that the

coefficients d∗k in (11) can be expressed in terms of generalized divided differences,

d∗k = [x0, x1, . . . , xk]Λk
f , k = 0, 1, . . . ,n.

Finally, for the coefficient of the remainder term we obtain

An+1(x) = [x0, x1, . . . , xn, x]Λn+1
f .

Therefore, for the interpolation formula (11) we get the following form

G∗n(x; f ; Λ) =

n∑
k=0

Nk(x) [x0, x1, . . . , xk]Λk
f . (13)

Thus, we have proved the following theorem.

Theorem 3.1. Given a regular system of (monotonous continuous) functions Λ = {λν(x)}nν=1 on [a, b] and n + 1
distinct points {xk}

n
k=0 in [a, b]. Suppose that G∗n(x; f ; Λ) is the interpolating function which interpolates a given

function f at {xk}
n
k=0. If x is an arbitrary point in [a, b], then

f (x) − G∗n(x; f ; Λ) = Nn+1(x) [x0, x1, . . . , xn, x]Λn+1
f . (14)

In the sequel, we consider the remainder term (14), given by Theorem 3.1. It is well known that in the
case of standard Newton (polynomial) interpolation for functions f ∈ Cn+1[a, b], the remainder term can be
expressed in the form

f (n+1)(ξ)
(n + 1)!

n∏
k=0

(x − xk), ξ ∈ (a, b), (15)
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because of (cf. [6, p. 361], [8, p. 97])

[x0, x1, . . . , xn, x] f =
f (n+1)(ξ)
(n + 1)!

, (16)

where ξ = ξ(x) is strictly between the smallest and the largest of these points x0, x1, . . . , xn, x. Unfortunately,
such a simple expression for (14) is not possible. Following the well known approach due to Cauchy, we
introduce an auxiliary function in a new variable z as

Q(z) = f (z) − G∗n(z; f ; Λ) − γ(x)
n∏

k=0

(z − xk),

where γ(x) is defined in such a way that Q(z) = 0 for an arbitrary fixed point z = x , {xk}
n
k=0 in [a, b]. In this

case, we have

γ(x) =
f (x) − G∗n(x; f ; Λ)

n∏
k=0

(x − xk)
. (17)

Beside this zero at z = x, according to the interpolation conditions (10), it is clear that Q(z) = 0 also for
different points (interpolation nodes) z = x0, x1, . . . , xn. Thus, for f ∈ Cn+1[a, b], the function z 7→ Q(z)
(Q ∈ Cn+1[a, b]) has at least n + 2 zeros in [a, b], and after applying Rolle’s theorem successively n + 1 times
we can conclude that there exists a point ξ = ξ(x) ∈ (a, b) such that Q(n+1)(ξ) = 0, i.e.,

f (n+1)(ξ) −
dn+1

dzn+1 G∗n(z; f ; Λ)
∣∣∣∣
z=ξ

= γ(x)(n + 1)! .

Regarding (17), this means that for any x ∈ [a, b]

f (x) − G∗n(x; f ; Λ) =
1

(n + 1)!

[
f (n+1)(ξ) − G∗n

(n+1)(ξ; f ; Λ)
] n∏

k=0

(x − xk).

Also, according to (14) we have

[x0, x1, . . . , xn, x]Λn+1
f =

1
(n + 1)!

[
f (n+1)(ξ) − G∗n

(n+1)(ξ; f ; Λ)
] n∏

k=0

x − xk

λk+1(x) − λk+1(xk)
. (18)

Remark 3.2. Let λν(x) = λ(x) for any ν = 1, . . . ,n, where x 7→ λ(x) is a monotonous continuous function on
[a, b]. Then (13) interpolates f at distinct points {xk}

n
k=0, where

N0(x) = 1, Nk(x) =

k∏
ν=1

(
λ(x) − λ(xν−1)

)
, 1 ≤ k ≤ n.

In this case

span
{
Nk(x)

}n

k=0
≡ span

{
1, λ(x), λ(x)2, . . . , λ(x)n

}
,

and G∗n(x; f ; Λ) can be considered as

G∗n(x; f ; Λ) = A0 + A1λ(x) + A2λ(x)2 + · · · + Anλ(x)n. (19)

For example, if λ(x) = ex we have the so-called exponential interpolation (cf. [15])

G∗n(x; f ; Λ) = A0 + A1ex + A2e2x + · · · + Anenx.
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The coefficients {Ak}
n
k=0 in (19) are determined by the given interpolation conditions. Also, the interpo-

lating function can be represented as

G∗n(x; f ; Λ) =

n∑
k=0

f (xk)Φn(x; xk; Λ), (20)

in which

Φn(x; xk; Λ) =

n∏
j = 0
j , k

λ(x) − λ(x j)
λ(xk) − λ(x j)

,

satisfies the biorthogonality relation

Φn(x j; xk; Λ) = δ j,k =

{
1 (k = j),
0 (k , j).

In fact, (20) is the generalized Lagrange representation for interpolating function (19) and (13) is its
generalized Newton representation.

Also, if λν(x) = λ(x) for any ν = 1, . . . ,n, then according to (18) we obtain

[x0, x1, . . . , xn, x]Λn+1
f =

1
(n + 1)!

[
f (n+1)(ξx) −

n∑
k=0

f (xk) Φ(n+1)
n (ξx; xk; Λ)

] n∏
k=0

x − xk

λ(x) − λ(xk)
,

and if λ(x) = x, then G∗n(x; f ; Λ) is a polynomial of degree at most n interpolating f at distinct points {xk}
n
k=0

and we obtain (16) and the remainder takes the form (15).

Remark 3.3. Since Nk(x) depends only on x0, . . . , xk−1 and the sequence of functions Λk, if another inter-
polatory point is added, we can achieve the interpolating function by adding only one more term, i.e.,
dk+1Nk+1(x).

Remark 3.4. Let Λn,1 = {λν(x)}nν=1 be a system of monotonous continuous functions defined on [a, b] and
Λn,2 = {aνλν(x) + bν}nν=1, where aν (, 0) and bν are real numbers for every ν. It can be verified that for a given
system of nodes on [a, b], these systems of functions, Λn,1 and Λn,2, lead to the same interpolation function.

Remark 3.5. In a special case, for given fixed system of distinct points {xk}
n
k=0 ∈ [a, b], Theorem 3.1 holds

under certain weaker conditions. Namely, it is not necessary for {λν(x)} to be just a regular system of
functions, one can choose any arbitrary set of continuous functions Λn = {λν(x)}nν=1 provided that λν(xi) ,
λν(x j) for each i , j.

3.1. Some particular examples of formula (13)

Example 3.6. Let

λl(x) =
1

x − βl
for l = 1, . . . ,n,

where β1 < β2 < · · · < βn are real values. For given distinct points {xk}
n
k=0 in (βn,∞) first we have

Nk(x) =

k∏
j=1

(
1

x − β j
−

1
x j−1 − β j

)
=

k∏
j=1

1
β j − x j−1

·
x − x j−1

x − β j
, with N0(x) = 1.
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Therefore, the unique solution of the interpolation problem

f (xk) = wk for k = 0, 1, . . . ,n, (21)

is

G∗n

(
x; f ;

{
1

x − βl

}n

l=1

)
=

n∑
k=0

Nk(x)[x0, . . . , xk]Λk f .

Example 3.7. Given n + 1 distinct points −π/2 ≤ x0 < · · · < xn ≤ π/2, assume that

λν(x) = sin
x
ν

for ν = 1, . . . ,n,

and then construct the functions

Nk(x) =

k∏
ν=1

(
sin

x
ν
− sin

xν−1

ν

)
with N0(x) = 1.

The functions λν(x), ν = 1, . . . ,n, for n = 4 are displayed in Fig. 1.

ν �

ν �

ν �

ν �

π

�

π

�

π

�

π

�

�

���

���

���

���

λν(�)

Figure 1: The functions λν(x), ν = 1, . . . ,n, in Example 3.7 for n = 4

Thus, the final interpolating function is given by

G∗n
(
x; f ;

{
sin

x
ν

}n

ν=1

)
=

n∑
k=0

Nk(x)[x0, . . . , xk]Λk f .

Example 3.8. Given n + 1 distinct points 0 ≤ x0 < · · · < xn < π, assume that Λn = {λν(x) = cos x}nν=1 and
construct the functions

Nk(x) =

k∏
ν=1

(cos x − cos xν−1) with N0(x) = 1.

The sequence Nk(x) is a cosine polynomial of order k, which can be represented as
k∑

j=0
α j,k cos jx. Now, given

n + 1 distinct values {wk}
n
k=0, there exists a cosine polynomial of order ≤ n, which is the unique solution of
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the interpolation problem (21) and can be given in the form

G∗n
(
x; f , {cos x}nl=1

)
=

n∑
k=0

[x0, . . . , xk]Λk f
k∑

j=0

α j,k cos jx =

n∑
j=0

β j cos jx,

where

β0 = f (x0) +

n∑
l=1

α0,l [x0, . . . , xl]Λl f and β j =

n∑
l= j

α j,l [x0, . . . , xl]Λl f , j = 1, . . . ,n.

4. Interpolation formula (13) at coincident points

In formulating the interpolation (13), we assumed that {xk}
n
k=0 are distinct. Now, assume that {x j}

n
j=1

coincide with x0. The interpolating function in (13) therefore changes to

G∗n(x; f ; Λ) = f (x0) +

n∑
k=1

(
[x0, . . . , x0︸    ︷︷    ︸

k+1

]Λk f
k∏
ν=1

(
λν(x) − λν(x0)

))
. (22)

Relation (22) shows that we should evaluate the generalized divided differences in which all arguments are
identical. There are different ways for this purpose. For instance, in [1] ordinary divided differences with
repetitions were studied by a recursive definition, in [21] by a specific definition with determinants and in
[5] by simply extending the definition of divided differences in the case of distinct arguments.

If we follow the approach given in [5], according to the definition of generalized divided difference of
order one, we obtain

lim
x→x0

[x0, x]Λ1 f = lim
x→x0

f (x) − f (x0)
λ1(x) − λ1(x0)

=
f ′(x0)
λ′1(x0)

.

Also, for divided differences of order two and three we respectively obtain

lim
x→x0

[x0, x0, x]Λ2 f = lim
x→x0

[x0, x]Λ1 f − [x0, x0]Λ1 f
λ2(x) − λ2(x0)

=
1

λ′2(x0)
lim
x→x0

d
dx

[x0, x]Λ1 f

=
1

2λ′1(x0)λ′2(x0)

(
f ′′(x0) −

λ′′1 (x0)
λ′1(x0)

f ′(x0)
)
,

and

lim
x→x0

[x0, x0, x0, x]Λ3 f = lim
x→x0

[x0, x0, x]Λ2 f − [x0, x0, x0]Λ2 f
λ3(x) − λ3(x0)

=
1

λ′3(x0)
lim
x→x0

d
dx

[x0, x0, x]Λ2 f

=
1

λ′3(x0)
lim
x→x0

d
dx

(
[x0, x]Λ1 f − [x0, x0]Λ1 f

λ2(x) − λ2(x0)

)

=
1

6λ′1(x0)λ′2(x0)λ′3(x0)

{
f ′′′(x0) −

3
2

(
λ′′1 (x0)
λ′1(x0)

+
λ′′2 (x0)
λ′2(x0)

)
f ′′(x0)

+

3
2

(λ′′1 (x0))2

(λ′1(x0))2 +
3
2
λ′′1 (x0)λ′′2 (x0)
λ′1(x0)λ′2(x0)

−
λ′′′1 (x0)
λ′1(x0)

 f ′(x0)
 ,
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provided that λ′ν(x0) , 0 for ν = 1, 2, 3.
In general, [x0, . . . , x0︸    ︷︷    ︸

n+1

]Λn f can be explicitly computed according to the following theorem.

Theorem 4.1. Given a regular system of functions Λ = {λν(x)}nν=1 on [a, b] and the point x0 ∈ [a, b] with correspond-
ing values { f (k)(x0)}nk=0, where λν(x) , λν(x0), ∀ x , x0. Let f , λ1, . . . , λn ∈ Cn[a, b] and f (n+1), λ(n+1)

1 , . . . , λ(n+1)
n

exist on (a, b) and λ( j)
ν (x0) , 0 for any ν , j = 1, . . . ,n. Consider the functions {Nk(x)}nk=0 when all the points coincide

with x0 as

Nk(x) =

k∏
ν=1

(
λν(x) − λν(x0)

)
for any k = 1, 2, . . . ,n and N0(x) = 1.

Then, there exists a unique function Tn(x; f ; Λ) ∈ span{Nk(x)}nk=0 such that

T(k)
n (x0; f ; Λ) = f (k)(x0) k = 0, 1, . . . ,n.

This function can be explicitly represented as follows

Tn(x; f ; Λ) = f (x0) +

n∑
m=1

(−1)m−1 D(m−1,m)

G(m)
Nm(x),

where D(0,k) = f (k)(x0), k ≥ 1, and

D(m,k) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′(x0) N′1(x0) 0 0 . . . 0

f ′′(x0) N′′1 (x0) N′′2 (x0) 0 . . . 0
...

...
...

. . .
...

f (m−1)(x0) N(m−1)
1 (x0) N(m−1)

2 (x0) N(m−1)
3 (x0) . . . 0

f (m)(x0) N(m)
1 (x0) N(m)

2 (x0) N(m)
3 (x0) . . . N(m)

m (x0)

f (k)(x0) N(k)
1 (x0) N(k)

2 (x0) N(k)
3 (x0) . . . N(k)

m (x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
, k > m ≥ 1, (23)

and finally

G(m) =

m∏
ν=1

N(ν)
ν (x0) for m ≥ 1.

Proof. Consider the interpolation problem (6) in the space Π = span{Nk(x)}nk=0, where we have defined

Lk( f ) = f (k)(x0), k = 0, 1, . . . ,n. (24)

We observe that

∣∣∣Li(N j)
∣∣∣n
i, j=0

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

N0(x0) 0 0 . . . 0

N′0(x0) N′1(x0) 0 . . . 0
...

...
. . .

...

N(n−1)
0 (x0) N(n−1)

1 (x0) N(n−1)
2 (x0) . . . 0

N(n)
0 (x0) N(n)

1 (x0) N(n)
2 (x0) . . . N(n)

n (x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

n∏
k=0

N(k)
k (x0) , 0,
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because

N(k)
k (x0) = k!

k∏
ν=1

λ′ν(x0) , 0 for k = 1, . . . ,n and N0(x0) = 1.

Therefore, according to Theorem 2.2.2 of [7, p. 26], the interpolation problem (24) possesses a unique
solution in Π as

Tn(x; f ; Λ) = −
1∣∣∣Li(N j)
∣∣∣n
i, j=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 N0(x) N1(x) . . . Nn(x)

f (x0) N0(x0) N1(x0) . . . Nn(x0)

f ′(x0) N′0(x0) N′1(x0) . . . N′n(x0)
...

...
...

. . .
...

f (n)(x0) N(n)
0 (x0) N(n)

1 (x0) . . . N(n)
n (x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (25)

Since N0(x0) = 1 and N j(x0) = 0 for j = 1, . . . ,n, we have

N(k)
j (x0) = 0 for j = k + 1, k + 2, . . . ,n.

Therefore, (25) is simplified as

Tn(x; f ; Λ) = −
1∣∣∣Li(N j)
∣∣∣n
i, j=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 N0(x) N1(x) . . . Nn(x)

f (x0) 1 0 . . . 0

f ′(x0) 0 N′1(x0) . . . 0
...

...
...

. . .
...

f (n)(x0) 0 N(n)
1 (x0) . . . N(n)

n (x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (26)

Now, as a direct result of uniqueness of the interpolation solution, we must have

Tn(x; f ; Λ) = f (x0) +

n∑
k=1

Nk(x)[x0, . . . , x0︸    ︷︷    ︸
k+1

]Λk f , (27)

which is deduced from (22). On the other hand, it can be verified that the coefficient of
n∏
ν=1
λν(x) in (27) is

[x0, . . . , x0︸    ︷︷    ︸
n+1

]Λn f and in (26) appeares as the coefficient of Nn(x) when one expands the deteminant by minors

of the first row. Hence, the coefficient is equal to

−
1∣∣∣Li(N j)
∣∣∣n
i, j=0

(−1)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f (x0) 1 0 . . . 0

f ′(x0) 0 N′1(x0) . . . 0
...

...
...

. . .
...

f (n−1)(x0) 0 N(n−1)
1 (x0) . . . N(n−1)

n−1 (x0)

f (n)(x0) 0 N(n)
1 (x0) . . . N(n)

n−1(x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

or equivalently

(−1)n−1∣∣∣Li(N j)
∣∣∣n
i, j=0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f ′(x0) N′1(x0) . . . 0
...

...
. . .

...

f (n−1)(x0) N(n−1)
1 (x0) . . . N(n−1)

n−1 (x0)

f (n)(x0) N(n)
1 (x0) . . . N(n)

n−1(x0)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.



M. Masjed-Jamei, G. V. Milovanović, Z. Moalemi / Filomat 33:1 (2019), 193–210 204

Also notice that
∣∣∣Li(N j)

∣∣∣n
i, j=0

equals to G(n). Consequently, the above relations yield

[x0, . . . , x0︸    ︷︷    ︸
n+1

]Λn f =
(−1)n−1

G(n)
D(n−1,n),

where D(n−1,n) is defined in (23).

In what follows, there are some useful remarks in order to compute D(m,k) and N(k)
j (x0) to obtain the

generalized Taylor interpolating function Tn(x; f ; Λ).

Remark 4.2. Expanding D(m,k) by minors of the last column yields a recursive relation as

D(m,k) = N(k)
m (x0)D(m−1,m) −N(m)

m (x0)D(m−1,k), m ≥ 1, (28)

and for k = m + 1 we get

D(m,m+1) = N(m+1)
m (x0)D(m−1,m) −N(m)

m (x0)D(m−1,m+1), m ≥ 1. (29)

Remark 4.3. One needs to compute N(m)
m (x0) and N(m+1)

m (x0) to obtain D(m,m+1), which can be respectively
obtained by the following relations

N(m)
m (x0) = m!

m∏
ν=1

λ′ν(x0),

and

N(m+1)
m (x) =

(
Nm−1(x)

(
λm(x) − λm(x0)

))(m+1)
=

m+1∑
k=0

(
m + 1

k

)
N(k)

m−1(x)λ(m+1−k)
m (x).

Now, setting x = x0 in the above relation gives

N(m+1)
m (x0) =

(
m + 1
m − 1

)
N(m−1)

m−1 (x0)λ′′m(x0) +

(
m + 1

m

)
N(m)

m−1(x0)λ′m(x0)

=
m(m + 1)

2
(m − 1)!

m−1∏
j=1

λ′j(x0)λ′′m(x0) + (m + 1)N(m)
m−1(x0)λ′m(x0)

=
1
2

(m + 1)!λ′′m(x0)
m−1∏
j=1

λ′j(x0) + (m + 1)λ′m(x0)N(m)
m−1(x0), m ≥ 1,

where we have supposed
0∏

j=1
( · ) = 1. For instance, we have

N′′1 (x0) = λ′′1 (x0),

N′′′2 (x0) = 3
(
λ′1(x0)λ′′2 (x0) + λ′′1 (x0)λ′2(x0)

)
,

and

N(4)
3 (x0) = 12

(
λ′1(x0)λ′2(x0)λ′′3 (x0) + λ′1(x0)λ′′2 (x0)λ′3(x0) + λ′′1 (x0)λ′2(x0)λ′3(x0)

)
.
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Remark 4.4. Applying the recursive relation (28) j times ( j ≥ 2) for D(m,k) leads to the following result

D(m,k) = (−1) j
m∏

l=m− j+1

N(l)
l (x0) D(m− j,k) + (−1) j+1N(k)

m (x0)
m−1∏

l=m− j+1

N(l)
l (x0) D(m− j,m)

+

j−1∑
r=1

(−1) j−r+1Mr+1

j−2∏
l=r

N(m−l−1)
m−l−1 (x0)

 D(m− j,m−r),

in which we have supposed
j−2∏
l=r

( · ) = 1 when r < j− 2 and Mr is the determinant of the r× r down and right

submatrix of D(m,k).
Subsequently, for j = m and k = m + 1 we get

D(m,m+1) = (−1)m
m∏

l=1

N(l)
l (x0) D(0,m+1) + (−1)m+1N(m+1)

m (x0)
m−1∏
l=1

N(l)
l (x0) D(0,m)

+

m−1∑
r=1

(−1)m−r+1Mr+1

m−2∏
l=r

N(m−l−1)
m−l−1 (x0)

 D(0,m−r)

= (−1)mG(m) f (m+1)(x0) + (−1)m+1N(m+1)
m (x0)G(m−1) f (m)(x0)

+

m−1∑
r=1

(−1)m−r+1Mr+1

m−2∏
l=r

N(m−l−1)
m−l−1 (x0)

 f (m−r)(x0), m ≥ 2.

The above result is another representation for D(m,m+1) which shows that the coefficient of basis func-
tions Nk(x) in Tn(x; f ; Λ) is a linear combination of { f (k)

}
n
k=0, as it is for the well-known polynomial Taylor

interpolation.

Example 4.5. Let

λν(x) = log
x
ν
, x > 0, for ν = 1, . . . ,n.

For n = 4, these functions are presented in Fig. 2.

ν �

ν �

ν �

ν �

� � � � � � �
�

�

�

�

�

�

�

λν(�)

Figure 2: The functions λν(x), ν = 1, . . . ,n, in Example 4.5 for n = 4
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For a given point x0 ∈ (0,∞) we have

Nk(x) =

k∏
ν=1

(
λν(x) − λν(x0)

)
=

(
log

x
x0

)k
and N0(x) = 1.

Therefore, there exists a unique function in span
{
Nk(x)

}n

k=0
which is the solution of the Taylor interpolation

problem

f (k)(x0) = wk k = 0, 1, . . . ,n,

and can be represented as

Tn

(
x; f ;

{
log

x
ν

}n

ν=1

)
= f (x0) +

n∑
k=1

(−1)k−1 D(k−1,k)

G(k)

(
log

x
x0

)k
,

in which

G(k) =

k∏
ν=1

N(ν)
ν (x0) = (x0)−k(k+1)/2

k∏
ν=1

ν! ,

and D(0,1) = f ′(x0) and for k ≥ 2, D(k−1,k) is computed by (29), where N(k)
k−1(x0) and N(k−1)

k−1 (x0) are given
respectively by

N(k)
k−1(x0) = −

1
2

k! x−k
0 + k x−1

0 N(k−1)
k−2 (x0),

and

N(k−1)
k−1 (x0) = (k − 1)! x1−k

0 .

Remark 4.6. For linear functions λν(x) = aνx + bν, with aν , 0, ν = 1, . . . ,n, it is easy to prove that

Tn

(
x; f ; {aνx + bν}nν=1

)
=

n∑
k=0

f (k)(x0)
k!

(x − x0)k,

which is, as expected, the same as nth degree Taylor polynomial of f at x0.

5. Numerical examples

In this section we give two examples.

Example 5.1. Let us choose the following sequence of functions on [0, 1]

Λ8 =
{
x3 + x2 +

37x
100

, x2 + 2x, x2, x,
√

x, 5x2 + 3x, 2x2/5 +
√

x, x9/4
}
,

and interpolating nodes as Chebyshev points transformed to [0, 1], i.e.,

{
xk

}8

k=0
=

{
1
2

(
1 + cos

(17 − 2k)π
18

)}8

k=0

�
{
0.0076, 0.0670, 0.1786, 0.3290, 0.5000, 0.6710, 0.8214, 0.9330, 0.9924

}
.
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According to (13), the function

f (x) =
log(1 + x)
(1 + x2)6 ex2

, x ∈ [0, 1],

taken from [20] can be approximated by

f (x) ≈ G∗8(x; f ; Λ8) =

8∑
k=0

d∗kNk(x),

in which

Nk(x) =

k∏
ν=1

(
λν(x) − λν(xν−1)

)
for k = 1, . . . , 8, with N0(x) = 1,

and
{
d∗k

}8

k=0
are computed by the following generalized divided differences table:

0.00756 2.09100 −3.08052 9.70826 −19.03225 32.79670 −1.50797 0.87021 −0.07607
0.06340 1.31886 −2.33945 6.45355 −15.35753 30.42419 −1.37197 0.86051
0.14052 0.62240 −1.67300 4.45567 −12.97172 28.83540 −1.30560
0.17107 0.23138 −1.21647 3.32093 −11.56909 28.04790
0.13647 0.07917 −0.94586 2.72026 −10.92394
0.08656 0.02993 −0.79927 2.46116
0.05336 0.01441 −0.73511
0.03674 0.00972
0.03018

Indeed, the elements of the first row in the above table give {d∗k}
8
k=0, respectively.

In this sense, the error norm

En = max
t j

∣∣∣ f (t j) − G∗n(t j; f ; Λ)
∣∣∣ ,

is estimated as E8 = 3.71 × 10−5 in which {t j} have been considered as 1000 equidistant points of [0, 1].

Alternatively, using the standard Newton interpolation
(
Λ̂8 =

{
λ̂ν(x) = x

}8

ν=1

)
, we obtain the following

interpolation polynomial

P8(x) = −4.46538x8 + 16.5961x7
− 20.9518x6 + 5.74091x5 + 8.79967x4

− 6.37325x3
− 0.309325x2

+0.992389x + 0.000047542,

for which the norm of the corresponding error e(x) = | f (x) − P8(x)| can be estimated as

E8 = max
t j

∣∣∣ f (t j) − P8(t j)
∣∣∣ = 6.45 × 10−5,

taking again one thousand equidistant points in [0, 1].
According to these errors, we see that the approximation of f (x) is better by G∗8(x; f ; Λ8) than one by

P8(x). It is much clear from Fig. 3, where we present the absolute errors in the both of these cases.
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Figure 3: Absolute errors in approximation of f (x) by G∗8(x; f ; Λ8) (red line) and P8(x) (blue line)

Quadrature rules with respect to Müntz polynomials have been considered in [16] (see also [17]).

Example 5.2. Let

Λ4 = {λν(x)}4ν=1 =
{
x3
− 3x , x + 1 , x3 + 2 x , x3

− 6x − 3
}
, (30)

be a given regular system of functions on [0, 1] and n = 4.
For four different systems of nodes in [0, 1]:

(a)
{
xk

}4

k=0
=

{1
4

k
}4

k=0
=

{
0, 0.25, 0.5, 0.75, 1

}
;

(b)
{
xk

}4

k=0
=

{ 1
10

(2k + 1)
}4

k=0
=

{
0.1, 0.3, 0.5, 0.7, 0.9

}
;

(c)
{
xk

}4

k=0
=

{
1
2

(
1 + cos

(9 − 2k)π
10

)}4

k=0
=

{
0.0244717, 0.206107, 0.5, 0.793893, 0.975528

}
;

(d)
{
xk

}4

k=0
=

{1
2

(
1 + xL

k

)}4

k=0
=

{
0.0469101, 0.230765, 0.5, 0.769235, 0.95309

}
,

we construct the five-point interpolatory quadrature rules on [0, 1] of the form

I( f ) =

∫ 1

0
f (x) dx =

4∑
k=0

A[s]
k f

(
x[s]

k

)
+ R[s]

5 ( f ) (s = a, b, c, d), (31)

where each of these rules is constructed as an integral over (0, 1) of the corresponding generalized interpo-
lation function G∗4(x; f ; Λ4), obtained by the nodes (a), (b), (c), (d) as

Q[s]
5 ( f ) =

4∑
k=0

A[s]
k f

(
x[s]

k

)
=

∫ 1

0
G∗4(x; f ; Λ4) dx =

4∑
k=0

d∗k

∫ 1

0
Nk(x) dx,

i.e.,

Q[s]
5 ( f ) =

4∑
k=0

(∫ 1

0
Nk(x) dx

)
[x0, x1, . . . , xk]Λk

f .
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Here,

Nk(x) =

k∏
ν=1

(
λν(x) − λν(xν−1)

)
, k = 1, . . . , 4, with N0(x) = 1.

In the cases (c) and (d), the nodes xk are zeros of the Chebyshev and the Legendre polynomial of degree
five (transformed to [0, 1]), respectively. Here, xL

k are zeros of the Legendre polynomial

P5(x) =
1
8

(
63x5

− 70x3 + 15x
)
.

For a simple function f (x) = 1/(x + 1), for which I( f ) = log 2 � 0.693147180559945 . . . , we test the
previous obtained quadrature rules for the nodes given by (a), (b), (c) and (d). In Table 2 we give the errors
|R[s]

5 ( f )| = |I( f ) − Q[s]
5 ( f )| for s = a, b, c, d. Also, in the second row of this table we give the corresponding

errors for the quadrature formulas QN
5 ( f ), obtained by using the standard Newton interpolation polynomial

at given nodes. Numbers in parenthesis indicate the decimal exponents.

Table 2: Quadrature errors for f (x) = 1/(x + 1) in quadrature rules in Example 5.2

nodes (a) (b) (c) (d)

quadrature formula Regular system of functions Λ4 given by (30)

Q[s]
5 ( f ) 2.11(−5) 8.79(−6) 1.24(−8) 2.58(−6)

QN
5 ( f ) 2.74(−5) 1.92(−5) 2.27(−8) 3.78(−6)

Irregular system of functions Λ̄4 given by (32)

Q[s]
5 ( f ) 8.56(−6) 2.01(−8) 1.30(−8) 9.60(−7)

As we can see, for all distributions of nodes (a)–(d), the errors of the generalized quadrature formulas
(31) are slightly smaller than ones in standard Newton’s formulas QN

5 ( f ). Moreover, according to Remark
3.5 these results can be improved by using some of irregular systems of functions. For example, for

Λ̄4 = {λν(x)}4ν=1 =
{
x3
− 2.81x , x + 1 , x3 + 2 x , x3

− 6x − 3
}
, (32)

the corresponding quadrature errors are presented in the last row of Table 2. Note although the first function
in (32) is not monotonic on [0, 1], it satisfies the initial condition λ1(xi) , λ1(x j) for any i , j and distinct
nodes {xk}

4
k=0 in all distributions (a)-(d) .
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