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The Signless Laplacian Coefficients and the Incidence Energy of
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Abstract. Let Ur
n be the set of unicyclic graphs with n vertices and r pendent vertices (namely, r leaves),

where n ≥ 4 and r ≥ 1. We consider the signless Laplacian coefficients (SLCs) and the incidence energy
(IE) inUr

n. Firstly, among a subset ofUr
n in which each graph has a fixed odd girth 1 ≥ 3, where n ≥ 1 + 1

and r ≥ 1, we characterize a unique extremal graph which has the minimum SLCs and the minimum IE.
Secondly, if G ∈ Ur

n and G has odd girth 1 ≥ 5, where n ≥ 7 and r ≥ 1, then we prove that a unique extremal
graph Ln ∈ U

r
n with girth 4 satisfies that both the SLCs and the IE of G are more than the counterparts of Ln.

1. Introduction

Let G = (V(G),E(G)) be a simple graph with a vertex set V(G) = {v1, . . . , vn} and an edge set E(G) =
{e1, . . . , em}. The vertex-edge incidence matrix of G is denoted by I(G), where I(G) is an (n×m)-matrix whose
(i, j)-entry is 1 if the vertex vi is incident with the edge e j, and 0 otherwise. Let dG(vi) be the degree of the
vertex vi with 1 ≤ i ≤ n. The adjacency matrix, Laplacian matrix and signless Laplacian matrix of G are
denoted by A(G), L(G) = D(G) − A(G), and Q(G) = D(G) + A(G), respectively. It is well known that A(G) is
a symmetric matrix and L(G) and Q(G) are positive semi-definite matrices.

The characteristic polynomial of G is defined as

φ(G; x) = det(xI − A(G)) =

n∑
i=0

ai(G)xn−i, (1)

where I is the identity matrix of order n and ai(G) are coefficients of characteristic polynomial with 0 ≤ i ≤ n.
The Laplacian and signless Laplacian characteristic polynomials of G are respectively defined as

L(G; x) = det(xI − L(G)) =

n∑
i=0

(−1)ici(G)xn−i, (2)
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Q(G; x) = det(xI −Q(G)) =

n∑
i=0

(−1)ipi(G)xn−i, (3)

where ci(G) and pi(G) are coefficients of corresponding characteristic polynomials.
The energy of G was defined by Gutman [1] in 1978 as the sum of the absolute values of the eigenvalues

of A(G). It has many chemical applications and stimulated interests among mathematician. For more details
on the energy of G, one can refer to books [2, 3]. By extending the concept of graph energy, Nikiforov [4]
defined the energy of a matrix as the sum of the singular values of the matrix.

Let σ1, σ2, . . . , σn be the singular values of I(G). The authors in [5, 6] defined the incidence energy (IE),
denoted by IE(G), of a graph G as

IE(G) =

n∑
i=1

σi. (4)

It is known that [5]

I(G)It(G) = D(G) + A(G) = Q(G). (5)

Recalled that for a matrix B with real entries, the singular values of the matrix B are the square roots
of the eigenvalues of BBt, where Bt is the transpose of B. Denote by µ+

1 (G) ≥ µ+
2 (G) ≥ . . . ≥ µ+

n (G) the
eigenvalues of the signless Laplacian characteristic polynomial Q(G; x). Then µ+

1 (G), µ+
2 (G), . . . , µ+

n (G) are
real and non-negative. Thus, from (4) and (5), we have

IE(G) =

n∑
i=1

√
µ+

i (G). (6)

We denote by S(G) the subdivision graph of G, where S(G) is the graph obtained from G by inserting
an additional vertex into each edge of G. Obviously, S(G) is a bipartite graph with n + m vertices and 2m
edges. The characteristic polynomial of S(G) is

φ(S(G); x) = det(xI − A(S(G))) =

b
n+m

2 c∑
i=0

a2i(S(G))xn+m−2i, (7)

where a2i(S(G)) are coefficients of characteristic polynomial φ(S(G); x) with 0 ≤ i ≤ b n+m
2 c. Let b2i(S(G)) =

|a2i(S(G))|, where 0 ≤ i ≤ b n+m
2 c. Specially, b0(S(G)) = 1 and b2(S(G)) = n + m. If G is a tree, then

b2i(S(G)) = mi(S(G)), where mi(S(G)) is the number of i–matchings in S(G). It is convenient to define
m(G, 0) = 1.

It has been obtained in [7] that

φ(S(G); x) = xm−nQ(G; x2). (8)

Therefore, we have [7]

b2i(S(G)) =

{
pi(G), 0 ≤ i ≤ n;
0, n < i ≤ b n+m

2 c.
(9)

The authors in [8] and [9] independently obtained

pi(G1) ≤ pi(G2) =⇒ IE(G1) ≤ IE(G2). (10)

Moreover, if there exists a positive integer i0 such that pi0 (G1) < pi0 (G2), then IE(G1) < IE(G2).
In 2007, among classes of Laplacian-cospectral trees of the same order n, Mohar [10] defined a new

partial ordering, namely T � T′ if ci(T) ≤ ci(T′) for i = 1, . . . ,n, and he [10] also showed that this poset has a
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unique minimum and has a unique maximum element. Later, many interesting results have been obtained
about the poset among many classes of graphs. For example, the trees with a fixed matching number [11],
the unicyclic graphs [12, 13], the bicyclic graphs [14], etc.

Recently, the signless Laplacian matrix has attracted more and more attention [15], which may have
more properties than the adjacency and Laplacian matrices, and can be used to discover more structural
characterization of graphs. It is known that L(G) and Q(G) are similar if and only if (iff) G is bipartite. So
the Laplacian coefficients are the same as the signless Laplacian coefficients (SLCs) iff G is bipartite.

We write G �′ H if pi(G) ≤ pi(H) for 0 ≤ i ≤ n. We write G ≺′ H if G �′ H with a k in such a way that
pk(G) < pk(H). Recently, some results have been obtained in terms of the ordering �′. For example, Li et al.
[16] determined two maximum elements and two minimum elements among the set of unicyclic graphs,
Zhang and Zhang [15] got two minimum elements among the set of bicyclic graphs, Zhang and Zhang [17]
characterized all the minimum elements among the set of unicyclic graphs having a fixed matching number.
Mirzakhah and Kiani [9] studied the coefficients of the signless Laplacian matrix of unicyclic graphs. For
further information on the signless Laplacian matrix, one can refer to three surveys [18–20].

The IE of G can help explain some phenomena of chemical molecule. By using (10) and other methods,
the graphs with the extremal IE have been characterized among some classes of graphs. Among all the
trees, Gutman et al. [5] got the graphs with the smallest and the largest IE and Tang and Hou [21] got the
the trees with the second smallest, the third smallest, the second largest, and the third largest IE. Among
all the trees with a given matching number, Ilić [22] obtained the graph with the minimum IE. Among all
the trees with a described maximum degree, Jin et al. [23] characterized the trees with the minimum IE.
Among all the trees with a given pendent vertex number, Zhang et al. [24] got the one with the minimum
IE. Among all the unicyclic graphs and bicyclic graphs, Zhang and Li [8] determined the graphs having the
minimum and the maximum IE, respectively.

Let Ur
n be the set of unicyclic graphs with n ≥ 4 vertices and r ≥ 1 pendent vertices. Let Ur

n,1 be the
subset of Ur

n in which every graph has a cycle with girth 1 ≥ 3, where n ≥ 1 + 1 and r ≥ 1. Motivated by
all the above-mentioned work, we will deduce, in the present study, the graph having the minimum SLCs
according to the ordering of �′ (namely, the graph with the minimum IE) inUr

n,1 andUr
n.

The rest of this paper is organized as follows. Firstly, for two graphs in Ur
n,1, we introduce two new

graph transformations (see Lemmas 3.1 and 3.2) that preserve order, size and the number of the pendent
vertices, but decrease the matching number of the subdivision graphs and the SLCs of the graphs under
consideration. Then, we characterize a unique extremal graph which has the minimum SLCs and the
minimum IE among Ur

n,1, where r ≥ 1, n > 1 ≥ 3 and 1 is odd (see Theorems 3.8 and 3.9). Secondly, if
G ∈ Ur

n and G has odd girth 1 ≥ 5, where n ≥ 7 and r ≥ 2, then we prove that a unique extremal graph
Ln ∈ U

r
n with girth 4 satisfies that both the SLCs and the IE of G are more than the counterparts of Ln (see

Theorems 3.17 and 3.18). Thirdly, inU1
n with n ≥ 5, a graph with the minimum SLCs and the minimum IE

is obtained (see Theorem 3.19).

2. Preliminaries

To obtain the main results of this paper, some necessary definitions and lemmas are introduced.

Lemma 2.1. [25] Let G be a graph with characteristic polynomial φ(G; x) =
∑n

k=0 akxn−k. Then for k ≥ 1,

ak =
∑
S∈Lk

(−1)ω(S)2c(S),

where Lk denotes the set of Sachs subgraphs of G with k vertices, that is, the subgraphs in which every component is
either a K2 or a cycle; ω(S) is the number of connected components of S, and c(S) is the number of cycles contained in
S. In addition, a0 = 1.

Let bi(G) = |ai(G)| with 0 ≤ i ≤ n. Then by Lemma 2.1, we get b0(G) = 1, b1(G) = 0, and b2(G) equals to
the number of edges of G.
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For a given graph G and e ∈ E(G) (respectively, e < E(G)), let G − e (respectively, G + e) be the graph
obtained from G by deleting (respectively, adding) the edge e. For v ∈ V(G), let G− v be the graph obtained
from G by deleting the vertex v together with its incident edges. Let G − H be the graph obtained from G
by deleting all the vertices of H and all the edges which are incident with the vertices of H.

Lemma 2.2. [26] Let G be a graph with n vertices.
(a) If G contains exactly one cycle C1 and uv is an edge on C1, then

bi(G) = bi(G − uv) + bi−2(G − u − v) − 2bi−1(G − C1) i f 1 = 0 (mod 4)
bi(G) = bi(G − uv) + bi−2(G − u − v) + 2bi−1(G − C1) i f 1 , 0 (mod 4).

(b) If uv is a cut edge, then bi(G) = bi(G − uv) + bi−2(G − u − v).

Lemma 2.3. [27] Let G be a unicyclic graph and G′ a graph obtained from G by deleting at least one edge outside its
unique cycle. Then bi(G1) ≥ bi(G2) for all i ≥ 0. Moreover, there exists at least one i0 such that bi0 (G1) > bi0 (G2).

Lemma 2.4. [7][28] Let G ∪ H denote the graph whose components are G and H. Then, we have mk(G ∪ H) =∑k
h=0 mh(G)mk−h(H).

Lemma 2.5. [28] If uv is an edge of G, then for all k ≥ 1, mk(G) = mk(G − uv) + mk−1(G − u − v).

We denote by Pn a path with n vertices. The vertices of Pn are labeled by u0,u1, . . . ,un−1. Denote Pn1 ∪Pn2

by Un1,n2 .

Lemma 2.6. [29] If n = 4h + i with h ≥ 1 and i ∈ {0, 1, 2, 3}, then for 0 ≤ k ≤ b n
2 c, mk(Pn) ≥ mk(U2,n−2) ≥ . . . ≥

mk(U2h,n−2h) ≥ mk(U2h+1,n−2h−1) ≥ mk(U2h−1,n−2h+1) ≥ . . . ≥ mk(U1,n−1).

Let F and H be two disjoint graphs. Let u be a vertex of F and v a vertex of H. The graph obtained from
F and H by identifying u of F and v of H is denoted by F(u, v)H.

Lemma 2.7. [29] Let v be an arbitrary vertex of G. If n = 4h+i with h ≥ 1 and i ∈ {−1, 0, 1, 2}, then mk(Pn(u0, v)G) ≥
mk(Pn(u2, v)G) ≥ . . . ≥ mk(Pn(u2h, v)G) ≥ mk(Pn(u2h−1, v)G) ≥ mk(Pn(u2h−3, v)G) ≥ . . . ≥ mk(Pn(u1, v)G).

Lemma 2.8. [16] Let G be a unicyclic graph with n vertices and the girth of cycle contained in G be 1. When
0 ≤ k ≤ n and 3 ≤ 1 ≤ n, we have

pk(G) = mk(S(G)) + (−1)1+12mk−1(S(G) − C21).

We denote by NG(v) the neighbors of v in the graph G.

Lemma 2.9. Let F and T be disjoint graphs, where F is a connected graph with u ∈ V(F) and T is a tree with v ∈ V(T).
Let NT(v) = {w1, . . . ,w|NT(v)|}. For 2 ≤ i ≤ |V(F)| + |V(T)|, we have

bi(F(u, v)T) = bi

(
F ∪ (T − v)

)
+

|NT(v)|∑
k=1

bi−2

(
(F − u) ∪ (T − v − wk)

)
.

Proof. Let Q̃ = F(u, v)T. Let G and uv in Lemma 2.2 be Q̃ and vw1, respectively. Let i be a fixed integer with
2 ≤ i ≤ |V(F)| + |V(T)|. By Lemma 2.2(b), we have

bi(Q̃) = bi(Q̃ − vw1) + bi−2

(
(F − u) ∪ (T − v − w1)

)
. (11)

Again, let G and uv in Lemma 2.2 be Q̃ − vw1 and vw2, respectively. By Lemma 2.2(b) and (11), we obtain

bi(Q̃) = bi(Q̃ − vw1 − vw2) +

2∑
k=1

bi−2

(
(F − u) ∪ (T − v − wk)

)
. (12)

Furthermore, by the same procedure and by using Lemma 2.2(b) |NT(v)|−2 times, we can get Lemma 2.9. �
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Figure 1: α–transformation from G to An

3. Main Results

3.1. The graph with the minimum SLCs and the minimum IE inUr
n,1

In this subsection, we will deduce the unique graph with the minimum SLCs and the minimum IE in
U

r
n,1, where r ≥ 1, n > 1 ≥ 3 and 1 is odd. Two new transformations (see Lemmas 3.1 and 3.2) will be

introduced. These two new transformations preserve order, size and the number of the pendent vertices, but
decrease the matching number of the subdivision graphs and the SLCs of the graphs under consideration.

We denote by Cn a cycle with n ≥ 3 vertices. The vertices of Cn are clockwise labeled by w0,w1, . . . ,wn−1.
Obviously, for G ∈ Ur

n,1, the vertex wi on C1 of G maybe (or maybe not) be attached by a tree (denoted by
T′i ), where 0 ≤ i ≤ 1 − 1. For G ∈ Ur

n,1, let An be the graph obtained from G by transplanting all the trees
attached at wi on C1 of G to the vertex w0 of C1, where 1 ≤ i ≤ 1 − 1. In other words, for G ∈ Ur

n,1,

An = G −
1−1⋃
i=1

{
wiv|v ∈ NT′i (wi)

}
+

1−1⋃
i=1

{
w0v|v ∈ NT′i (wi)

}
.

G and An are shown in Fig. 1(a) and Fig. 1(b), respectively. The transformation from G to An is hereinafter
called α–transformation, where G ∈ Ur

n,1. Obviously, An ∈ U
r
n,1.

Lemma 3.1. If G ∈ Ur
n,1 \ {An} with r ≥ 2 and n > 1 ≥ 3, then after performing the α–transformation, we have

pi(G) ≥ pi(An) for 0 ≤ i ≤ n, and at least one inequality holds within 0 ≤ i ≤ n.

Proof. By (9), to obtain pi(G) ≥ pi(An) for 0 ≤ i ≤ n, we only need to prove b2i

(
S(G)

)
≥ b2i

(
S(An)

)
for

0 ≤ i ≤ n. Since S(G) is a bipartite graph, by Lemma 2.1, b2i+1

(
S(G)

)
= 0 for 0 ≤ i ≤ n. By Lemma 2.1, we

have b0

(
S(G)

)
= b0

(
S(An)

)
= 1 and b2

(
S(G)

)
= b2

(
S(An)

)
= 2n. Next, let 2 ≤ i ≤ n.

In S(An), we denote S(T′j) − w0 by Q j, where 0 ≤ j ≤ 1 − 1. Denote Q0 ∪ . . . ∪ Q1−1 by Q. Let G \ H
(respectively G \ {H,F}) be the graph obtained from G by deleting all the edges of H (respectively all the
edges of H and F).

In Lemma 2.9, let F(u, v)T = S(An), where F = C21, T = S(An) \ C21, and u = v = w0. By Lemma 2.9, we
get

b2i

(
S(An)

)
= b2i(C21 ∪Q) +

1−1∑
j=0

∑
w∈NS(T′j )(w0)

b2i−2

(
P21−1 ∪ (Q j − w) ∪ (Q \Q j)

)
. (13)

Let G ∈ Ur
n,1 \ {An}. In Lemma 2.9, let F(u, v)T = S(G), where F = S(G) \ S(T′0), T = S(T′0), and u = v = w0.

Then, we have F − u =
(
S(G)\S(T′0)

)
− w0 and T − v = Q0. For a fixed w′a ∈ NS(T′0)(w0), (F − u) ∪ (T − v − w′a)
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Figure 2: β–transformation from An to A∗n

contains P21−1 ∪ (Q0 − w′a) ∪ (Q \Q0) as its proper subgraph. By Lemma 2.3, we get

b2i−2

(
(F − u) ∪ (T − v − w′a)

)
≥ b2i−2

(
P21−1 ∪ (Q0 − w′a) ∪ (Q \Q0)

)
. (14)

Moreover, there exists one i = 2 such that the inequality in (14) holds.
By Lemma 2.9 and (14), we get

b2i

(
S(G)

)
≥ b2i

(
S(G) \ S(T′0) ∪Q0

)
+

|NS(T′0)(w0)|∑
a=1

b2i−2

(
P21−1 ∪ (Q0 − w′a) ∪ (Q\Q0)

)
. (15)

Moreover, there exists one i = 2 such that the inequality in (15) holds.
Next, for the first term in the right-hand side of (15), we will prove that (16) holds.
In Lemma 2.9, let F(u, v)T = S(G) \ S(T′0), where F = S(G) \ {S(T′0),S(T′1)}, T = S(T′1) and u = v = w1. For a

fixed vertex w′b ∈ NS(T′1)(w1), (F−w1)∪ (T−w1−w′b)∪Q0 contains P21−1∪ (Q1−w′b)∪ (Q \Q1) as its subgraph.
By Lemma 2.3, we get

b2i−2

(
(F − w1) ∪ (T − w1 − w′b) ∪Q0

)
≥ b2i−2

(
P21−1 ∪ (Q1 − w′b) ∪ (Q \Q1)

)
.

Furthermore, by Lemma 2.9, we obtain

b2i

(
(S(G) \ S(T′0) ∪Q0

)
≥ b2i

(
(S(G) \ {S(T′0),S(T′1)} ∪Q0 ∪Q1

)
+

|NS(T′1)(w1)|∑
b=1

b2i−2

(
P21−1 ∪ (Q1 − w′b) ∪ (Q \Q1)

)
. (16)

By using Lemma 2.9 (1 − 1) times and by the same procedure, we finally get

b2i

(
S(G)

)
≥ b2i(C21 ∪Q) +

1−1∑
j=0

∑
w∈NS(T′j )(w j)

b2i−2

(
P21−1 ∪ (Q j − w) ∪ (Q \Q j

))
. (17)

By comparing (13) and (17), we obtain b2i(S(G)) ≥ b2i(S(An)) for 2 ≤ i ≤ n. Thus, we get Lemma 3.1. �
In Lemma 3.1, An can be viewed as the graph obtained from C1 by first attaching a tree H at w0 of C1,

and then attaching a path Pt+1 = u0u1 . . . ut at w0 of C1, where the vertex ui (1 ≤ i ≤ t − 1) of Pt+1 maybe
(maybe not) be attached by a tree (denoted by Ti). An is shown in Fig. 2(a). Let A∗n be the graph obtained
from An by transplanting all the trees Ti attached at ui of Pt+1 to u0, where 1 ≤ i ≤ t − 1. A∗n is shown in Fig.
2(b). In other words,

A∗n = An −

t−1⋃
i=1

{
uiv|v ∈ NTi (ui)

}
+

t−1⋃
i=1

{
u0v|v ∈ NTi (ui)

}
.
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The transformation from An to A∗n is hereinafter called β–transformation. Obviously, if An ∈ U
r
n,1, then after

performing the β–transformation, A∗n ∈ Ur
n,1.

Lemma 3.2. Let An and A∗n be the graphs as shown in Fig. 2. If n > 1 ≥ 3, then we have mk

(
S(An)

)
≥ mk

(
S(A∗n)

)
,

where 0 ≤ k ≤ n.

Proof. We have m0

(
S(A∗n)

)
= m0

(
S(An)

)
= 1 and m1

(
S(A∗n)

)
= m1

(
S(An)

)
= 2n. Next, we consider the cases

with 2 ≤ k ≤ n.
Let k be a fixed integer, where 2 ≤ k ≤ n. The k-matchings of S(An) and S(A∗n) are denoted by M and M∗,

respectively. The sets of M and M∗ are denoted byM andM∗, respectively.
In S(An) and S(A∗n), the original vertex ui (0 ≤ i ≤ t) of Pt of An and of A∗n is relabeled by u2i (0 ≤ i ≤ t).

Namely, the vertices of P2t+1 of S(An) and of S(A∗n) are labeled by u0,u1, . . . ,u2t. Similarly, in S(An) and S(A∗n),
the original vertex wi (0 ≤ i ≤ 1 − 1) on C1 of An and of A∗n is relabeled by w2i (0 ≤ i ≤ 1 − 1). Namely, the
vertices of C21 of S(An) and of S(A∗n) are labeled by w0,w1, . . . ,w21−1.

We construct a mapping ξ as follows:

E(S(An)) = E(S(A∗n)) −
t−1⋃
i=1

{
u0v|v ∈ NS(Ti)(u0)

}
+

t−1⋃
i=1

{
u2iv|v ∈ NS(Ti)(u2i)

}
. (18)

Obviously, ξ is a bijection.
Next, two cases are considered according to whether M∗ of S(A∗n) contains u0v or not, where v ∈ NS(T)(u0)

and T is shown in Fig. 2(b).
Case (i). M∗ of S(A∗n) does not contain u0v, where v ∈ NS(T)(u0).
In this case, the set of M∗ of S(A∗n) is denoted byM∗1. By the mappingξ, there is one-to-one correspondence

between a matching M∗ of S(A∗n) and a matching M of S(An). We denote the set of this kind of M of S(An)
byM1. Obviously, |M∗1| = |M1|.

Case (ii). M∗ of S(A∗n) contains u0v, where v is a vertex of S(Ts) of S(A∗n) with 1 ≤ s ≤ t − 1.
In this case, there subcases are considered as follows according to whether M∗ of S(A∗n) contains the edge

which is incident with u2s or not, where 1 ≤ s ≤ t − 1.
Subcase (ii.i). u2s−1u2s,u2su2s+1 <M∗.
In this subcase, the set of M∗ of S(A∗n) is denoted by M∗2. By the mapping ξ, there is one-to-one

correspondence between a matching M∗ of S(A∗n) and a matching M of S(An). We denote the set of this kind
of M of S(An) byM2. We have |M∗2| = |M2|.

Subcase (ii.ii). u2s−1u2s ∈M∗, u2su2s+1 <M∗.
In this subcase, the set of M∗ of S(A∗n) is denoted byM∗3.
For a matching M∗ ofM∗3, by the mapping ξ, we get an edge set of S(An) with k edges. We denote the

edge set by Ẽ. Obviously, Ẽ has three properties. (i) Ẽ does not contain the edges which are incident with
u0 of S(An). (ii) Ẽ contains u2sv and u2s−1u2s, where v is a vertex of S(Ts) of S(An). (iii) Except for u2sv and
u2s−1u2s, all the edges in Ẽ are disjoint mutually. Therefore, Ẽ of S(An) is not a k-matching since u2sv and
u2s−1u2s are adjacent.

We construct a mapping ζ as follows. For e ∈ Ẽ, if e is an edge of P2s+1 = u0u1 . . . u2s of S(An), then
denote e by uiui+1 with 0 ≤ i ≤ 2s − 1. Let ζ(uiui+1) = u2s−i−1u2s−i, where 0 ≤ i ≤ 2s − 1. For example,
ζ(u2s−1u2s) = u0u1. Otherwise, for each edge (denoted by e) of the other edges in Ẽ, let ζ(e) = e. Obviously,
ζ is a bijection. Therefore, we get a new edge set (denoted by M) of S(An) with k edges. Obviously, M is a
k-matching of S(An) since any two edges in M are disjoint. We denote the set of this kind of M of S(An) by
M3. Therefore, we obtain |M∗3| = |M3|.

Subcase (ii.iii). u2s−1u2s <M∗, u2su2s+1 ∈M∗.
In this subcase, the set of M∗ of S(A∗n) is denoted byM∗4. In S(An), we can choose a set of k-matching

(denoted by M4) satisfying that for any M ∈ M4, there exists exactly one s with 1 ≤ s ≤ t − 1 such that
u2sv,u0w1 ∈M or u2sv,u0w21−1 ∈M, where v ∈ NS(Ts)(u2s), and w1 and w21−1 are the vertices of C21 of S(An).
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By the definition of M∗4, for any M∗ ∈ M∗4, u0v,u2su2s+1 ∈ M∗, where 1 ≤ s ≤ t − 1 and v ∈ NS(Ts)(u0).
Therefore, for fixed s and v, we denote the subsets ofM4 andM∗4 byMs,v andM∗s,v, respectively. Then, we
have

|M4| =
∑

1≤s≤t−1

∑
v∈NS(Ts )(u2s)

|Ms,v|, (19)

|M
∗

4| =
∑

1≤s≤t−1

∑
v∈NS(Ts)(u0)

|M
∗

s,v|. (20)

Since the k-matching in Ms,v (respectively M∗s,v) contains u2sv and u0w1 or contains u2sv and u0w21−1
(respectively u0v and u2su2s+1), and S(An) − u0 − w1 − u2s − v = S(An) − u0 − w21−1 − u2s − v, we obtain

|Ms,v| = 2mk−2

(
S(An) − u0 − w1 − u2s − v

)
, (21)

|M
∗

s,v| = mk−2

(
S(A∗n) − u2s − u2s+1 − u0 − v

)
. (22)

Let S(A∗n)− u2s − u2s+1 − u0 − v = F∪U21−1,2t−2s−1 with F =
(
S(H)− x

)
∪

(
S(Ts)− u2s − v

)
∪ P2s−1 ∪ B, where

x is the rooted vertex of S(H) which identifies with w0 of C21, and B =
⋃

1≤i≤t−1,i,s

(
S(Ti)− u2i

)
. We can check

that S(An) − u0 −w1 − u2s − v contains F ∪U21−2,2t−2s as its proper subgraph. Therefore, by (21) and (22), we
obtain

|Ms,v| ≥ 2mk−2(F ∪U21−2,2t−2s) = 2
∑

i+ j=k−2

mi(F)m j(U21−2,2t−2s), (23)

|M
∗

s,v| = mk−2(F ∪U21−1,2t−2s−1) =
∑

i+ j=k−2

mi(F)m j(U21−1,2t−2s−1). (24)

By Lemma 2.6, m j(U21−2,2t−2s) ≥ m j(U21−1,2t−2s−1), where 0 ≤ j ≤ k − 2. Therefore, by (23) and (24), we
obtain

|Ms,v| ≥ |M
∗

s,v|. (25)

Furthermore, by (19) and (20), we obtain |M4| ≥ |M
∗

4|.
By the definitions ofM∗i andMi (1 ≤ i ≤ 4), we haveM∗ =M∗1∪M

∗

2∪M
∗

3∪M
∗

4 andM1∪M2∪M3∪M4 ⊆

M, whereM∗i ∩M
∗

j = ∅ andMi ∩M j = ∅with 1 ≤ i, j ≤ 4. Therefore, for 2 ≤ k ≤ n, we obtain

mk

(
S(An)

)
−mk

(
S(A∗n)

)
= |M| − |M∗| ≥

4∑
i=1

|Mi| −

4∑
i=1

|M
∗

i |. (26)

By the proofs of Cases (i) and (ii), we have |Mi| = |Mi| for i = 1, 2, 3 and |M4| ≥ |M
∗

4|. Therefore, by (26),
we get mk

(
S(An)

)
≥ mk

(
S(A∗n)

)
for 0 ≤ k ≤ n. Lemma 3.2 is thus proved. �

Let n, 1 and r be fixed. Let H(l1, l2, . . . , lr) be the tree obtained from a common vertex v by attaching r
paths of length l1, l2, . . ., lr at v, where li (1 ≤ i ≤ r) is a positive integer and l1 + l2 + . . . + lr = n − 1. For
simplicity, we denote C1(w0, v)H(l1, l2, . . . , lr) by B∗n.

Lemma 3.3. Let A∗n be the graph as shown in Fig. 2(b). If n > 1 ≥ 3, then we have mk

(
S(A∗n)

)
≥ mk

(
S(B∗n)

)
, where

0 ≤ k ≤ n.
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Proof. By repeatedly performing theβ–transformation on A∗n, we can finally get a graph C1(w0, v)H(l1, l2, . . . , lr) =
B∗n. By repeatedly using Lemma 3.2, we obtain Lemma 3.3. �

Lemma 3.4. In An and B∗n, if n > 1 ≥ 3 and 1 is odd, then we have pk(An) ≥ pk(B∗n) for 0 ≤ k ≤ n, and at least one
of inequalities holds within 0 ≤ k ≤ n.

Proof. By Lemma 2.8, we get p0(An) = p0(B∗n) = 1 and p1(An) = p1(B∗n) = n. Let 2 ≤ k ≤ n. By Lemma 2.8, we
obtain

pk(An) = mk

(
S(An)

)
+ (−1)1+12mk−1

(
S(An) − C21

)
, (27)

pk(B∗n) = mk

(
S(B∗n)

)
+ (−1)1+12mk−1

(
S(B∗n) − C21

)
. (28)

By Lemmas 3.2 and 3.3, we have mk(S(An)) ≥ mk(S(B∗n)) for 0 ≤ k ≤ n. When An , B∗n, S(An) − C21 contains
S(B∗n) − C21 as its proper subgraph. We have mk−1(S(An) − C21) ≥ mk−1(S(B∗n) − C21). Furthermore, we have
m1(S(An) − C21) > m1(S(B∗n) − C21). Thus, by (27) and (28), when 1 is odd, we get pk(An) ≥ pk(B∗n) and there
exists a k = 1 + 1 such that pk(An) > pk(B∗n). Therefore, we obtain Lemma 3.4. �

Remark. In An and B∗n, if 1 is even, then (−1)1+1 = −1 in (27) and (28). Thus, the methods used to prove
pk(An) ≥ pk(B∗n) in Lemma 3.4 for odd 1 ≥ 3 can not be applied to compare pk(An) and pk(B∗n) for even 1,
where 0 ≤ k ≤ n.

In H(l1, l2, . . . , lr), specially, for any two 1 ≤ i, j ≤ k, if |li− l j| ≤ 1, then we denote H(l1, l2, . . . , lr) by Hn−1+1,r.
Let p = b

n−1
r c + 1 and s = (n − 1) − rb n−1

r c. Obviously, Hn−1+1,r is the tree obtained from a common vertex v
by attaching s paths of length p and (r − s) paths of length p − 1. Let Mn = C1(w0, v)Hn−1+1,r, where Mn is
shown in Fig. 3(a). Obviously, Mn ∈ U

r
n,1.

To obtain Lemma 3.7, we introduce Lemmas 3.5 and 3.6 as follows.

Lemma 3.5. If G = C1(w0, v)H(l′1, l2, . . . , l
′
r) with 1 ≥ 3, then we have mk

(
S(G)

)
≥ mk

(
S(Mn)

)
, where k ≥ 0.

Proof. By contradiction. We suppose that there exists a graph Qn = C1(w0, v)H(l1, l2, . . . , lr) such that
mk

(
S(G)

)
≥ mk

(
S(Qn)

)
, where Qn , Mn. Since Qn , Mn, there exist at least two numbers li and l j such

that |li − l j| ≥ 2, where 1 ≤ i, j ≤ r. Without loss of generality, we suppose l2 − l1 ≥ 2. We rewrite
S(Qn) by P2l1+2l2+1(u2l1 , v)̂L, where L̂ = S(Qn) \ P2l1+2l2+1. Since 2l1 ≤ l1 + l2 − 2, by Lemma 2.7, we have
mk(S(Qn)) ≥ mk(P2l1+2l2+1(ul1+l2 , v)̂L) = mk

(
S(C1(w0, v)H( l1+l2

2 , l1+l2
2 , l3 . . . , lr))

)
when l1 + l2 is even or mk(S(Qn)) ≥

mk(P2l1+2l2+1(ul1+l2−1, v)̂L) = mk

(
S(C1(w0, v)H( l1+l2−1

2 , l1+l2+1
2 , l3 . . . , lr))

)
when l1 + l2 is odd. This contradicts the

minimality of S(Qn). Therefore, we get Qn = Mn. Thus, we obtain Lemma 3.5. �
For fixed n, 1 and r, let P2n−21,r be the set of P2l1 ∪ P2l2 ∪ . . . ∪ P2lr , where 2l1 + . . . + 2lr = 2n − 21 and li is

a positive integer for 1 ≤ i ≤ r. Let aPh be the union graph with a paths of length h − 1, where a and h are
positive integers with a ≥ 2 and h ≥ 2.

Lemma 3.6. If G ∈ P2n−21,r, then we have mk(G) ≥ mk

(
sP2p∪(r−s)P2p−2

)
for 0 ≤ k ≤ n−1, where 2ps+(r−s)(2p−2) =

2n − 21.

Proof. For any G ∈ P2n−21,r, we suppose that there exists a G ∈ P2n−21,r such that mk(G) ≥ mk(G) for
0 ≤ k ≤ n − 1. We denote G by P2l1 ∪ P2l2 ∪ . . . ∪ P2lr and suppose G , sP2p ∪ (r − s)P2p−2. Thus, among
{2l1, . . . , 2lr}, there exist 2li and 2l j such that |li − l j| ≥ 2, where 1 ≤ i, j ≤ r. Without loss of generality,
we suppose l1 − l2 ≥ 2. By Lemma 2.6, we have mi(U2l1,2l2 ) ≥ mi(U2l1−2,2l2+2) for 0 ≤ i ≤ l1 + l2. Let
G̃ = P2l1−2 ∪ P2l2+2 ∪ P2l3 ∪ . . . ∪ P2lr . Obviously, G̃ ∈ P2n−21,r. By Lemma 2.4, we get

mk(G) =

k∑
i=0

mi(U2l1,2l2 )mk−i(G \ {U2l1,2l2 }) ≥
k∑

i=0

mi(U2l1−2,2l2+2)mk−i(G \ {U2l1,2l2 }) = mk(G̃). (29)

This contradicts the minimality of G. Therefore, for any two 2li and 2l j with 1 ≤ i, j ≤ r, we have |li − l j| ≤ 1.
Therefore, G = sP2p ∪ (r − s)P2p−2. Lemma 3.6 is thus proved. �
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Lemma 3.7. In B∗n and Mn, if n > 1 ≥ 3 and 1 is odd, then we have pk(B∗n) ≥ pk(Mn), where 0 ≤ k ≤ n.

Proof. If the girth 1 of B∗n and of Mn is odd, then by Lemma 2.8, we obtain

pk(B∗n) = mk

(
S(B∗n)

)
+ 2mk−1

(
S(B∗n) − C21

)
, (30)

pk(Mn) = mk

(
S(Mn)

)
+ 2mk−1

(
S(Mn) − C21

)
. (31)

Bearing in mind that B∗n = C1(w0, v)H(l1, l2, . . . , lr), therefore, by Lemma 3.5, we have mk

(
S(B∗n)

)
≥ mk

(
S(Mn)

)
.

Since S(B∗n) − C21 = P2l1 ∪ P2l2 ∪ . . . ∪ P2lr and S(Mn) − C21 = sP2p ∪ (r − s)P2p−2, by Lemma 3.6, we get
mk−1

(
S(B∗n) − C21

)
≥ mk−1

(
S(Mn) − C21

)
. Thus, Lemma 3.7 follows from (30) and (31). �

C1 v(w0)

u1

u′1

up

u′p−1

s

r − s

(a) Mn

C4 v(w′0)

v1

v′1

vq

v′q−1

t

r − t

(b) Ln

Figure 3: The graphs Mn and Ln

InUr
n,1, we will characterize the minimum graph in terms of �′ according to their SLCs and then deduce

the graph with the minimum IE.

Theorem 3.8. If G ∈ Ur
n,1, where r ≥ 1, n > 1 ≥ 3 and 1 is odd, then for 0 ≤ k ≤ n, we have pk(G) ≥ pk(Mn) and at

least one of inequalities holds within 0 ≤ k ≤ n.

Proof. Let G ∈ Ur
n,1. Let 0 ≤ k ≤ n. By Lemma 3.1, we have pk(G) ≥ pk(An). By Lemma 3.4, we get

pk(An) ≥ pk(B∗n), and at least one inequality holds within 0 ≤ k ≤ n. Furthermore, by Lemma 3.7, we have
pk(B∗n) ≥ pk(Mn). Thus, we obtain Theorem 3.8. �

Theorem 3.9. If G ∈ Ur
n,1, where r ≥ 1, n > 1 ≥ 3 and 1 is odd, then we have IE(G) ≥ IE(Mn), with the equality iff

G = Mn.

Proof. By (9) and Theorem 3.8, we have Theorem 3.9. �

3.2. The graph with the minimum SLCs and the minimum IE inUr
n

In this subsection, we will consider the graph with the minimum SLCs and the minimum IE inUr
n. A

graph Ln with girth 4 having the minimum SLCs and the minimum IE inUr
n is introduced.

Let n and r ≥ 2 be fixed. Let Ln be the graph obtained from C4 by attaching t paths of length q and r − t
paths of length q − 1 at w0 of C4, where q = b n−4

r c + 1 and t = (n − 4) − rb n−4
r c. Ln is shown in Fig. 3(b).

Obviously, Ln ∈ U
r
n. When n and r are fixed, Ln is unique.

Lemmas 3.10–3.16 are introduced to obtain our results.

Lemma 3.10. Let H be a simple graph with n vertices. Let b > 2a, where a and b are positive integers. We have
mk(Pb ∪H) ≥ mk−a(Pb−2a ∪H) for a ≤ k ≤ b n+b

2 c.
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Proof. By Lemma 2.5, we have mk(Pb) ≥ mk(P2a ∪ Pb−2a). Therefore, we get

mk(Pb ∪H) ≥ mk(P2a ∪ Pb−2a ∪H). (32)

From Lemma 2.4 and ma(P2a) = 1, we obtain

mk(P2a ∪ Pb−2a ∪H) =
∑

k1+k2=k

mk1 (P2a)mk2 (Pb−2a ∪H) ≥ ma(P2a)mk−a(Pb−2a ∪H) = mk−a(Pb−2a ∪H). (33)

Therefore, Lemma 3.10 follows from (32) and (33). �
Let Ĥ = S(Mn) − C21 = sP2p ∪ (r − s)P2p−2, where |V(Ĥ)| = 2n − 21 and 1 ≥ 4. Let H̃ = S(Ln) − C8 =

tP2q ∪ (r − t)P2q−2, where |V(H̃)| = 2n − 8.

Lemma 3.11. Let Ĥ and H̃ be the graphs as defined as above. We have
(i) p ≤ q.
(ii) If p = q, then s ≤ t.

Proof. (i) The proof of Lemma 3.11(i).
Otherwise, we suppose p ≥ q + 1. Then we have 2p > 2p − 2 ≥ 2q > 2q − 2. Since both Ĥ and H̃ have r

paths, we have |V(Ĥ)| > |V(H̃)|. This contradicts the fact |V(Ĥ)| = 2n − 21 ≤ 2n − 8 = |V(H̃)|when 1 ≥ 4.
(ii) The proof of Lemma 3.11(ii).
By the definitions of Ĥ and H̃, we have 2ps + (2p − 2)(r − s) = 2n − 21 and 2qt + (2q − 2)(r − t) = 2n − 8.

Since 1 ≥ 4, we have 2n − 8 ≥ 2n − 21. It follows from p = q that s ≤ t. �

Lemma 3.12. Let Ĥ and H̃ be the graphs as defined as above. Let 1 ≥ 5. We have
(i) mk−1(P21−3 ∪ Ĥ) ≥ mk−1(P5 ∪ H̃) for k ≥ 1;
(ii) mk−2(P21−5 ∪ Ĥ) ≥ mk−2(P3 ∪ H̃) for k ≥ 2;
(iii) mk−3(P21−7 ∪ Ĥ) ≥ mk−3(H̃) for k ≥ 3.

Proof. (i) The proof of Lemma 3.12(i).
Obviously, when r = 1, Lemma 3.12(i) holds. Let r ≥ 2. We get that at least one of s and r − s is not less

than 1. Next, we suppose s ≥ 1. When 1 ≥ 5, by Lemma 2.6, we have mi(U21−3,2p) ≥ mi(U5,21+2p−8) for i ≥ 0.
Therefore, we get

mk−1

(
P21−3 ∪ Ĥ

)
≥ mk−1

(
P5 ∪ P21+2p−8 ∪ (s − 1)P2p ∪ (r − s)P2p−2

)
. (34)

We can easily check that both P21+2p−8 ∪ (s − 1)P2p ∪ (r − s)P2p−2 and H̃ have 2n − 8 vertices, r disjoint paths,
and the number of vertices of each path in the two graphs is even. Furthermore, for any two disjoint paths
in H̃, their length difference does not exceed 2. Therefore, by Lemmas 2.4 and 3.6, for k ≥ 1, we get

mk−1

(
P5 ∪ P21+2p−8 ∪ (s − 1)P2p ∪ (r − s)P2p−2

)
≥ mk−1(P5 ∪ H̃). (35)

It follows from (34) and (35) that Lemma 3.12(i) holds.
Similarly, if r − s ≥ 1, then by the same analysis as that for s ≥ 1, we get (35).
(ii) The proof of Lemma 3.12(ii)–(iii).
By the methods similar to those for Lemma 3.12(i), we have Lemma 3.12(ii)–(iii). �

Lemma 3.13. Let Ĥ and H̃ be the graphs as defined as above. For 5 ≤ 1 ≤ k, we have mk−4(H̃) ≥ mk−1(Ĥ).
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Proof. By Lemma 3.11(i), we have p ≤ q. Two cases are considered as follows.
Case (i) p < q.
In this case, we have 2p − 2 < 2p ≤ 2q − 2 < 2q. Bearing in mind that Ĥ = sP2p ∪ (r − s)P2p−2 and

H̃ = tP2q ∪ (r − t)P2q−2. It is noted that Ĥ and H̃ are written according to the decreasing order of the lengths
of their paths. So we get that the length of the i-th path in H̃ is not less than that of Ĥ.

For 1 ≤ i ≤ r, let ji and hi be respectively the number of the vertices of the i-th path of H̃ and Ĥ. Obviously,
ji and hi are even for 1 ≤ i ≤ r. Let ji − hi = 2∆i, where ∆i ≥ 0 and

∑r
i=1 ∆i =

(2n−8)−(2n−21)
2 = 1 − 4. By using

Lemma 3.10 one time, we get

mk−4(H̃) = mk−4

(
tP2q ∪ (r − t)P2q−2

)
≥ mk−4−∆1

(
P2p ∪ (t − 1)P2q ∪ (r − t)P2q−2

)
.

Furthermore, by using Lemma 3.10 (r − 1) times, we finally obtain

mk−4(H̃) ≥ mk−4−
∑r

i=1 ∆i
(sP2p ∪ (r − s)P2p−2) = mk−1(Ĥ).

Case (ii) p = q.
In this case, by Lemma 3.11(ii), we have s ≤ t. Thus, Ĥ and H̃ can be rewritten as Ĥ = sP2p∪ (t− s)P2p−2∪

(r − t)P2p−2 and H̃ = sP2q ∪ (t − s)P2q ∪ (r − t)P2q−2. So we get that the length of the i-th path in H̃ is not less
than that of Ĥ. By the methods similar to those for Case (i), we obtain mk−4(H̃) ≥ mk−1(Ĥ). �

In S(Mn), the vertices on C21 of S(Mn) are labeled by w0, . . . ,w21−1. In S(Ln), the vertices on C8 of S(Ln)
are labeled by w′0, . . . ,w

′

7.

Lemma 3.14. Let Mn and Ln be the graphs as shown in Fig 3, where 1 ≥ 5 in Mn. We have mk(S(Mn)−w0w21−1) ≥
mk(S(Ln) − w′0w′7), where k ≥ 0.

Proof. Obviously, S(Mn) − w0w21−1 is the tree obtained from a common vertex v by attaching a path
of length 21 − 1, s paths of length 2p and r − s paths of length 2p − 2. We denote this kind of tree by
T(21 − 1, (2p)s, (2p − 2)r−s).

Similarly, we have S(Ln) − w′0w′7 = T(7, (2q)t, (2q − 2)r−t).
By Lemma 2.5, we get

mk

(
T(7, (2q)t, (2q − 2)r−t)

)
= mk

(
P7 ∪ T((2q)t, (2q − 2)r−t)

)
+ mk−1

(
P6 ∪ tP2q ∪ (r − t)P2q−2

)
. (36)

Similarly, by Lemma 2.5, we obtain

mk

(
T(7, 21 + 2p − 8, (2p)s−1, (2p − 2)r−s)

)
= mk

(
P7 ∪ T(21 + 2p − 8, (2p)s−1, (2p − 2)r−s)

)
+ mk−1

(
P6 ∪ P21+2p−8 ∪ (s − 1)P2p ∪ (r − s)P2p−2

)
. (37)

By the methods similar to those for Lemma 3.5, we have

mk

(
T(21 + 2p − 8, (2p)s−1, (2p − 2)r−s)

)
≥ mk

(
T((2q)t, (2q − 2)r−t)

)
. (38)

Furthermore, P6 ∪ tP2q ∪ (r − t)P2q−2 and P6 ∪ P21+2p−8 ∪ (s − 1)P2p ∪ (r − s)P2p−2 are graphs in P2n−6,r+1. By
Lemma 3.6, we have

mk−1

(
P6 ∪ P21+2p−8 ∪ (s − 1)P2p ∪ (r − s)P2p−2

)
≥ mk−1

(
P6 ∪ tP2q ∪ (r − t)P2q−2

)
. (39)

By substitution (38) and (39) into (36) and (37), we finally deduce

mk

(
T(7, 21 + 2p − 8, (2p)s−1, (2p − 2)r−s)

)
≥ mk

(
T(7, (2q)t, (2q − 2)r−t)

)
. (40)
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By the methods similar to those for Lemma 3.12, we have p ≤ q and at least one of s and r − s is positive
when r ≥ 2. Next, we suppose s ≥ 1. Note that T(21−1, (2p)s, (2p−2)r−s) = P21+2p(u21−1, v)T((2p)s−1, (2p−2)r−s)
and T(7, 21 + 2p − 8, (2p)s−1, (2p − 2)r−s) = P21+2p(u7, v)T((2p)s−1, (2p − 2)r−s). By Lemma 2.6, when 1 ≥ 5, we
have

mk

(
T(21 − 1, (2p)s, (2p − 2)r−s)

)
≥ mk

(
T(7, 21 + 2p − 8, (2p)s−1, (2p − 2)r−s)

)
. (41)

Similarly, if r − s ≥ 1, then by the same analysis as that for s ≥ 1, we get (41).
Therefore, by (40) and (41), we have

mk

(
T(21 − 1, (2p)s, (2p − 2)r−s)

)
≥ mk

(
T(7, (2q)t, (2q − 2)r−t)

)
. (42)

Note that S(Mn) − w0w21−1 = T(21 − 1, (2p)s, (2p − 2)r−s) and S(Ln) − w′0w′7 = T(7, (2q)t, (2q − 2)r−t). Thus, by
(42), we get Lemma 3.14. �

Since Lemma 3.15 can be obtained by using Lemma 2.5 three times, the proof of Lemma 3.15 is omitted.

Lemma 3.15. Let G = Ph ∪ Q with h ≥ 6, where Q is a simple graph. Then we have mk(G) = mk(Ph−1 ∪ Q) +
mk−1(Ph−3 ∪Q) + mk−2(Ph−5 ∪Q) + mk−3(Ph−6 ∪Q) for k ≥ 0.

Lemma 3.16. We have pk(Mn) ≥ pk(Ln) for 0 ≤ k ≤ n, where 1 in Mn is odd with 1 ≥ 5 and n ≥ 1 + 1.

Proof. Case (i) 1 is even.
Obviously, S(Mn) − C21 = Ĥ and S(Ln) − C8 = H̃. By Lemma 2.8, we get

pk(Mn) = mk

(
S(Mn)

)
− 2mk−1(Ĥ), (43)

pk(Ln) = mk

(
S(Ln)

)
− 2mk−4(H̃). (44)

Let G in Lemma 2.5 be S(Mn) (respectively S(Ln)) and uv in Lemma 2.5 be w0w21−1 (respectively w′0w′7).
By Lemma 2.5, we obtain

mk

(
S(Mn)

)
= mk

(
S(Mn) − w0w21−1

)
+ mk−1

(
P21−2 ∪ Ĥ

)
, (45)

mk

(
S(Ln)

)
= mk

(
S(Ln) − w′0w′7

)
+ mk−1

(
P6 ∪ H̃

)
. (46)

By (43)–(46) and Lemma 3.14, we obtain

pk(Mn) − pk(Ln) ≥ mk−1(P21−2 ∪ Ĥ) −mk−1(P6 ∪ H̃) − 2mk−1(Ĥ) + 2mk−4(H̃). (47)

By Lemma 3.15, we have

mk−1(P21−2 ∪ Ĥ) = mk−1(P21−3 ∪ Ĥ) + mk−2(P21−5 ∪ Ĥ) + mk−3(P21−7 ∪ Ĥ) + mk−4(P21−8 ∪ Ĥ), (48)

mk−1(P6 ∪ H̃) = mk−1(P5 ∪ H̃) + mk−2(P3 ∪ H̃) + mk−3(H̃) + mk−4(H̃). (49)

By (48), (49) and Lemma 3.12(i)–(iii), we obtain

mk−1(P21−2 ∪ Ĥ) −mk−1(P6 ∪ H̃) ≥ mk−4(P21−8 ∪ Ĥ) −mk−4(H̃). (50)

Therefore, by (50), (47) can be translated into

pk(Mn) − pk(Ln) ≥ mk−4(P21−8 ∪ Ĥ) + mk−4(H̃) − 2mk−1(Ĥ). (51)
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By Lemma 2.4, when 1 ≥ 5, we have

mk−4(P21−8 ∪ Ĥ) ≥ m1−4(P21−8)mk−1(Ĥ) ≥ mk−1(Ĥ). (52)

Furthermore, by Lemma 3.13, we have mk−4(H̃) ≥ mk−1(Ĥ). Therefore, from (51) and (52), we get pk(Mn) ≥
pk(Ln) for k ≥ 0.

Case (ii) 1 is odd with 1 ≥ 5.
In this case, by Lemma 2.8, we have pk(Mn) = mk

(
S(Mn)

)
+ 2mk−1

(
S(Mn) − C21

)
. By the methods similar

to those for even 1, we get pk(Mn) ≥ pk(Ln) for k ≥ 0. �

Theorem 3.17. Let G ∈ Ur
n with n ≥ 7 and r ≥ 2. If G has odd girth 1 ≥ 5, then we have pk(G) ≥ pk(Ln) for

0 ≤ k ≤ n and at least one of inequalities holds within 0 ≤ k ≤ n.

Proof. By Theorem 3.8 and Lemma 3.16, we obtain Theorem 3.17. �

Theorem 3.18. Let G ∈ Ur
n with n ≥ 7 and r ≥ 2. If G has odd girth 1 ≥ 5, then we have IE(G) > IE(Ln).

Proof. By (9) and Theorem 3.17, we get Theorem 3.18. �
In Theorems 3.17 and 3.18, if G ∈ Ur

n and G has odd girth 1 ≥ 5, where n ≥ 7 and r ≥ 2, then we prove
that there exists a graph Ln ∈ U

r
n with girth 4 such that both the SLCs and the IE of G are more than the

counterparts of Ln. If G ∈ Ur
n with r ≥ 2 and G has even girth 1 ≥ 4, which graph has the minimum SLCs

and the minimum IE? InUr
n with n ≥ 5 and r ≥ 2, which graph has the minimum SLCs and the minimum

IE? The two unsolved problems remain a task for the future.
For these graphs in Ur

n with r ≥ 2, if their girth are even, then their Laplacian spectra and signless
Laplacian spectra are the same, which implies the coefficients of both the Laplacian and signless Laplacian
characteristic polynomials of the graphs in bipartite unicyclic graphs are the same. For the graphs with k
leaves, Ilić and Ilić [30] characterized the trees with k leaves which simultaneously minimize all Laplacian
coefficients and they posed a conjecture on the extremal unicyclic graphs with k leaves. Pai and Liu [31]
completely solved the conjecture and they obtained the graph with the smallest Laplacian coefficients
among unicyclic graphs with k leaves. Zhang and Zhang [32] investigated properties of the minimum
elements in the partial ordering among the set of n-vertex unicyclic graphs with the number of leaves and
girth. For the coefficients of the Laplacian characteristic polynomial of unicyclic graphs, one can refer to
two references [12, 13].

Next, in Ur
n with n ≥ 5 and r = 1, we will prove that En has the minimum SLCs and the minimum IE,

where En is C4(w0,u0)Pn−3 with n ≥ 5. It is noted that En and Ln are the same graphs when r = 1 and t = 0
in Ln.

Theorem 3.19. Let G ∈ Ur
n with n ≥ 5 and r = 1. We have

(i) pk(G) ≥ pk(En) for 0 ≤ k ≤ n and at least one of inequalities holds within 0 ≤ k ≤ n.
(ii) IE(G) > IE(En).

Proof. (i) 5 ≤ n ≤ 8.
When G ∈ U1

n with 5 ≤ n ≤ 8, by direct calculation, we can easily verify that pk(G) ≥ pk(En) for 0 ≤ k ≤ n,
and the equalities hold for all 0 ≤ k ≤ n iff G = En. Thus, we obtain Theorem 3.19(i) when 5 ≤ n ≤ 8.
Furthermore, by Theorem 3.19(i) and (9), we get Theorem 3.19(ii) when 5 ≤ n ≤ 8.

(ii) n ≥ 9.
By Lemma 2.8, we can check that p0(G) = p0(En) = 1, p1(G) = p1(En) = 2n, pn(G) = pn(En) = 0 if the girth

of the cycle contained in G is even, and pn(G) = 4 > 0 = pn(En) if the girth of the cycle contained in G is odd.
Next, we consider the cases with 2 ≤ k ≤ n − 1.

Obviously, S(G) = C21(w0,u0)P2n−21+1 and S(En) = C8(w0,u0)P2n−7. We get S(G) − C21 = P2n−21 and
S(En) − C8 = P2n−8. Let G in Lemma 2.5 be S(G) (respectively S(En)) and uv in Lemma 2.5 be w0w1
(respectively w′0w′1). By Lemmas 2.5 and 2.8, we obtain

pk(G) = mk(P2n) + mk−1(U21−2,2n−21) + 2(−1)1+1mk−1(P2n−21), (53)
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pk(En) = mk(P2n) + mk−1(U6,2n−8) − 2mk−4(P2n−8). (54)

Two cases are considered as follows.
Case (i) 1 is even.
From (53) and (54), we have

pk(G) − pk(En) = mk−1(U21−2,2n−21) −mk−1(U6,2n−8) − 2mk−1(P2n−21) + 2mk−4(P2n−8). (55)

By Lemma 3.15, we have

mk−1(U21−2,2n−21) = mk−1(U21−3,2n−21) + mk−2(U21−5,2n−21) + mk−3(U21−7,2n−21) + mk−4(U21−8,2n−21), (56)

mk−1(U6,2n−8) = mk−1(U5,2n−8) + mk−2(U3,2n−8) + mk−3(U1,2n−8) + mk−4(P2n−8). (57)

When 1 ≥ 4, by Lemma 2.6, we get mk−1(U21−3,2n−21) ≥ mk−1(U5,2n−8), mk−2(U21−5,2n−21) ≥ mk−2(U3,2n−8),
and mk−3(U21−7,2n−21) ≥ mk−3(U1,2n−8). Thus, from (56) and (57),

mk−1(U21−2,2n−21) −mk−1(U6,2n−8) ≥ mk−4(U21−8,2n−21) −mk−4(P2n−8). (58)

By (58), (55) can be translated into

pk(G) − pk(En) ≥ mk−4(U21−8,2n−21) + mk−4(P2n−8) − 2mk−1(P2n−21). (59)

When 1 ≥ 4, by Lemmas 2.6 and 3.10, we have mk−4(P2n−8) ≥ mk−4(U21−8,2n−21) ≥ mk−1(P2n−21). Further-
more, when k = 5, we have mk−4(P2n−8) = 2n − 9 > 2n − 10 = mk−4(U21−8,2n−21). Therefore, by (59), we obtain
pk(G) ≥ pk(En) for 0 ≤ k ≤ n and there exists at least one k0 = 5 such that pk0 (G) > pk0 (En).

Case (ii) 1 is odd.
Two subcases are considered as follows.
Subcase (ii.i) 1 = 3.
When 1 = 3, G = C3(w0,u0)Pn−2. By the same procedure as that for (55), we get

pk(G) − pk(En) = mk−1(U4,2n−6) −mk−1(U6,2n−8) + 2mk−3(P2n−6) + 2mk−4(P2n−8). (60)

When n > 9, it follows from Lemma 2.6 that mk−1(U4,2n−6) ≥ mk−1(U6,2n−8). Furthermore, when k = 4 and
n ≥ 9, we have mk−3(P2n−6) = 2n− 7 > 1 = mk−4(P2n−8). Thus, by (60), we get pk(G) ≥ pk(En) for 0 ≤ k ≤ n and
there exists at least one k0 = 4 such that pk0 (G) > pk0 (En).

Subcase (ii.ii) 1 ≥ 5.
When 1 is odd, by the same methods as those for even 1 in Case (i), we can get pk(G) ≥ pk(En) for

0 ≤ k ≤ n and there exists at least one k0 such that pk0 (G) > pk0 (En).
By combination of the proofs in Cases (i) and (ii), we obtain Theorem 3.19(i) when n ≥ 9. Furthermore,

by Theorem 3.19(i) and (9), we obtain Theorem 3.19(ii) when n ≥ 9. �
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