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Abstract. We investigate the existence and uniqueness of solutions for a mixed-type coupled fractional
differential system equipped with nonlocal multi-point coupled boundary conditions on an arbitrary do-
main by applying standard tools of the fixed point theory. Our results, well illustrated with the aid of
examples, are new and enhance the scope of the literature on the topic.

1. Introduction

We introduce and study a new class of coupled systems of mixed-order fractional differential equations
equipped with nonlocal multi-point coupled boundary conditions. In precise terms, we consider the
following fully coupled system:
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












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

Dξx(t) = ϕ(t, x(t), y(t)), t ∈ [a, b], 0 < ξ < 1,

Dζy(t) = ψ(t, x(t), y(t)), t ∈ [a, b], 1 < ζ < 2,

px(a) + qy(b) = x0, y(a) = 0, y′(b) =

m
∑

i=1

δix(σi), a < σi < b,

(1)

where Dχ is Caputo fractional derivative of order χ ∈ {ξ, ζ}, ϕ, ψ : [a, b] × R × R → R are given functions
p, q, δi ∈ R, i = 1, 2, . . . ,m.

Here we emphasize that the novelty of the present work lies in the fact that we consider a coupled
system of fractional differential equations of different order on an arbitrary domain equipped with coupled
nonlocal multi-point boundary conditions. Moreover, several new results appear as special cases of the
obtained work. It is imperative to notice that much of the work related to the coupled systems of fractional
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differential equations deals with the fixed domain. Thus our results are more general and contribute
significantly to the existing literature on the topic.

Fractional differential equations appear in the mathematical modeling of many real world phenomena
occurring in engineering and scientific disciplines, for instance, see the works [1]-[6]. Mathematical models
based on fractional order integral and differential operators yield more insight into the characteristics of
the associated phenomena as such operators are nonlocal in nature in contrast to the classical ones. In
particular, coupled systems of fractional order differential equations have received a great attention in view
of their great utility in handling and comprehending the practical issues such as synchronization of chaotic
systems [7, 8], anomalous diffusion [9], ecological effects [10], etc. For some recent theoretical results on the
topic, we refer the reader to a series of papers [11]-[15] and the references cited therein.

An auxiliary result related to the problem (6) and (7) is established in Section 2, while the main results
are obtained in Section 3. Examples illustrating the main results are discussed in Section 4.

2. Preliminaries

Let us recall some preliminary concepts of fractional calculus [3].

Definition 2.1. Let h be a locally integrable real-valued function on −∞ ≤ a < t < b ≤ +∞. The Riemann–Liouville
fractional integral Iαa of order α ∈ R (α > 0) is defined as

Iαa h (t) = (h ∗ Kα) (t) =
1

Γ (α)

t
∫

a

(t − s)α−1 h (s)ds,

where Kα(t) = tα−1

Γ(α) , Γ denotes the Euler gamma function.

Definition 2.2. Let h ∈ L1[a, b], −∞ ≤ a < t < b ≤ +∞ and h ∗ Km−α ∈ Wm,1[a, b],m = [α] + 1, α > 0, where
Wm,1[a, b] is the Sobolev space defined as

Wm,1[a, b] =

{

h ∈ L1[a, b] :
dm

dtm
h ∈ L1[a, b]

}

.

The Riemann–Liouville fractional derivative Dα
a of order α > 0 (m − 1 < α < m, m ∈N) is defined as

Dα
a h (t) =

dm

dtm
I1−α
a h (t) =

1

Γ (m − α)

dm

dtm

t
∫

a

(t − s)m−1−α h (s)ds.

Definition 2.3. Let h ∈ L1[a, b], −∞ ≤ a < t < b ≤ +∞ and h ∗ Km−α ∈ Wm,1[a, b],m = [α], α > 0. The Caputo
fractional derivative cDα

a of order α ∈ R (m − 1 < α < m, m ∈N) is defined as

cDα
a h (t) = Dα

a

[

h (t) − h (a) − h′ (a)
(t − a)

1!
− . . . − h(m−1) (a)

(t − a)m−1

(m − 1)!

]

.

Remark 2.4. If h ∈ Cm[a, b], then the Caputo fractional derivative cDα
a of order α ∈ R (m − 1 < α < m, m ∈ N) is

defined as

cDα
a [h] (t) = I1−α

a h(m) (t) =
1

Γ (m − α)

t
∫

a

(t − s)m−1−α h(m) (s)ds.

In the sequel, the Riemann–Liouville fractional integral Iαa and the Caputo fractional derivative cDα
a with

a = 0 are respectively denoted by Iα and cDα.
It is well known that
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1. If α + β > 1, then the equation (IαIβu)(t) = (Iα+βu)(t), t ∈ J is satisfied for u ∈ L1(J,R).
2. Let β > α. Then the equation (DαIβu)(t) = (Iβ−αu)(t), t ∈ J holds for u ∈ C(J,R).
3. Let n = [α] + 1 if α < N and n = α if α ∈ N. Then Dαtk = 0 for k ∈ {0, 1, 2, . . . , n − 1}; Dαtβ−1 =

Γ(β)

Γ(β − α)
tβ−α−1, β > n; Iαtβ−1 =

Γ(β)

Γ(β + α)
tβ+α−1.

Now we present an important result to analyze the problem (1).

Lemma 2.5. Let λ := p + q(b − a)

m
∑

i=1

δi , 0 and ϕ̄, ψ̄ ∈ C[a, b]. Then the unique solution of the system











































Dξx(t) = ϕ̄(t), t ∈ [a, b], 0 < ξ < 1,

Dζy(t) = ψ̄(t), t ∈ [a, b], 1 < ζ < 2,

px(a) + qy(b) = x0, y(a) = 0, y′(b) =

m
∑

i=1

δix(σi),

(2)

is given by the following pair of integral equations

x(t) = Iξϕ̄(t) +
1

λ

[

x0 − qIζψ̄(b) + q(b − a)(Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi))

]

, (3)

y(t) = Iζψ̄(t) − t − a

λ

[

p(Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi)) −

m
∑

i=1

δi(x0 − qIζψ̄(b)
]

. (4)

Proof. As argued in [3], the solutions of fractional differential equations in (2) can be written as

x(t) = Iξϕ̄(t) + c1 and y(t) = Iζψ̄(t) + c2 + c3(t − a), (5)

where ci ∈ R (i = 1, 2, 3) are arbitrary constants. Using the condition y(a) = 0 in (5), we get c2 = 0, while
making use of the conditions px(a)+ qy(b) = x0 and y′(b) =

∑m
i=1 δix(σi) in (5) yields the following system

pc1 + q(b − a)c3 = x0 − qIζψ̄(b),
m

∑

i=1

δi c1 − c3 = Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi).

Solving the above system for c1 and c3, we find that

c1 =
1

λ

[

x0 − qIζψ̄(b) + q(b − a)(Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi))

]

and

c3 = −
1

λ

[

p(Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi)) −

m
∑

i=1

δi(x0 − qIζψ̄(b)
]

,

which, on substituting in (5), completes the solutions (3) and (4). The converse follows by direct computa-
tion. �

In the following, for brevity, we use the notations:

L1 =
(b − a)ξ

Γ(ξ + 1)
+

q(b − a)

|λ|Γ(ξ + 1)

m
∑

i=1

|δi|(σi − a)ξ, M1 =
q

|λ|
(b − a)ζ(ζ + 1)

Γ(ζ + 1)
, (6)

L2 =
p(b − a)

|λ|Γ(ξ + 1)

m
∑

i=1

|δi|(σi − a)ξ, M2 =
(b − a)ζ

Γ(ζ + 1)

(

1 +
pζ

|λ| + q(b − a)

m
∑

i=1

|δi|
)

. (7)
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3. Main Results

In view of Lemma 2.5, we define an operator T : X × X→ X × X by

T(x, y)(t) =

(

T1(x, y)(t)
T2(x, y)(t)

)

,

where (X × X, ‖(x, y)‖) is a Banach space equipped with norm ‖(x, y)‖ = ‖x‖ + ‖y‖, x, y ∈ X (X = {x(t)|x(t) ∈
C([a, b],R)} is a Banach space associated with the norm ‖x‖ = sup{|x(t)|, t ∈ [a, b]}),

T1(x, y)(t) = Iξϕ̄(t) +
1

λ

[

x0 − qIζψ̄(b) + q(b − a)(Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi))

]

,

T2(x, y)(t) = Iζψ̄(t) − t − a

λ

[

p(Iζ−1ψ̄(b) −
m

∑

i=1

δiI
ξϕ̄(σi)) −

m
∑

i=1

δi(x0 − qIζψ̄(b)
]

,

and ϕ̄(t) = ϕ(t, x(t), y(t)) and ψ̄(t) = ψ(t, x(t), y(t)).

In our first result, we establish the uniqueness of solutions for the system (1) by applying contraction
mapping principle due to Banach.

Theorem 3.1. Assume that

(H1) ϕ,ψ : [a, b] × R ×R → R are continuous functions and there exist positive constants ℓ1 and ℓ2 such that for
all t ∈ [a, b] and xi, yi ∈ R, i = 1, 2, we have

|ϕ(t, x1, x2) − ϕ(t, y1, y2)| ≤ ℓ1(|x1 − y1| + |x2 − y2|),

|ψ(t, x1, x2) − ψ(t, y1, y2)| ≤ ℓ2(|x1 − y1| + |x2 − y2|).

If

(L1 + L2)ℓ1 + (M1 +M2)ℓ2 < 1, (8)

where L1,M1 and L2,M2 are respectively given by (6) and (7), then the system (1) has a unique solution on [a, b].

Proof. Define supt∈[a,b] ϕ(t, 0, 0) = N1 < ∞ and supt∈[a,b] ψ(t, 0, 0) = N2 < ∞ and r > 0 such that

r >

|x0|
|λ|

(

1 + (b − a)

m
∑

i=1

|δi|
)

+ (L1 + L2)N1 + (M1 +M2)N2

1 − (L1 + L2)ℓ1 − (M1 +M2)ℓ2
.

In the first step, we show that TBr ⊂ Br,where Br = {(x, y) ∈ X×X : ‖(x, y)‖ ≤ r}. By the assumption (H1), for
(x, y) ∈ Br, t ∈ [a, b], we have

|ϕ(t, x(t), y(t))| ≤ |ϕ(t, x(t), y(t))− ϕ(t, 0, 0)|+ |ϕ(t, 0, 0)|
≤ ℓ1(|x(t)|+ |y(t)|)+N1

≤ ℓ1(‖x‖ + ‖y‖) +N1 ≤ ℓ1r +N1. (9)

Similarly, we can get

|ψ(t, x(t), y(t))| ≤ ℓ2(‖x‖ + ‖y‖) +N2 ≤ ℓ2r +N2. (10)
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Using (9) and (10), we obtain

|T1(x, y)(t)| ≤ (b − a)ξ

Γ(ξ + 1)
‖ϕ̄‖ + 1

|λ|

[

|x0| + q
(b − a)ζ

Γ(ζ + 1)
‖ψ̄‖

+q(b − a)
( (b − a)ζ−1

Γ(ζ)
‖ψ̄‖ +

m
∑

i=1

|δi|
(σ1 − a)ξ

Γ(ξ + 1)
‖ϕ̄‖

)

]

≤ |x0|
|λ| +

[

(b − a)ξ

Γ(ξ + 1)
+

q(b − a)

|λ|Γ(ξ + 1)

m
∑

i=1

|δi|(σi − a)ξ
]

(ℓ1r +N1)

+
q

|λ|
(b − a)ζ(ζ + 1)

Γ(ζ + 1)
(ℓ2r +N2)

=
|x0|
|λ| + (L1ℓ1 +M1ℓ2)r + L1N1 +M1N2,

which implies that

‖T1(x, y)‖ ≤ |x0|
|λ| + (L1ℓ1 +M1ℓ2)r + L1N1 +M1N2,

where we have taken the norm for t ∈ [a, b]. Likewise, we can find that

‖T2(x, y)‖ ≤ (b − a)|x0|
|λ|

m
∑

i=1

|δi| + (L2ℓ1 +M2ℓ2)r + L2N1 +M2N2.

Consequently,

‖T(x, y)‖ ≤ |x0|
|λ| +

(b − a)|x0|
|λ|

m
∑

i=1

|δi|

+[(L1 + L2)ℓ1 + (M1 +M2)ℓ2]r + (L1 + L2)N1 + (M1 +M2)N2 ≤ r.

Now, for (x1, y1), (x2, y2) ∈ X × X and for any t ∈ [a, b], we get

|T1(x2, y2)(t) − T1(x1, y1)(t)|

≤
[

(b − a)ξ

Γ(ξ + 1)
+

q(b − a)

|λ|Γ(ξ + 1)

m
∑

i=1

|δi|(σi − a)ξ
]

ℓ1(‖x2 − x1‖ + ‖y2 − y1‖)

+
q

|λ|
(b − a)ζ(ζ + 1)

Γ(ζ + 1)
ℓ2(‖x2 − x1‖ + ‖y2 − y1‖)

= (L1ℓ1 +M1ℓ2)(‖x2 − x1‖ + ‖y2 − y1‖),
which implies that

‖T1(x2, y2) − T1(x1, y1)‖ ≤ (L1ℓ1 +M1ℓ2)(‖x2 − x1‖ + ‖y2 − y1‖). (11)

Similarly, we find that

‖T2(x2, y2)(t) − T2(x1, y1)‖ ≤ (L2ℓ1 +M2ℓ2)(‖x2 − x1‖ + ‖y2 − y1‖). (12)

It follows from (11) and (12) that

‖T(x2, y2) − T(x1, y1)‖ ≤ [(L1 + L2)ℓ1 + (M1 +M2)ℓ2](‖x2 − x1‖ + ‖y2 − y1‖).

From the above inequality, we deduce that T is a contraction in view of the condition (8). Hence it follows by
by Banach’s fixed point theorem that there exists a unique fixed point for the operator T, which corresponds
to a unique solution of problem (1) on [a, b]. �

In the following result, we apply Leray-Schauder alternative ([16] p. 4) to prove the existence of solutions
for the problem (1).



B. Ahmad et al. / Filomat 32:13 (2018), zzz–zzz 6

Theorem 3.2. Assume that

(H2) ϕ,ψ : [a, b] × R × R → R are continuous functions and there exist real constants ki, γi ≥ 0, (i = 1, 2) and
k0 > 0, γ0 > 0 such that ∀x, y ∈ R,

|ϕ(t, x, y)| ≤ k0 + k1|x| + k2|y|,

|ψ(t, x, y)| ≤ γ0 + γ1|x| + γ2|y|.

Then the system (1) has at least one solution on [a, b] provided that

(L1 + L2)k1 + (M1 +M2)γ1 < 1 and (L1 + L2)k2 + (M1 +M2)γ2 < 1, (13)

where L1,M1 and L2,M2 are respectively given by (6) and (7).

Proof. Observe that continuity of the operator T : X × X → X × X follows from continuity of functions
ϕ and ψ. Next, letΩ ⊂ X × X be bounded such that

|ϕ(t, x(t), y(t))| ≤ K1, |ψ(t, x(t), y(t))| ≤ K2, ∀(x, y) ∈ Ω,

for positive constants K1 and K2. Then for any (x, y) ∈ Ω, we have

|T1(x, y)(t)| ≤ |x0|
|λ| +

[

(b − a)ξ

Γ(ξ + 1)
+

q(b − a)

|λ|Γ(ξ + 1)

m
∑

i=1

|δi|(σi − a)ξ
]

K1

+
q

|λ|
(b − a)ζ(ζ + 1)

Γ(ζ + 1)
K2

=
|x0|
|λ| + L1K1 +M1K2,

which implies that

‖T1(x, y)‖ ≤ |x0|
|λ| + L1K1 +M1K2.

Similarly, we it can be shown that

‖T2(x, y)‖ ≤ (b − a)|x0|
|λ|

m
∑

i=1

|δi| + L2K1 +M2K2.

From the foregoing arguments, we deduce that the operator T is uniformly bounded, that is,

‖T(x, y)|| ≤ |x0|
|λ| +

(b − a)|x0|
|λ|

m
∑

i=1

|δi| + (L1 + L2)K1 + (M1 +M2)K2.

Next, we show that T is equicontinuous. Let t1, t2 ∈ [a, b] with t1 < t2. Then we have

|T1(x(t2), y(t2)) − T1(x(t1), y(t1))|

≤ K1

∣

∣

∣

∣

∣

∣

1

Γ(ξ)

∫ t2

a

(t2 − s)ξ−1ds − 1

Γ(ξ)

∫ t1

a

(t1 − s)ξ−1ds

∣

∣

∣

∣

∣

∣

≤ K1

{

1

Γ(ξ)

∫ t1

a

[(t2 − s)ξ−1 − (t1 − s)ξ−1]ds +
1

Γ(q)

∫ t2

t1

(t2 − s)ξ−1ds

}

≤ K1

Γ(ξ + 1)
[2(t2 − t1)ξ + |tξ

2
− tξ

1
|].
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Analogously, we can obtain

|T2(x(t2), y(t2)) − T2(x(t1), y(t1))|

≤ K2

Γ(ζ + 1)
[2(t2 − t1)ζ + |tζ

2
− tζ

1
|]

+
|t2 − t1|
|λ|

[

p
( (b − a)ζ−1

Γ(ζ)
K2 +

m
∑

i=1

|δi|
(σ1 − a)ξ

Γ(ξ + 1)
K1

)

+

m
∑

i=1

|δi|q
(b − a)ζ

Γ(ζ + 1)
K2

]

.

This shows that the operator T(x, y) is equicontinuous. In consequence, we deduce that the operator T(x, y)
is completely continuous.

Finally, we consider the set P = {(x, y) ∈ X × X|(x, y) = λT(x, y), 0 ≤ λ ≤ 1} and show that it is bounded.
Let (x, y) ∈ P with (x, y) = λT(x, y). For any t ∈ [a, b], we have x(t) = λT1(x, y)(t), y(t) = λT2(x, y)(t). Then

|x(t)| ≤ |x0|
|λ| + L1(k0 + k1|x| + k2|y|) +M1(γ0 + γ1|x| + γ2|y|)

=
|x0|
|λ| + L1k0 +M1γ0 + (L1k1 +M1γ1)|x| + (L1k2 +M1γ2)|y|,

and

|y(t)| ≤ (b − a)|x0|
|λ|

m
∑

i=1

|δi| + L2(k0 + k1|x| + k2|y|) +M2(γ0 + γ1|x| + γ2|y|)

=
(b − a)|x0|
|λ|

m
∑

i=1

|δi| + L2k0 +M2γ0 + (L2k1 +M2γ1)|x|+ (L2k2 +M2γ2)|y|.

In consequence of the foregoing arguments, we deduce that

‖x‖ ≤ |x0|
|λ| + L1k0 +M1γ0 + (L1k1 +M1γ1)‖x‖ + (L1k2 +M1γ2)‖y||

and

‖y‖ ≤ (b − a)|x0|
|λ|

m
∑

i=1

|δi| + L2k0 +M2γ0 + (L2k1 +M2γ1)‖x‖ + (L2k2 +M2γ2)‖y‖,

which imply that

‖x‖ + ‖y‖ ≤ |x0|
|λ| +

(b − a)|x0|
|λ|

m
∑

i=1

|δi| + (L1 + L2)k0 + (M1 +M2)γ0

+[(L1 + L2)k1 + (M1 +M2)γ1]‖x‖ + [(L1 + L2)k2 + (M1 +M2)γ2)]‖y‖.
Thus

‖(x, y)‖ ≤ 1

M0

[ |x0|
|λ|

(

1 + (b − a)

m
∑

i=1

|δi|
)

+ (L1 + L2)k0 + (M1 +M2)γ0

]

,

where M0 = min{1− [(L1+L2)k1+ (M1+M2)γ1], 1− [(L1+L2)k2+ (M1+M2)γ2)]}.Hence the setP is bounded.
Thus, by Leray-Schauder alternative ([16] p. 4), we deduce that the operator T has at least one fixed point,
which corresponds to the fact that the problem (1) has at least one solution on [a, b]. �

4. Examples

Let us consider the following mixed-type coupled fractional differential systems






























D3/4x(t) = ϕ(t, x(t), y(t)), D3/2y(t) = ψ(t, x(t), y(t)), t ∈ [1, 2],

x(a) +
1

2
y(b) = 1, y(1) = 0, y′(2) =

3
∑

i=1

δix(σi),
(14)
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where ξ = 3/4, ζ = 3/2, p = 1, q = 1/2, x0 = 1, δ1 = 1/4, δ2 = 1/2, δ3 = 3/4, σ1 = 5/4, σ2 = 3/2, σ3 = 7/4, With
the given data, it is found that L1 ≃ 1.395874, L2 ≃ 0.615619,M1 ≃ 0.537323,M2 ≃ 1.961230.
(a) In order to illustrate Theorem 3.1, we take

ϕ(t, x, y) =
e−t

√
3 + t2

( |x|
1 + |x| + tan−1 y

)

+ cos t, ψ(t, x, y) =
1

(5 + t4)

(

sin x + |y|
)

+ e−t, (15)

which clearly satisfy the condition (H1) with ℓ1 = 1/2e and ℓ2 = 1/6. Moreover (L1 + L2)ℓ1 + (M1 +M2)ℓ2 <
0.786419.Thus the hypothesis of Theorem 3.1 holds true and consequently there exists a unique solution of
the problem (14) with ϕ(t, x, y) and ψ(t, x, y) given by (15) on [1, 2].
(b) In order to illustrate Theorem 3.2, we take

ϕ(t, x, y) = e−2t +
1

8
x cos y +

e−t

3
sin y,

ψ(t, x, y) = t
√

t2 + 3 +
e−t

3π
x tan−1 y +

1
√

48 + t2
y. (16)

It is easy to check that the conditions (H2) is satisfied with k0 = 1/2e, k1 = 1/8, k2 = 1/3e, γ0 = 2
√

7, γ1 =

1/6e, γ2 = 1/7. Furthermore, (L1 + L2)k1 + (M1 +M2)γ1 ≃ 0.404631 < 1 and (L1 + L2)k2 + (M1 +M2)γ2 ≃
0.603598 < 1. Clearly the hypotheses of Theorem 3.2 are satisfied and hence the conclusion of Theorem 3.2
applies to problem (14) with ϕ(t, x, y) and ψ(t, x, y) given by (16).

5. Conclusions

We have developed the criteria ensuring the existence and uniqueness of solutions for a new class
of nonlocal multi-point boundary value problems of mixed-type coupled fractional differential equations
on an arbitrary domain. The introduction of arbitrary domain extends the scope of the present work
as it can be specialized to any fixed domain. Moreover, some special results follow for the mixed cou-
pled system on the arbitrary domain by fixing the parameters involved in the boundary conditions.
For instance, by taking q = 0, p , 0, our results correspond to the nonlocal conditions of the form:
x(a) = x0/p, y(a) = 0, y′(b) =

∑m
i=1 δix(σi). In case we we take p = 0, q , 0, we get the results for the boundary

conditions of the form: y(b) = x0/q, y(a) = 0, y′(b) =
∑m

i=1 δix(σi). Letting δi = 0, i = 1, 2, . . . ,m in the results
of this paper, we obtain the results for the boundary condition: px(a) + qy(b) = x0, y(a) = 0, y′(b) = 0. It
is imperative to mention that aforementioned special cases for the mixed coupled fractional differential
system on the arbitrary domain are all new results.
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