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Abstract. For a singular linear equation Ax = b, x ∈ R(AD), a small perturbation matrix E and a vector δb
are given to A and b, respectively. We then have the perturbed singular linear equation (A+E)x̃ = b+δb, x̃ ∈
R[(A + E)D]. This note is devoted to show the minimum property of the condition numbers on the Drazin
inverse AD and the Drazin-inverse solution ADb.

1. Introduction

The theory and applications of the Drazin inverse has been a substantial growth over the past few
decades [1–7], which is useful in various applications, for example, applications in singular linear systems,
Markov chains and iterative methods were found in the literature [8–12].

In this note, let Cn×n denote all n by n complex matrices, Cn×n
r denote all n by n complex matrices with

the rank r. The Drazin inverse of A ∈ Cn×n is the unique matrix AD
∈ Cn×n satisfying the relations

ADA = AAD, ADAAD = AD, Al+1AD = Al, for all l ≥ r,

where r is the smallest nonnegative integer satisfying rank(Ar+1) = rank(Ar), which is called the Drazin index
of A and is denoted by ind(A). If r = 1, then the Drazin inverse reduces to the group inverse. Clearly,
ind(A) = 0 if and only if A is nonsingular. The symbols rank(A),A∗,R(A) and N(A) will stand for the rank,
conjugate transpose, range space and null space of A, respectively.

Various normwise relative condition numbers measure the sensitivity of Drazin inverse and the solution
of singular linear systems are characterized. The sensitivity of condition number itself is investigated in
[14–17].

In this note, for the singular linear system Ax = b, we consider the perturbation E of A and δb of b,
respectively, and consider the perturbed system (A+E)x̃ = b+ δb. It should be stressed that we assume that
R(AD) = R[(A + E)D], so that b, b + δb and R[(A + E)D] are all kept inside original R(AD).

In [14], the sensitivity of condition number of the Drazin inverse and the Drazin inverse solution of
the singular linear systems are investigated. In this note, we focus on the minimum property of condition
number for the Drazin inverse AD and the Drazin inverse solution ADb of the doubly perturbed singular
linear equations.
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2. Preliminaries

For A ∈ Cn×n with ind(A) = k, the following condition

B = A + E, E = AADEAAD, and ‖ ADE ‖< 1

is called (W) condition, which is induced by Wei and Wang in [18].
It is well known that for any complex matrix A ∈ Cn×n with ind(A) = k and rank(Ak) = r, there is

nonsingular matrix P such that

A = P
(

C O
O N

)
P−1,

where C is an invertible matrix with order r, N is nilpotent, that is, Nk = O.
Then the Drazin inverse of A could be given by

AD = P
(

C−1 O
O O

)
P−1.

In [13, 14], the P-norm ‖ · ‖P is defined by Wei et al. with respect to 2-norm,

‖ A ‖P=‖ P−1AP ‖2, ‖ x ‖P=‖ P−1x ‖2,

and
‖ AD

‖P=‖ P−1ADP ‖2=‖ C−1
‖2 .

Lemma 2.1. ([18])If, in addition to the hypotheses of (W), ‖ AD
‖‖ E ‖< 1, then

‖ (A + E)D
− AD

‖

‖ AD ‖
≤

kD(A) ‖E‖
‖A‖

1 − kD(A) ‖E‖
‖A‖

,

where kD(A) =‖ A ‖‖ AD
‖ is defined as the condition number with respect to the Drazin inverse for any consistent

norms.

In Lemma 2.1, kD(A) reflects the sensitivity to the perturbations of A. If kD(A) is larger, then the relative
error will be larger.

Lemma 2.2. ([19]) Let A ∈ Cn×n. Consider Ax = b, where b ∈ R(AD). Then there exists a solution in R(AD).
Moreover the Drazin inverse solution is unique, which is given by x = ADb.

Lemma 2.3. ([19]) Suppose condition (W) holds. Then R(Bk) = R(Ak),N(Bk) = N(Ak), where ind(B) = k.

For a singular linear system Ax = b,Wei and Wang consider the perturbed system (A+E)x̃ = b+ δb, and
give the upper bound.

Lemma 2.4. ([18]) Suppose condition (W) holds and ‖ AD
‖‖ E ‖< 1, then

‖ x̃ − x ‖
‖ x ‖

≤
kD(A)

1 − kD(A) ‖E‖
‖A‖

(
‖ E ‖
‖ A ‖

+
‖ δb ‖
‖ b ‖

)
,

where kD(A) =‖ A ‖‖ AD
‖ is defined as the condition number with respect to the Drazin inverse.

From the above lemmas, we know that kD(A) reflects the sensitivity of the Drazin inverse solution ADb
of Ax = b to the perturbations of A and b. If kD(A) is large, then solving Ax = b will be an ill-conditioned
problem.
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3. Main results

In this section, we explore the minimum property of condition number for the Drazin inverse and the
Drazin inverse solution of doubly perturbed singular linear equations with respect to the P-norm.

Theorem 3.1. Let A ∈ Cn×n
r , E be any perturbation of A, B = A + E. Suppose A and E satisfy condition (W). If

‖ E ‖P< 1/‖AD
‖P such that

‖ (A + E)D
− AD

‖P

‖ AD ‖P
≤

µ(A) ‖E‖P
‖A‖P

1 − µ(A) ‖E‖P
‖A‖P

,

then kP(A) =‖ A ‖P‖ AD
‖P≤ µ(A), whereµ(A) is only dependant on A.

Proof. It follows from AADE = EAAD = E that

(A + E)D = (I + ADE)−1AD = [I − I + (I + ADE)−1]AD = AD
− [I − (I + ADE)−1]AD.

By ‖ AD
‖P‖ E ‖P< 1,we have (I + ADE)−1 =

∞∑
k=0

(−ADE)k.

Hence

‖ (A + E)D
− AD

‖P = ‖ [I − (I + ADE)−1]AD
‖P

= ‖ [I −
∞∑

k=0

(−ADE)k]AD
‖P

= ‖ [
∞∑

k=0

(−1)k(ADE)k]AD
‖P

= ‖ ADEAD
− (ADE)2

∞∑
k=0

(−ADE)kAD
‖P

≥ ‖ ADEAD
‖P − ‖ AD

‖
3
P‖ E ‖2P

∞∑
k=0

‖ ADE ‖kP,

that is

‖ ADEAD
‖P≤‖ (A + E)D

− AD
‖P + ‖ AD

‖
3
P‖ E ‖2P

∞∑
k=0

‖ ADE ‖kP .

As we know, the Jordan decomposition of A is A = P
(

C O
O N

)
P−1,where C is an invertible matrix of order

r and N is nilpotent.

Hence the Drazin inverse of A is AD = P
(

C−1 O
O O

)
P−1.

Take E = ε ‖ A ‖P δ̂A, and

δ̂A = P
(

y
0

)
(x∗ 0) P−1,

where ε is a small positive number and there exist vectors x and y such that

‖ C−1y ‖2=‖ x∗C−1
‖2=‖ C−1

‖2,

and ‖ x ‖2=‖ y ‖2= 1.
Hence we obtain

AADE = EAAD = E
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and

‖ ADδ̂AAD
‖P =

∥∥∥∥∥∥P−1P
(

C−1 O
O O

)
P−1P

(
y
0

)
(x∗ 0) P−1P

(
C−1 O
O O

)
P−1P

∥∥∥∥∥∥
2

= ‖C−1yx∗C−1
‖2

= ‖C−1y‖2‖x∗C−1
‖2

= ‖C−1
‖

2
2

= ‖ AD
‖

2
P .

We also have

‖ E ‖P = ε ‖ A ‖P‖ δ̂A ‖P

= ε ‖ A ‖P

∥∥∥∥∥∥P−1P
(

y
0

)
(x∗ 0) P−1P

∥∥∥∥∥∥
2

= ε ‖ A ‖P ‖yx∗‖2
= ε ‖ A ‖P ‖y‖2‖x‖2
= ε ‖ A ‖P,

and ‖ ADEAD
‖P= (ε ‖ A ‖P) ‖ AD

‖
2
P .

Moreover, we have

kP(A) = ‖ A ‖P‖ AD
‖P

=
‖ AD

‖
2
P‖ A ‖P‖ E ‖P

‖ AD ‖P‖ E ‖P

=
‖ ADEAD

‖P‖ A ‖P‖ E ‖P
‖ AD ‖P‖ E ‖P ε ‖ A ‖P

≤
‖ A ‖P
‖ E ‖P


‖ (A + E)D

− AD
‖P + ‖ AD

‖
3
P‖ E ‖2P

∞∑
k=0
‖ ADE ‖kP

‖ AD ‖P


=

µ(A)

1 − µ(A) ‖E‖P
‖A‖P

+ ‖ AD
‖

2
P‖ E ‖P

∞∑
k=0

‖ ADE ‖kP

=
µ(A)

1 − µ(A) ‖E‖P
‖A‖P

+ ε ‖ AD
‖

2
P

∞∑
k=0

‖ ADE ‖kP .

In the above inequality, take ε→ 0, hence we obtain kP(A) ≤ µ(A). It finishes the proof.

Theorem 3.2. Let A ∈ Cn×n
r . For any small pertubation E of A and δb of b such that Ax = b and (A + E)x̃ = b + δb,

respectively. If ‖ E ‖P< 1/‖AD
‖P, such that

‖ x − x̃ ‖P
‖ x ‖P

≤
λ(A)

1 − λ(A) ‖E‖P
‖A‖P

(
‖ E ‖P
‖ A ‖P

+
‖ δb ‖P
‖ b ‖P

)
,

whereλ(A) is only related with A, then kP(A) =‖ A ‖P‖ AD
‖P≤ λ(A).

Proof. By the Jordan decomposition of A, A = P
(

C O
O N

)
P−1, where C is a nonsingular matrix of order r

and N is nilpotent.

Hence the Drazin inverse of A is AD = P
(

C−1 O
O O

)
P−1.
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Taking E as

E = ε
‖ A ‖P
‖x‖P

yx∗P−∗P−1,

where ε > 0,

‖ C−1z ‖2 = ‖ C−1
‖2 = ‖ AD

‖P, y = P
(

z
0

)
,

and ‖ z ‖2 = ‖ y ‖P= 1, then

‖ E ‖P = ε
‖ A ‖P
‖x‖P

‖ yx∗P−∗P−1
‖P

= ε
‖ A ‖P
‖x‖P

‖ P−1yx∗P−∗P−1P ‖2

= ε
‖ A ‖P
‖x‖P

‖

(
z
0

)
(P−1x)∗ ‖2

= ε
‖ A ‖P
‖x‖P

‖

(
z
0

)
‖2‖ (P−1x) ‖2

= ε
‖ A ‖P
‖x‖P

‖ z ‖2‖ x ‖P

= ε ‖ A ‖P

and

‖ ADEx ‖P =

∥∥∥∥∥∥P−1P
(

C−1 O
O O

)
P−1ε

‖ A ‖p
‖x‖P

y x∗P−∗P−1x

∥∥∥∥∥∥
2

= ε
‖ A ‖P
‖x‖P

‖C−1z(P−1x)∗(P−1x)‖2

= ε
‖ A ‖P
‖x‖P

‖C−1z‖2‖P−1x‖22

= ε
‖ A ‖P
‖x‖P

‖C−1
‖2‖x‖2P

= ε ‖ A ‖P‖ AD
‖P‖ x ‖P

= ‖ AD
‖P ‖E‖P ‖ x ‖P .

On the other hand, we obtain

x − x̃ = ADb − (A + E)D(b + δb)
= [I − (I + ADE)−1]ADb − (A + E)Dδb

= −

∞∑
k=1

(−ADE)kx − (A + E)Dδb

= ADEx − (ADE)2
∞∑

k=0

(−ADE)kx − (A + E)Dδb.

Taking P-norm in the above equation, we have

‖ x − x̃ ‖P ≥ ‖ ADEx ‖P −(‖ AD
‖P)2(‖ E ‖P)2

∞∑
k=0

(‖ ADE ‖P)k
‖ x ‖P

− ‖ (A + E)D
‖P‖ δb ‖P,
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that is

‖ ADEx ‖P ≤ ‖ x − x̃ ‖P +(‖ AD
‖P)2(‖ E ‖P)2

∞∑
k=0

(‖ ADE ‖P)k
‖ x ‖P

+ ‖ (A + E)D
‖P‖ δb ‖P .

Therefore, we get

kP(A) =‖ A ‖P‖ AD
‖P=
‖ A ‖P‖ ADEx ‖P
‖ E ‖P‖ x ‖P

≤
‖ A ‖P

‖ E ‖P‖ x ‖P
(‖ x − x̃ ‖P + ‖ AD

‖
2
P‖ E ‖2P

∞∑
k=0

(‖ ADE ‖P)k
‖ x ‖P

+ ‖ (A + E)D
‖P‖ δb ‖P)

≤
‖ A ‖P

‖ E ‖P‖ x ‖P
(
λ(A) ‖E‖P

‖A‖P
‖ x ‖P

1 − λ(A) ‖E‖P
‖A‖P

+ ‖ AD
‖

2
P‖ E ‖2P

∞∑
k=0

‖ ADE ‖kP‖ x ‖P + ‖ (A + E)D
‖P‖ δb ‖P)

≤
λ(A)

1 − λ(A) ‖E‖P
‖A‖P

+ ε(‖ AD
‖P)3

∞∑
k=0

(‖ ADE ‖P)k

+
‖ A ‖P‖ (A + E)D

‖P‖ δb ‖P
‖ E ‖P‖ x ‖P

Take ‖ δb ‖P= o(ε), let ε→ 0 in the above equation. Hence, we obtain kP(A) ≤ λ(A).

Corollary 3.1. ([20]) Let A ∈ Cn×n
n be a nonsingular matrix. For any small pertubation E and δb, let x, x̃ satisfy

Ax = b and (A + E)x̃ = b + δb, respectively. If ‖ E ‖< 1/‖A−1
‖, such that

‖ x − x̃ ‖
‖ x ‖

≤
λ(A)

1 − λ(A) ‖E‖
‖A‖

(
‖ E ‖
‖ A ‖

+
‖ δb ‖
‖ b ‖

)
,

whereλ(A) is only relating to A, then k(A) =‖ A ‖‖ A−1
‖≤ λ(A).

Remark 3.1. Our results are more general than that of [21], which assumed that R(Ak) = R(Ak∗ ).

4. Concluding remarks

In this note, we characterize the condition number of Drazin inverse and the Drazin inverse solution
of singular linear systems. It is of interest to extend our results to the W-weighted Drazin inverse of a
rectangular matrix [22–29] and the bounded linear operator [30–32].
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work is completed during her visiting at University of Nis̆ in 2017. She will also thank the editor and one
anonymous reviewer for very helpful comments.



H. Ma / Filomat 32:7 (2018), 2685–2691 2691

References

[1] A. Ben-Israel and T.N.E. Greville, Generalized Inverses: Theory and Applications, Second Edition, Springer, New York, 2003.
[2] G. Wang, Y. Wei and S. Qiao, Generalized Inverses: Theory and Computations, Second edition. Developments in Mathematics, 53.

Springer, Singapore; Science Press Beijing, Beijing, 2018.
[3] Y. Wang, Generalized Inverses Theory and Applications of Oprerators in Banach Spaces, Science Press, Beijing, 2005.
[4] Dragana S. Cvetkovic-Illic and Y. Wei, Algebraic Properties of Generalized Inverses, Springer, Singapore, 2017.
[5] M. Nashed (Editor), Generalized Inverses and Applications, Academic, New York, 1976.
[6] Y. Wei, Generalized inverses of matrices, Chapter 27 of Handbook of Linear Algebra, Edited by Leslie Hogben, Second edition, CRC

Press, Boca Raton, FL, 2014.
[7] Y. Wei, Acute perturbation of the group inverse, Linear Algebra Appl., 534 (2017), 135–157.
[8] A. Sidi and Y. Kanevsky, Orthogonal polynomials and semi-iterative methods for the Drazin-inverse solution of singular linear systems,

Numer. Math., 93 (2003), 563–581.
[9] I. Ipsen and C.D. Meyer, Uniform stability of Markov chains, SIAM J. Matrix Anal. Appl., 15 (1994), 1061–1074.

[10] S.J. Kirkland, M. Neumann and N. S. Sze, On optimal condition numbers for Markov chains, Numer. Math., 110 (2008), 521–537.
[11] A. Herrero, A. Ramı́rez and N. Thome, An algorithm to check the nonnegativity of singular systems, Appl. Math. Comput., 189 (2007),

355–365.
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[32] Vladimir Rakočević, and Y. Wei, The representation and approximation of the W-weighted Drazin inverse of linear operators in Hilbert

space, Appl. Math. Comput., 141 (2003), 455–470.
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