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Abstract. Let A be a unital algebra with a nontrivial idempotent e, and f = 1 − e. Suppose
that A satisfies that exe · eA f = {0} = fAe · exe implies exe = 0 and eA f · f x f = {0} = f x f · fAe
implies f x f = 0 for each x in A. For a Lie n-derivation ϕ on A, we obtain the necessary and
sufficient conditions for ϕ to be standard, i.e., ϕ = d + γ, where d is a derivation on A, and γ
is a linear mapping from A into the centre Z(A) vanishing on all (n − 1)−th commutators of A.
Furthermore, we also consider the sufficient conditions under which each Lie n-derivation onA
can be standard.

1. Introduction

Let A be a unital algebra over a unital commutative ring R. The algebra A is called to be
n-torsion free if nx = 0 implies x = 0 for some positive integer n and each x inA, and is called to be
torsion-free if nx = 0 implies x = 0 for each positive integer n and each x inA. A linear mapping δ on
A is called a derivation if δ(xy) = δ(x)y+xδ(y) for each x, y inA, is called a Jordan derivation if δ(x◦y) =
δ(x) ◦ y + x ◦ δ(y) for each x, y inA, is called a Lie derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for each
x, y inA, and is called a Lie triple derivation if δ([[x, y], z]) = [[δ(x), y], z] + [[x, δ(y)], z] + [[x, y], δ(z)]
for each x, y, z inA, where x ◦ y = xy + yx and [x, y] = xy − yx for each x, y inA. A derivation δ is
called an inner derivation if there exists some a inA such that δ(x) = ax − xa for each x inA. Now
we define a sequence of polynomials as follows:

p1(x1) = x1,

pn(x1, x2, ..., xn) = [pn−1(x1, x2, ..., xn−1), xn]

for all x1, x2, ..., xn ∈ A and each positive integer n ≥ 2. Thus, p2(x1, x2) = [x1, x2] and p3(x1, x2, x3) =
[[x1, x2], x3]. For n ≥ 2, pn(x1, x2, ..., xn) = [...[[x1, x2], x3], ..., xn] is also called an (n−1)−th commutator
of x1, x2, ..., xn ∈ A. A linear mapping δ onA is called a Lie n-derivation (n ≥ 2) if

δ(pn(x1, x2, ..., xn)) =

n∑
i=1

pn(x1, ..., xi−1, δ(xi), xi+1, ..., xn)
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for all x1, x2, ..., xn ∈ A. Thus, δ is a Lie derivation when n = 2, and is a Lie triple derivation when
n = 3. The notion of Lie n-derivations is firstly proposed by Abdullaev in [1], where the author
describes the form of Lie n-derivations of a certain von Neumann algebra (or of its skew-adjoint
part). A Lie n-derivation δ onA is called to be standard if δ = h + τ, where h is a derivation onA
and τ is a linear mapping fromA into its centreZ(A) vanishing on all (n− 1)−th commutators of
A.

Let e be a nontrivial idempotent inA, and f = 1− e. ThenA can be represented in the so called
Pierce decomposition form

A = eAe + eA f + fAe + fA f (1.1)

where eAe is a subalgebra with unit e, fA f is a subalgebra with unit f , eA f is an (eAe, fA f )-
bimodule, and fAe is an ( fA f , eAe)-bimodule. In this paper, we study the conditions under
which a Lie n-derivation onA is standard. Benkovič and Širovnik [4] consider Jordan derivations
on unital algebras with nontrivial idempotents, and introduce the notion of singular Jordan
derivations which comes out to be very important in study of mappings on unital algebras with
nontrivial idempotents. Benkovič [2] obtains several sufficient (and necessary) conditions for a
Lie triple derivation onA to be expressed as the sum of a derivation, a singular Jordan derivation
and a linear mapping from A into the centre Z(A) vanishing on all second commutators of A.
Wang [15] discusses the sufficient conditions for a Lie n-derivation on A to be expressed as the
sum of a derivation, a singular Jordan derivation and a linear mapping from A into the centre
Z(A) vanishing on all (n−1)−th commutators ofA. It is worth to mention thatA is isomorphic to
a generalized matrix algebra G = (A,M,N,B) (which is first introduced by Morita in [13]), where
A and B are two unital algebras, and AMB and BNA are two bimodules. Many papers discuss
mappings on generalized matrix algebras such as [7, 12, 16]. With a quite common assumption
that the bimodule AMB is faithful which means that aM = 0 implies a = 0 for each a ∈ A and that
Mb = 0 implies b = 0 for each b ∈ B, several authors [12, 16] obtain sufficient conditions for Lie
derivations and Lie n-derivations on generalized matrix algebras to be standard. In this paper, we
consider a milder assumption which arises from [2] that the Pierce decomposition (1.1) satisfies

exe · eA f = {0} = fAe · exe implies exe = 0 and
eA f · f x f = {0} = f x f · fAe implies f x f = 0 (1.2)

for each x in A. Important examples of unital algebras with nontrivial idempotents satisfying
the property (1.2) include triangular algebras, matrix algebras, algebras of all bounded linear
operators of Banach space and prime algebras with nontrivial idempotents.

This paper is organized as follows. In Section 2, we consider thatA is a unital algebra with a
nontrivial idempotent e satisfying the property (1.2). For a Lie n-derivation (n ≥ 2) ϕ on A, we
discuss the necessary and sufficient conditions for ϕ to be standard, or to be described as the sum
of a derivation, a singular Jordan derivation and a central mapping. And we discuss the sufficient
conditions under which each Lie n-derivation (n ≥ 2) on A can be standard, or can be described
as the sum of a derivation, a singular Jordan derivation and a central mapping. These results
improve the corresponding main results in [2, 15].

In Section 3, as applications of the results in Section 2, we characterize Lie n-derivations on
matrix algebras, triangular algebras, unital prime algebras with nontrivial idempotents and von
Neumann algebras.



Y. Ding, J. Li / Filomat 32:13 (2018), zzz–zzz 3

2. Main Results

In this section, we assume that A is a unital algebra with a nontrivial idempotent e. By the
Pierce decomposition (1.1),A can be represented asA = eAe + eA f + fAe + fA f , where f = 1− e.
In [4], Benkovič and Širovnik introduce the term singular Jordan derivations, which turns out to
play an important role in the study of mappings on unital algebras with nontrivial idempotents.
Denote thatZ(A) is the centre ofA.

Definition 2.1. A Jordan derivation δ onA is a singular Jordan derivation if

δ(eAe) = {0}, δ( fA f ) = {0}, δ(eA f ) ⊆ fAe and δ( fAe) ⊆ eA f . (2.1)

It’s obvious that singular Jordan derivations on A is zero when A is a triangular algebra, since
fAe = {0}.

The following Lemma is very important, and is repeatedly used in the remaining paper.

Lemma 2.2. [2, Proposition 2.1 and Remark 2.2] IfA satisfies the property (1.2), then

(i) Z(A) =

{
a + b

a ∈ eAe, b ∈ fA f ,
am = mb, ta = bt f or each m ∈ eA f and t ∈ fAe

}
.

(ii) There exists a unique algebra isomorphism τ from eZ(A)e to fZ(A) f , such that for each a ∈ eZ(A)e
we have that am = mτ(a) and ta = τ(a)t for each m ∈ eA f and t ∈ fAe.
(Thus, a + τ(a) ∈ Z(A) for each a ∈ eZ(A)e and τ−1(b) + b ∈ Z(A) for each b ∈ fZ(A) f .)

(iii) For x ∈ A, if [x, eA f ] = {0} and [x, fAe] = {0}, then exe + f x f ∈ Z(A).

2.1. The necessary and sufficient conditions for a Lie n-derivation to be standard.
At first, we consider the necessary and sufficient conditions under which a Lie n-derivation

(n ≥ 2) ϕ can be described as the sum of a derivation, a singular Jordan derivation and a central
mapping.

Theorem 2.3. Let ϕ be a Lie n-derivation on A. Suppose that A is 2- and (n − 1)-torsion free, and that
A satisfies the property (1.2). Then ϕ is of the form

ϕ = d + δ + γ (2.2)

where d is a derivation onA, δ is a singular Jordan derivation onA and γ is a linear mapping fromA into
the centre Z(A) vanishing on all (n − 1)−th commutators of A, if and only if both conditions (i) and (ii)
hold:

(i) fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e,

(ii) eϕ(tm)e + fϕ(mt) f ∈ Z(A) for each m ∈ eA f and t ∈ fAe.

Before we prove Theorem 2.3, we need to recognize the following Remark 2.4.

Remark 2.4. Let ϕ be a Lie n-derivation onA. Similar to the proofs of [2, Lemma 3.1] and [15, Theorem
2.1], we can assume that ϕ satisfies eϕ(e) f = fϕ(e)e = 0. Actually, let x0 = eϕ(e) f − fϕ(e)e and d be an
inner derivation on A that d(x) = [x, x0] for each x in A. Clearly ϕ′ = ϕ − d is also a Lie n-derivation.
Since

ϕ′(e) =ϕ(e) − [e, eϕ(e) f − fϕ(e)e]
=ϕ(e) − eϕ(e) f − fϕ(e)e
=eϕ(e)e + fϕ(e) f ,

we obtain eϕ′(e) f = fϕ′(e)e = 0. Thus, it suffices to consider the Lie n-derivation ϕ on A satisfying
eϕ(e) f = fϕ(e)e = 0.
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Proof. [Proof of Theorem 2.3] Suppose that ϕ is of the form (2.2) ϕ = d + δ + γ. Let δ′ = d + δ, then
δ′ is a Jordan derivation and

2δ′(a) =δ′(e ◦ a) = δ′(e)a + aδ′(e) + eδ′(a) + δ′(a)e, (2.3)
2δ′(b) =δ′( f ◦ b) = δ′( f )b + bδ′( f ) + fδ′(b) + δ′(b) f , (2.4)

for each a in eAe and b in fA f . Since A is 2-torsion free, left and right multiplication of (2.3) by
f implies that fδ′(a) f = 0 for each a in eAe, and left and right multiplication of (2.4) by e implies
that eδ′(b)e = 0 for each b in fA f . Since γ(A) ⊆ Z(A), we have that

fϕ(a) f = fδ′(a) f + fγ(a) f = fγ(a) f ∈ fZ(A) f ,
eϕ(b)e =eδ′(b)e + eγ(b)e = eγ(b)e ∈ eZ(A)e,

for each a in eAe and b in fA f . Hence, (i) holds. For each m in eA f and t in fAe, we have

pn(t, e, ..., e,m) = pn−1(t, e, ..., e,m) = ... = [t,m] = tm −mt.

Since γ vanishes on all (n− 1)−th commutators ofA, we have that γ(tm−mt) = 0. We may as well
assume that γ(mt) = γ(tm) = a0 + b0 ∈ Z(A) where a0 ∈ eZ(A)e and b0 ∈ Z(A) f . Since mt ∈ eAe,
tm ∈ fA f , we have that

ϕ(mt) =d(mt) + δ(mt) + γ(mt) = d(m)t + md(t) + a0 + b0, (2.5)
ϕ(tm) =d(tm) + δ(tm) + γ(tm) = d(t)m + td(m) + a0 + b0. (2.6)

Left and right multiplication of (2.5) by f implies that fϕ(mt) f = b0, and left and right multiplica-
tion of (2.6) by e implies that eϕ(tm)e = a0. Thus, eϕ(tm)e + fϕ(mt) f = a0 + b0 ∈ Z(A), (ii) holds.

Suppose that (i) and (ii) hold. According to Remark 2.4, it suffices to consider a Lie n-derivation
ϕ on A satisfying eϕ(e) f = fϕ(e)e = 0. Thus, ϕ(e) = eϕ(e)e + fϕ(e) f . We organize the following
proof by a series of claims.

Claim 1. For each x ∈ A, we have pn(x, e, ..., e) = (−1)n−1ex f + f xe and pn(x, f , ..., f ) =
ex f + (−1)n−1 f xe.

It’s obvious that

pn(x, e, ..., e) = pn−1([x, e], e, ..., e) = pn−1(−ex f + f xe, e, ..., e) = ... = (−1)n−1ex f + f xe.

The case of pn(x, f , ..., f ) could be similarly proved.

Claim 2. ϕ(a) = eϕ(a)e + fϕ(a) f for each a ∈ eAe,
ϕ(b) = eϕ(b)e + fϕ(b) f for each b ∈ fA f ,
ϕ(m) = eϕ(m) f + fϕ(m)e for each m ∈ eA f ,
ϕ(t) = eϕ(t) f + fϕ(t)e for each t ∈ fAe.

For each a in eAe, since [a, e] = 0 and pn(a, e, ..., e) = 0, according to Claim 1, we have that

0 =ϕ(pn(a, e, ..., e))

=pn(ϕ(a), e, ..., e) + pn(a, ϕ(e), ..., e) +

n∑
j=3

pn(a, e, ..., ϕ(e), ..., e)

=(−1)n−1eϕ(a) f + fϕ(a)e + (−1)n−2e[a, ϕ(e)] f + f [a, ϕ(e)]e

=(−1)n−1eϕ(a) f + fϕ(a)e.
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Left and right multiplying by e and f respectively in the above equations, we obtain that

eϕ(a) f = fϕ(a)e = 0. (2.7)

Thus, ϕ(a) = eϕ(a)e + fϕ(a) f . For each b in fA f , since [b, f ] = 0 and pn(b, f , ..., f ) = 0, we can
similarly prove that

eϕ(b) f = fϕ(b)e = 0 (2.8)

and ϕ(b) = eϕ(b)e + fϕ(b) f . For each m in eA f , according to Claim 1, we have that pn(m, e, ..., e) =
(−1)n−1m and

(−1)n−1ϕ(m) =ϕ(pn(m, e, ..., e))

=pn(ϕ(m), e, ..., e) +

n∑
j=2

pn(m, e, ..., ϕ(e), ..., e)

=(−1)n−1eϕ(m) f + fϕ(m)e +

n∑
j=2

(−1) j−2pn− j+2(m, ϕ(e), e, ..., e)

=(−1)n−1eϕ(m) f + fϕ(m)e +

n∑
j=2

(−1) j−2(−1)n− j[m, ϕ(e)]

=(−1)n−1eϕ(m) f + fϕ(m)e + (−1)n−2(n − 1)[m, ϕ(e)].

Left and right multiplying by e and f respectively in the above equations, under the assumption
thatA is (n − 1)-torsion free, we obtain that

eϕ(m)e = fϕ(m) f = 0,

fϕ(m)e = (−1)n−1 fϕ(m)e, (2.9)
[m, ϕ(e)] = 0. (2.10)

Thus, ϕ(m) = eϕ(m) f + fϕ(m)e. For each t in fAe, by Claim 1, we have pn(t, e, ..., e) = t. We can
similarly prove that

ϕ(t) = (−1)n−1eϕ(t) f + fϕ(t)e + (n − 1)[t, ϕ(e)]

and

eϕ(t)e = fϕ(t) f = 0,

eϕ(t) f = (−1)n−1eϕ(t) f , (2.11)
[t, ϕ(e)] = 0. (2.12)

Thus, ϕ(t) = eϕ(t) f + fϕ(t)e.
According to Lemma 2.2, there exists a unique algebra isomorphism τ from eZ(A)e to fZ(A) f ,

such that for each a ∈ eZ(A)e, we have that am = mτ(a) and ta = τ(a)t for each m ∈ eA f and t ∈ fAe.
For each a ∈ eAe, m ∈ eA f , t ∈ fAe and b ∈ fA f , we define a linear mapping d onA as follows:

d(a)=eϕ(a)e−τ−1( fϕ(a) f ), d(b)= fϕ(b) f−τ(eϕ(b)e), d(m)=eϕ(m) f and d(t)= fϕ(t)e, (2.13)

and a linear mapping δ onA as follows:

δ(a)=0, δ(b)=0, δ(m)= fϕ(m)e and δ(t)=eϕ(t) f . (2.14)
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Denote γ = ϕ − d − δ. Then γ is a linear mapping satisfying

γ(a)=τ−1( fϕ(a) f )+ fϕ(a) f , γ(b)=eϕ(b)e+τ(eϕ(b)e), γ(m)=0 and γ(t)=0 (2.15)

for each a ∈ eAe, m ∈ eA f , t ∈ fAe and b ∈ fA f . By (i) and Lemma 2.2, γ mapsA intoZ(A).

Claim 3 ϕ(am) = [ϕ(a),m] + a ◦ ϕ(m) f or each a ∈ eAe,m ∈ eA f ,
ϕ(mb) = [m, ϕ(b)] + ϕ(m) ◦ b f or each b ∈ fA f ,m ∈ eA f ,
ϕ(ta) = [t, ϕ(a)] + ϕ(t) ◦ a f or each a ∈ eAe, t ∈ fAe,
ϕ(bt) = [ϕ(b), t] + b ◦ ϕ(t) f or each b ∈ fA f , t ∈ fAe,
ϕ(mt) − ϕ(tm) = [ϕ(m), t] + [m, ϕ(t)] f or each m ∈ eA f , t ∈ fAe,
(−1)n−2[ϕ(m1),m2] + [m1, ϕ(m2)] = 0 f or each m1,m2 ∈ eA f ,
(−1)n−2[ϕ(t1), t2] + [t1, ϕ(t2)] = 0 f or each t1, t2 ∈ fAe.

For each a in eAe and m in eA f , since [a,m] = am ∈ eA f , according to Claim 1, we have that
pn(a,m, e, ..., e) = (−1)n−2am and

(−1)n−2ϕ(am) =ϕ(pn(a,m, e, ..., e))

=pn(ϕ(a),m, e, ..., e) + pn(a, ϕ(m), e, ..., e) +

n∑
j=3

pn(a,m, e, ..., ϕ(e), ..., e)

=(−1)n−2e[ϕ(a),m] f + (−1)n−2e[a, ϕ(m)] f + f [a, ϕ(m)]e

+

n∑
j=3

(−1) j−3pn− j+3(a,m, ϕ(e), e, ..., e)

=(−1)n−2[ϕ(a),m] + (−1)n−2aϕ(m) − ϕ(m)a + (−1)n−3(n − 2)[am, ϕ(e)].

Left and right multiplying by e and f respectively in the above equations, we obtain that

fϕ(am)e = (−1)n−1ϕ(m)a,
eϕ(am) f = [ϕ(a),m] + aϕ(m) − (n − 2)[am, ϕ(e)].

Associating with (2.9) and (2.10), we have [am, ϕ(e)] = 0 and fϕ(am)e = (−1)n−1 fϕ(m)e · eae =
fϕ(m)e · eae = ϕ(m)a. Thus,

ϕ(am) = eϕ(am) f + fϕ(am)e = [ϕ(a),m] + a ◦ ϕ(m)

for each a in eAe and m in eA f . Let’s make similar discussions on mb, ta and bt. For each a in eAe,
m in eA f , t in fAe and b in fA f , since [m, b] = mb ∈ eA f , [t, a] = ta ∈ fAe and [b, t] = bt ∈ fAe,
we have that

pn(m, b, e, ..., e) = (−1)n−2mb, pn(t, a, e, ..., e) = ta and pn(b, t, e, ..., e) = bt.

It follows that

(−1)n−2ϕ(mb) = (−1)n−2ϕ(m)b − bϕ(m) + (−1)n−2[m, ϕ(b)] + (−1)n−3(n − 2)[mb, ϕ(e)],

ϕ(ta) = −(−1)n−2aϕ(t) + ϕ(t)a + [t, ϕ(a)] + (n − 2)[ta, ϕ(e)],

ϕ(bt) = [ϕ(b), t] − (−1)n−2ϕ(t)b + bϕ(t) + (n − 2)[bt, ϕ(e)].

Left and right multiplying by e and f respectively in the above equations, and associating with
(2.9), (2.10), (2.11) and (2.12), we obtain that

[mb, ϕ(e)] = [ta, ϕ(e)] = [bt, ϕ(e)] = 0,
fϕ(mb)e = bϕ(m), eϕ(ta) f = aϕ(t) and eϕ(bt) f = ϕ(t)b,
ϕ(mb) = [m, ϕ(b)] + ϕ(m) ◦ b, ϕ(ta) = [t, ϕ(a)] + ϕ(t) ◦ a and ϕ(bt) = [ϕ(b), t] + b ◦ ϕ(t)
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for each a in eAe, m in eA f , t in fAe and b in fA f .
When n = 2, for each m,m1,m2 in eA f and t, t1, t2 in fAe, it is obvious that

ϕ(mt) − ϕ(tm) = ϕ([m, t]) = [ϕ(m), t] + [m, ϕ(t)],

(−1)n−2[ϕ(m1),m2] + [m1, ϕ(m2)] = [ϕ(m1),m2] + [m1, ϕ(m2)] = ϕ([m1,m2]) = 0,

(−1)n−2[ϕ(t1), t2] + [t1, ϕ(t2)] = [ϕ(t1), t2] + [t1, ϕ(t2)] = ϕ([t1, t2]) = 0.

If n ≥ 3, for each m in eA f and t in fAe, since pn(m, e, ..., e, t) = [pn−1(m, e, ..., e), t] = (−1)n−2[m, t],
then we have that

(−1)n−2(ϕ(mt) − ϕ(tm)) =ϕ(pn(m, e, ..., e, t))

=pn(ϕ(m), e, ..., e, t) +

n−1∑
j=2

pn(m, e, ..., ϕ(e), ..., e, t) + pn(m, e, ..., e, ϕ(t))

=[(−1)n−2eϕ(m) f + fϕ(m)e, t] + (−1)n−3(n − 2)[[m, ϕ(e)], t]

+ (−1)n−2[m, ϕ(t)]

=(−1)n−2[ϕ(m), t] + (−1)n−2[m, ϕ(t)].

For each m1,m2 in eA f , since pn(m1, e, ..., e,m2) = [pn−1(m1, e, ..., e),m2] = 0, we have that

0 =ϕ(pn(m1, e, ..., e,m2))

=pn(ϕ(m1), e, ..., e,m2) +

n−1∑
j=2

pn(m1, e, ..., ϕ(e), ..., e,m2) + pn(m1, e, ..., e, ϕ(m2))

=[(−1)n−2eϕ(m1) f + fϕ(m1)e,m2] + (−1)n−3(n − 2)[[m1, ϕ(e)],m2] + (−1)n−2[m1, ϕ(m2)]

=[ϕ(m1),m2] + (−1)n−2[m1, ϕ(m2)].

For each t1, t2 in fAe, since pn(t1, e, ..., e, t2) = [pn−1(t1, e, ..., e), t2] = 0, we have that

0 =ϕ(pn(t1, e, ..., e, t2))

=pn(ϕ(t1), e, ..., e, t2) +

n−1∑
j=2

pn(t1, e, ..., ϕ(e), ..., e, t2) + pn(t1, e, ..., e, ϕ(t2))

=[(−1)n−2eϕ(t1) f + fϕ(t1)e, t2] + (n − 2)[[t1, ϕ(e)], t2] + [t1, ϕ(t2)]

=(−1)n−2[ϕ(t1), t2] + [t1, ϕ(t2)].

Thus, for each n ≥ 2, we conclude that

ϕ(mt) − ϕ(tm) = [ϕ(m), t] + [m, ϕ(t)],

(−1)n−2[ϕ(m1),m2] + [m1, ϕ(m2)] = 0,

(−1)n−2[ϕ(t1), t2] + [t1, ϕ(t2)] = 0

for each m,m1,m2 in eA f and t, t1, t2 in fAe.

Claim 4 d is a derivation.
According to the definition (2.13) of d, we have that

d(a) = ed(a)e, d(m) = ed(m) f , d(t) = f d(t)e and d(b) = f d(b) f (2.16)
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for each a in eAe, m in eA f , t in fAe and b in fA f . For each a in eAe and m in eA f , by Claim 3,
we have ϕ(am) = [ϕ(a),m] + a ◦ ϕ(m). Thus,

eϕ(am) f = [ϕ(a),m] + aϕ(m) = eϕ(a)e · em f − em f · fϕ(a) f + eae · eϕ(m) f .

By (i) and the definition of τ, we know that em f · fϕ(a) f = τ−1( fϕ(a) f ) · em f . Thus,

d(am) = eϕ(am) f = (eϕ(a)e − τ−1( fϕ(a) f )) · em f + eae · eϕ(m) f = d(a)m + ad(m) (2.17)

for each a in eAe and m in eA f . Make similar discussions on mb, ta and bt, and we obtain that

d(mb) = md(b) + d(m)b, d(ta) = td(a) + d(t)a and d(bt) = d(b)t + bd(t) (2.18)

for each a in eAe, m in eA f , t in fAe and b in fA f . For each m in eA f and t in fAe, by Claim 3,
we have ϕ(mt) − ϕ(tm) = [ϕ(m), t] + [m, ϕ(t)]. Thus,

eϕ(mt)e − eϕ(tm)e =ϕ(m)t + mϕ(t) = eϕ(m) f · f te + em f · fϕ(t)e,
− fϕ(mt) f + fϕ(tm) f =tϕ(m) + ϕ(t)m = f te · eϕ(m) f + fϕ(t)e · em f .

Since mt ∈ eAe and tm ∈ fA f , we obtain that

d(m)t + md(t) =eϕ(m) f · f te + em f · fϕ(t)e = eϕ(mt)e − eϕ(tm)e

=d(mt) + τ−1( fϕ(mt) f ) − eϕ(tm)e,
d(t)m + td(m) = fϕ(t)e · em f + f te · eϕ(m) f = − fϕ(mt) f − fϕ(tm) f

=d(tm) + τ(eϕ(tm)e) − fϕ(mt) f ,

By (ii) and Lemma 2.2, τ(eϕ(tm)e) = fϕ(mt) f and eϕ(tm)e = τ−1( fϕ(mt) f ). Thus,

d(m)t + md(t) = d(mt) and d(t)m + td(m) = d(tm) (2.19)

for each m in eA f and t in fAe. By (2.16), (2.17), (2.18), (2.19) and [4, Lemma 2.3], we obtain that
d is a derivation.

Claim 5. δ is a singular Jordan derivation.
According to the definition (2.14) of δ, we only need to prove that δ is a Jordan derivation. For

each a in eAe, m in eA f , t in fAe and b in fA f , by Claim 3, we know that

fϕ(am)e = ϕ(m)a, fϕ(mb)e = bϕ(m), eϕ(ta) f = aϕ(t) and eϕ(bt) f = ϕ(t)b.

In view of (2.14), we obtain that

δ(am) = δ(m)a, δ(mb) = bδ(m), δ(ta) = aδ(t) and δ(bt) = δ(t)b (2.20)

for each a in eAe, m in eA f , t in fAe and b in fA f .
For each m in eA f , if n is even, then 2 fϕ(m)e = 0 by (2.9). SinceA is 2-torsion free, fϕ(m)e = 0,

i.e. δ(m) = 0. If n is odd, then by Claim 3, we have 2[m, ϕ(m)] = 0. Since A is 2-torsion free,
we have that [m, ϕ(m)] = 0. Left and right multiplication by e and f respectively implies that
mϕ(m) = ϕ(m)m = 0, i.e. mδ(m) = δ(m)m = 0. Thus,

mδ(m) = δ(m)m = 0 (2.21)

for each n ≥ 2.
For each t in fAe, if n is even, then 2eϕ(t) f = 0 by (2.11). SinceA is 2-torsion free, eϕ(t) f = 0,

i.e. δ(t) = 0. If n is odd, then by Claim 3, we have 2[t, ϕ(t)] = 0. SinceA is 2-torsion free, we have
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that [t, ϕ(t)] = 0. Left and right multiplication by e and f respectively implies that tϕ(t) = ϕ(t)t = 0,
i.e. tδ(t) = δ(t)t = 0. Thus,

tδ(t) = δ(t)t = 0 (2.22)

for each n ≥ 2.
Let x = a + m + t + b be an arbitrary element in A where a,m, t, b are elements in

eAe, eA f , fAe, fA f , respectively. By (2.14), (2.20), (2.21) and (2.22), we obtain that

δ(x2) =δ((a + m + t + b)2)
=δ(m)a + bδ(m) + aδ(t) + δ(t)b,

xδ(x) + δ(x)x =(a + m + t + b)δ(a + m + t + b) + δ(a + m + t + b)(a + m + t + b)
=bδ(m) + aδ(t) + δ(m)a + δ(t)b.

So δ(x2) = xδ(x) + δ(x)x for each x inA. According to the definition (2.14) of δ, we obtain that δ is
a singular Jordan derivation.

Claim 6. γ vanishes on all (n − 1) − th commutators ofA.
For each x1, x2, ..., xn inA, we have that

γ(pn(x1, x2, ..., xn)) =ϕ(pn(x1, x2, ..., xn)) − d(pn(x1, x2, ..., xn)) − δ(pn(x1, x2, ..., xn))

=

n∑
i=1

pn(x1, ..., ϕ(xi), ..., xn) − d(pn(x1, x2, ..., xn)) − δ(pn(x1, x2, ..., xn))

=

n∑
i=1

pn(x1, ..., d(xi) + δ(xi) + γ(xi), ..., xn) − d(pn(x1, x2, ..., xn))

− δ(pn(x1, x2, ..., xn)).

Since d is a derivation and γ(A) ⊆ Z(A), it follows that

γ(pn(x1, x2, ..., xn)) =

n∑
i=1

pn(x1, ..., xi−1, δ(xi), xi+1, ..., xn) − δ(pn(x1, x2, ..., xn)). (2.23)

If n is even, then in view of (2.9), (2.11), (2.14) and that A is 2-torsion free, we obtain that
δ(m) = fϕ(m)e = 0 and δ(t) = eϕ(t) f = 0 for each m in eA f and t in fAe. Thus, δ(A) = {0}. By
(2.23), we have γ(pn(x1, x2, ..., xn)) = 0 for each x1, x2, ..., xn inA.

If n is odd, then by Claim 3 and (2.14), we have that

δ(am) = fϕ(am)e = fϕ(m)e · eae = δ(m)a,
δ(mb) = fϕ(mb)e = f b f · fϕ(m)e = bδ(m),
δ(ta) = eϕ(ta) f = eae · eϕ(t) f = aδ(t),
δ(bt) = eϕ(bt) f = eϕ(t) f · f b f = δ(t)b,
δ(m1)m2 + δ(m2)m1 = fϕ(m1)e · em2 f + fϕ(m2)e · em1 f = 0,
m2δ(m1) + m1δ(m2) = em2 f · fϕ(m1)e + em1 f · fϕ(m2)e = 0,
δ(t1)t2 + δ(t2)t1 = eϕ(t1) f · f t2e + eϕ(t2) f · f t1e = 0,
t2δ(t1) + t1δ(t2) = f t2e · eϕ(t1) f + f t1e · eϕ(t2) f = 0



Y. Ding, J. Li / Filomat 32:13 (2018), zzz–zzz 10

for each a in eAe, m,m1,m2 in eA f , t, t1, t2 in fAe and b in fA f . It follows that

δ(a1a2m) = δ(m)a1a2 = δ(a1m)a2 = δ(a2a1m) = δ(m)a2a1,

δ(mb1b2) = b1b2δ(m) = b1δ(mb2) = δ(mb2b1) = b2b1δ(m),
δ(ta1a2) = a1a2δ(t) = a1δ(ta2) = δ(ta2a1) = a2a1δ(t),
δ(b1b2t) = δ(t)b1b2 = δ(b1t)b2 = δ(b2b1t) = δ(t)b2b1,

δ(amb) = δ(mb)a = bδ(m)a,
δ(bta) = δ(ta)b = aδ(t)b,
δ(t1)t2m + mt2δ(t1) = δ(t2mt1 + t1mt2) = mt1δ(t2) + mt2δ(t1) = 0,
δ(m1)m2t + tm2δ(m1) = δ(m2tm1 + m1tm2) = tm1δ(m2) + tm2δ(m1) = 0

for each a, a1, a2 in eAe, m,m1,m2 in eA f , t, t1, t2 in fAe and b, b1, b2 in fA f . Thus, for each
x1 = a1 + m1 + t1 + b1, x2 = a2 + m2 + t2 + b2 and x3 = a3 + m3 + t3 + b3 in A where a1, a2, a3 ∈ eAe,
m1,m2,m3 ∈ eA f , t1, t2, t3 ∈ fAe and b1, b2, b3 ∈ fA f , we obtain that

δ([[x1, x2], x3]) =δ([[a1 + m1 + t1 + b1, a2 + m2 + t2 + b2], a3 + m3 + t3 + b3])
=δ(t1a2a3 + b1t2a3 − t2a1a3 − b2t1a3 − b3t1a2 − b3b1t2 + b3t2a1 + b3b2t1 + a1m2b3

+ m1b2b3 − a2m1b3 −m2b1b3 − a3a1m2 − a3m1b2 + a3a2m1 + a3m2b1),
[[δ(x1), x2], x3]+[[x1, δ(x2)], x3] + [[x1, x2], δ(x3)]

=[[δ(a1+m1+t1+b1), a2+m2+t2+b2], a3+m3+t3+b3]
+[[a1+m1+t1+b1, δ(a2+m2+t2+b2)], a3+m3+t3+b3]
+[[a1+m1+t1+b1, a2+m2+t2+b2], δ(a3+m3+t3+b3)]

=δ(t1)b2b3 − a2δ(t1)b3 − δ(t2)b1b3 + a1δ(t2)b3 − a3δ(t1)b2 + a3a2δ(t1) + a3δ(t2)b1

− a3a1δ(t2) + δ(m1)a2a3 − b2δ(m1)a3 − δ(m2)a1a3 + b1δ(m2)a3 − b3δ(m1)a2

+ b3b2δ(m1) + b3δ(m2)a1 − b3b1δ(m2).

It follows that δ([[x1, x2], x3]) = [[δ(x1), x2], x3] + [[x1, δ(x2)], x3] + [[x1, x2], δ(x3)], i.e., δ is a Lie triple
derivation. Since n is odd, we can deduce that

δ(pn(x1, x2, ..., xn) =δ([[pn(x1, x2, ..., xn−2), xn−1], xn])
=[[δ(pn−2(x1, x2, ..., xn−2)), xn−1], xn] + [[pn−2(x1, x2, ..., xn−2), δ(xn−1)], xn]

+ [[pn−2(x1, x2, ..., xn−2), xn−1], δ(xn)]

=pn−2(δ([[x1, x2], x3]), x4..., xn) +

n∑
i=4

pn−2([[x1, x2], x3]), x4, ..., δ(xi), ..., xn)

=

n∑
i=1

pn(x1, ..., xi−1, δ(xi), xi+1, ..., xn),

i.e., δ is a Lie n-derivation. By (2.23), we have γ(pn(x1, x2, ..., xn)) = 0 for each x1, x2, ..., xn in A.
Thus, Claim 6 holds.

With the definitions (2.13), (2.14) and (2.15) of d, δ, γ and Claims 4, 5 and 6, the proof is
finished.

Lemma 2.5. [4, Remark 3.2] Let δ be a singular Jordan derivation onA.

(i) δ is an antiderivation if and only if δ satisfies

δ(eA f ) · eA f = eA f · δ(eA f ) = δ( fAe) · fAe = fAe · δ( fAe) = {0}. (2.24)
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(ii) IfA satisfies

eA f · fAe = fAe · eA f = {0}, (2.25)

then δ is an antiderivation.

Corollary 2.6. Let ϕ be a Lie n-derivation onA. Suppose thatA is 2- and (n − 1)-torsion free, and that
A satisfies the property (1.2) and (2.25). Then ϕ is of the form

ϕ = d + δ + γ (2.26)

where d is a derivation on A, δ is a singular Jordan derivation and antiderivation on A, and γ is
a linear mapping from A into Z(A) vanishing on all (n − 1)−th commutators of A, if and only if
fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.

Proof. SinceA satisfies (2.25), we have that mt = tm = 0 and eϕ(tm)e + fϕ(mt) f = 0 for each m in
eA f and t in fAe. Thus, the condition (ii) in Theorem 2.3 holds. It follows that ϕ is of the form
(2.26) ϕ = d + δ + γ where δ is a singular Jordan derivation if and only if fϕ(eAe) f ⊆ fZ(A) f and
eϕ( fA f )e ⊆ eZ(A)e. By Lemma 2.5, δ is also an antiderivation.

Associated with Theorem 2.3, we can get the necessary and sufficient conditions under which
a Lie n-derivation ϕ can be standard.

Corollary 2.7. Let ϕ be a Lie n-derivation onA. Suppose thatA is 2- and (n − 1)-torsion free, and that
A satisfies the property (1.2). Then ϕ is standard if and only if the following conditions hold:

(i) fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e,

(ii) eϕ(tm)e + fϕ(mt) f ∈ Z(A) for each m ∈ eA f and t ∈ fAe,

(iii) fϕ(eA f )e = eϕ( fAe) f = {0}.

Proof. Suppose that ϕ is standard. That is, there exists a derivation d onA and a linear mapping
γ from A into Z(A) vanishing on all (n − 1)−th commutators of A, such that ϕ = d + γ. Let δ
be a linear mapping on A and δ = 0. Then δ is a singular Jordan derivation and ϕ = d + δ + γ.
According to Theorem 2.3, we only need to prove (iii). For each m in eA f and t in fAe, we have
pn(m, f , ..., f ) = pn−1(m, f , ..., f ) = ... = [m, f ] = m and pn(t, e, ..., e) = pn−1(t, e, ..., e) = ... = [t, e] = t.
Since γ vanishes on all (n − 1)−th commutators ofA, we have that γ(m) = γ(t) = 0. Thus,

ϕ(m) =d(em) + γ(m) = d(e)m + ed(m),
ϕ(t) =d(te) + γ(t) = d(t)e + td(e).

Left and right multiplication by e and f respectively implies that fϕ(m)e = 0 and eϕ(t) f = 0.
Hence, (iii) holds.

Suppose that (i), (ii) and (iii) hold. According to Theorem 2.3, ϕ is of the form (2.2)ϕ = d+δ+γ.
By (iii) and the definition (2.14) of δ in Theorem 2.3, we obtain that δ = 0.

Corollary 2.8. Let ϕ be a Lie n-derivation onA. Suppose that n is even, and thatA is a 2- and (n − 1)-
torsion free algebra satisfying the property (1.2). Then ϕ is standard if and only if both conditions (i) and
(ii) hold:

(i) fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e,

(ii) eϕ(tm)e + fϕ(mt) f ∈ Z(A) for each m ∈ eA f and t ∈ fAe.
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Proof. According to Corollary 2.7, we only need to prove that fϕ(eA f )e = eϕ( fAe) f = {0} if (i)
and (ii) hold.

Suppose that (i) and (ii) hold. For each m in eA f and t in fAe, by (2.9) and (2.11), we have that

fϕ(m)e = (−1)n−1 fϕ(m)e and eϕ(t) f = (−1)n−1eϕ(t) f .

Since n is even andA is 2-torsion free, we have fϕ(m)e = eϕ(t) f = 0.

Remark 2.9. Let A be a unital algebra with a nontrivial idempotent e satisfying the property (1.2).
Theorem 2.3 generalizes [2, Theorem 3.4] which considers Lie triple derivations onA. Corollaries 2.6 and
2.8 generalize [2, Corollaries 3.5, 3.6 and 3.7] which considers Lie derivations and Lie triple derivations on
A.

2.2. The sufficient conditions for each Lie n-derivation to be standard.
Now, we want to enhance the sufficient conditions proposed in Theorem 2.3, and to give the

sufficient conditions under which each Lie n-derivation on A can be described as the sum of a
derivation, a singular Jordan derivation and a central mapping. For this purpose, we need to find
some sufficient conditions independent of any Lie n-derivation ϕ.

Let Ã be an arbitrary algebra. Z(Ã) denotes the centre of Ã. Ã is said to have no nonzero central
ideal if there is no nonzero ideal of Ã in Z(Ã). S(Ã) denotes the subalgebra generated with all
idempotents and commutators of Ã. For each x in Ã, we consider that

[x, Ã] ⊆ Z(Ã) implies x ∈ Z(Ã). (2.27)

That is,

[[x, Ã], Ã] = {0} implies [x, Ã] = {0},

which is equivalent to the condition that there exists no nonzero central inner derivation of Ã.
Important examples of algebras satisfying (2.27) include commutative algebras, prime algebras,
triangular algebras and matrix algebras.

SinceA is a unital algebra with a nontrivial idempotent e, we would mention that

S(A) = (S(eAe) + eA f · fAe) + eA f + fAe + (S( fA f ) + fAe · eA f ).

If eA f · fAe = fAe · eA f = {0}, then A = S(A) if and only if eAe = S(eAe) and fA f = S( fA f ).
If A satisfies the property (1.2), then A satisfies (2.27) and has no nonzero central ideal, but we
cannot confirm that eAe or fA f satisfies (2.27) or has no nonzero central ideal.

Theorem 2.10. Let ϕ be a Lie n-derivation onA. Suppose thatA is 2- and (n − 1)-torsion free, and that
A satisfies the property (1.2). Suppose that one of following conditions (i-1) - (i-4) holds:

(i-1) eAe = S(eAe) and fA f = S( fA f ),

(i-2) eAe = S(eAe) andZ(eAe) = eZ(A)e,

(i-3) fA f = S( fA f ) andZ( fA f ) = fZ(A) f ,

(i-4) eAe or fA f satisfies (2.27) when n ≥ 3,Z(eAe) = eZ(A)e andZ( fA f ) = fZ(A) f .

And suppose that one of the following conditions (ii-1) - (ii-4) also holds:

(ii-1) eAe or fA f has no nonzero central ideal,

(ii-2) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , am0 = m0b } for some m0 ∈ eA f ,

(ii-3) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , t0a = bt0 } for some t0 ∈ fAe,
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(ii-4) A satisfies (2.25).

Then ϕ is of the form ϕ = d + δ + γ, where d is a derivation onA, δ is a singular Jordan derivation onA,
and γ is a linear mapping fromA intoZ(A) vanishing on all (n − 1)−th commutators ofA.

In addition, δ is also an antiderivation onA when (ii-1) or (ii-4) holds.

Remark 2.11. In Theorem 2.10, if we make a further assumption that n is even, or that fϕ(eA f )e =
eϕ( fAe) f = {0}, then ϕ is standard. Thus, we can obtain the sufficient conditions under which every Lie
n-derivation can be standard.

Corollary 2.12. Suppose that n is even, and thatA is a 2- and (n − 1)-torsion free algebra satisfying the
property (1.2). Suppose that one of the following conditions (i-1) - (i-4) holds:

(i-1) eAe = S(eAe) and fA f = S( fA f ),

(i-2) eAe = S(eAe) andZ(eAe) = eZ(A)e,

(i-3) fA f = S( fA f ) andZ( fA f ) = fZ(A) f ,

(i-4) eAe or fA f satisfies (2.27) when n ≥ 3,Z(eAe) = eZ(A)e andZ( fA f ) = fZ(A) f .

And suppose that one of the following conditions (ii-1) - (ii-4) also holds:

(ii-1) eAe or fA f has no nonzero central ideal,

(ii-2) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , am0 = m0b } for some m0 ∈ eA f ,

(ii-3) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , t0a = bt0 } for some t0 ∈ fAe,

(ii-4) A satisfies (2.25).

Then every Lie n-derivation onA is standard.

Corollary 2.13. Suppose that A is 2- and (n − 1)-torsion free, and that A satisfies the property (1.2).
Suppose that one of following conditions (i-1) - (i-4) holds:

(i-1) eAe = S(eAe) and fA f = S( fA f ),

(i-2) eAe = S(eAe) andZ(eAe) = eZ(A)e,

(i-3) fA f = S( fA f ) andZ( fA f ) = fZ(A) f ,

(i-4) eAe or fA f satisfies (2.27) when n ≥ 3,Z(eAe) = eZ(A)e andZ( fA f ) = fZ(A) f .

And suppose that one of the following conditions (ii-1) - (ii-2) also holds:

(ii-1) eAe or fA f has no nonzero central ideal,

(ii-2) A satisfies (2.25).

If

(iii) for each x inA, we have ex f · fAe = {0} = fAe ·ex f implies ex f = 0 and eA f · f xe = {0} = f xe ·eA f
implies f xe = 0,

then every Lie n-derivation onA is standard.

Remark 2.14. Theorem 2.10 improves [15, Theorem 2.1] and [2, Theorem 5.1] which consider Lie triple
derivations and Lie n-derivations on a unital algebra with a nontrivial idempotent e satisfying the property
(1.2).
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To prove Theorem 2.10, we need to prove several lemmas.

Lemma 2.15. Let ϕ be a Lie n-derivation onA. Suppose thatA is (n−1)-torsion free, and thatA satisfies
the property (1.2). Suppose that both the conditions (i) and (ii) hold:

(i) fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e,

(ii) eAe or fA f has no nonzero central ideal.

Then ϕ satisfies eϕ(tm)e + fϕ(mt) f ∈ Z(A) for each m ∈ eA f and t ∈ fAe.

Lemma 2.16. Let ϕ be a Lie n-derivation onA. Suppose thatA is 2- and (n− 1)-torsion free, and thatA
satisfies the property (1.2). Suppose that

(i) fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.

And suppose that one of the following conditions (ii-1) - (ii-2) also holds:

(ii-1) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , am0 = m0b } for some m0 ∈ eA f ,

(ii-2) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , t0a = bt0 } for some t0 ∈ fAe.

Then ϕ satisfies eϕ(tm)e + fϕ(mt) f ∈ Z(A) for each m ∈ eA f and t ∈ fAe.

Lemma 2.17. Let ϕ be a Lie n-derivation onA. Suppose thatA is 2- and (n− 1)-torsion free, and thatA
satisfies the property (1.2). Suppose that one of following conditions (i) - (iv) holds:

(i) eAe = S(eAe) and fA f = S( fA f ),

(ii) eAe = S(eAe) andZ(eAe) = eZ(A)e,

(iii) fA f = S( fA f ) andZ( fA f ) = fZ(A) f ,

(iv) eAe or fA f satisfies (2.27) when n ≥ 3,Z(eAe) = eZ(A)e andZ( fA f ) = fZ(A) f .

Then ϕ satisfies fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.

Proof. [Proof of Lemma 2.15] Without loss of generality, we suppose that eAe has no nonzero
central ideal. Since ϕ is a Lie n-derivation onA. Discussing similarly as Theorem 2.3, we obtain
same results as Claims 1, 2 and 3 in Theorem 2.3. According to (i) and the definition (2.13) of d,
we conclude that for each a in eAe, m in eA f and t in fAe,

d(am) = d(a)m + ad(m),
d(ta) = td(a) + d(t)a,

d(m)t + md(t) = d(mt) + τ−1( fϕ(mt) f ) − eϕ(tm)e. (2.28)

For each a1, a2 in eAe, m in eA f and t in fAe, it follows that

d(a1a2m) = d(a1a2)m + a1a2d(m),
d(a1a2m) = d(a1)a2m + a1d(a2m) = d(a1)a2m + a1d(a2)m + a1a2d(m),
d(ta1a2) = td(a1a2) + d(t)a1a2,

d(ta1a2) = ta1d(a2) + d(ta1)a2 = ta1d(a2) + td(a1)a2 + d(t)a1a2.

Thus,

(d(a1a2) − d(a1)a2 − a1d(a2))m = 0,
t(d(a1a2) − a1d(a2) − d(a1)a2) = 0.
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SinceA satisfies the property (1.2), we obtain that

d(a1a2) = d(a1)a2 + a1d(a2).

Denote that ε(m, t) = eϕ(tm)e − τ−1( fϕ(mt) f ) for each m in eA f and t in fAe. Then ε(m, t) =
d(mt) − d(m)t −md(t) by (2.28). According to (i), we have that ε(m, t) ∈ eZ(A)e ⊆ Z(eAe). Since

ε(am, t) =d(amt) − d(am)t − amd(t)
=d(a)mt + ad(mt) − d(a)mt − ad(m)t − amd(t)
=a(d(mt) − d(m)t −md(t))
=aε(m, t)

for each a in eAe, m in eA f and t in fAe, we obtain that ε(m, t) is a central ideal of eAe. According
to the assumption that eAe has no nonzero central ideal, we have ε(m, t) = 0, i.e., eϕ(tm)e −
τ−1( fϕ(mt) f ) = 0. Thus, eϕ(tm)e + fϕ(mt) f ∈ Z(A).

The proof in case that fA f has no nonzero central ideal goes in a similar way.

Proof. [Proof of Lemma 2.16] Without loss of generality, we suppose that (i) and (ii-1) hold.
Discussing similarly as Theorem 2.3, we obtain same results as Claims 1, 2 and 3 in Theorem 2.3.
According to (i) and the definition (2.13) of d, we conclude that for each a in eAe, m in eA f , t in
fAe and b in fA f ,

d(am) = d(a)m + ad(m), (2.29)
d(mb) = md(b) + d(m)b, (2.30)

d(m)t + md(t) = d(mt) + τ−1( fϕ(mt) f ) − eϕ(tm)e, (2.31)
d(t)m + td(m) = d(tm) + τ(eϕ(tm)e) − fϕ(mt) f . (2.32)

For each m in eA f and t in fAe, it follows from (2.29) and (2.30) that

d(mtm) = d((mt)m) = d(mt)m + mtd(m) and d(mtm) = d(m(tm)) = md(tm) + d(m)tm.

Thus,

(d(mt) − d(m)t)m = m(d(tm) − td(m)). (2.33)

Denote that ε(m, t) = eϕ(tm)e − τ−1( fϕ(mt) f ) for m in eA f and t in fAe. By (2.31) and (2.32), we
have that

d(mt) − d(m)t = md(t) + ε(m, t),
d(tm) − td(m) = d(t)m − τ(ε(m, t)).

In view of (2.33), it follows that

md(t)m + ε(m, t)m = md(t)m −mτ(ε(m, t)).

Thus, 2ε(m, t)m = 0. SinceA is 2-torsion free, we have

ε(m, t)m = 0 (2.34)

for each m in eA f and t in fAe. Let m0 be as in (ii-1), then ε(m0, t)m0 = 0 = m00. It follows from
(ii-1) that ε(m0, t) + 0 ∈ Z(A). Thus, ε(m0, t) = 0. Since (2.34) and

0 = ε(m + m0, t)(m + m0) = ε(m, t)m + ε(m, t)m0 + ε(m0, t)(m + m0),

we conclude that ε(m, t)m0 = 0 = m00, which follows from (ii-1) that ε(m, t) + 0 ∈ Z(A). Thus,
ε(m, t) = 0 and eϕ(tm)e + fϕ(mt) f ∈ Z(A) for each m in eA f and t in fAe.

The proof in case that (i) and (ii-2) hold goes in a similar way.
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Proof. [Proof of Lemma 2.17] Since ϕ is a Lie n-derivation onA, discussing similarly as Theorem
2.3, we obtain same results as Claims 1, 2 and 3 in Theorem 2.3. Thus for each a in eAe, m in eA f ,
t in fAe and b in fA f , we have that

eϕ(am) f = eϕ(a)e ·m + a · eϕ(m) f −m · fϕ(a) f , (2.35)
eϕ(mb) f = m · fϕ(b) f + eϕ(m) f · b − eϕ(b)e ·m, (2.36)
fϕ(ta)e = t · eϕ(a)e + fϕ(t)e · a − fϕ(a) f · t, (2.37)
fϕ(bt)e = fϕ(b) f · t + b · fϕ(t)e − t · eϕ(b)e. (2.38)

Then the remaining proof could be organized by the following claims.

Claim 1. eAe = S(eAe) implies fϕ(eAe) f ⊆ fZ(A) f .
Let A0 = { a ∈ eAe fϕ(a) f ∈ fZ(A) f }. We only need to prove that A0 = eAe.
According to the linearity of ϕ, we have that A0 is a R-submodule of eAe. Take arbitrary

elements a, a′ in A0. We have fϕ(a) f , fϕ(a′) f ∈ fZ(A) f . By Lemma 2.2, we have that for each m
in eA f and t in fAe,

m · fϕ(a) f = τ−1( fϕ(a) f ) ·m,

m · fϕ(a′) f = τ−1( fϕ(a′) f ) ·m,

fϕ(a) f · t = t · τ−1( fϕ(a) f ),

fϕ(a′) f · t = t · τ−1( fϕ(a′) f ).

It follows from (2.35) and (2.37) that

eϕ((aa′)m) f =eϕ(aa′)e ·m + aa′ · eϕ(m) f −m · fϕ(aa′) f ,
eϕ(a(a′m)) f =eϕ(a)e · a′m + a · eϕ(a′m) f − a′m · fϕ(a) f

=eϕ(a)e · a′m + a · eϕ(a′)e ·m + aa′ · eϕ(m) f − am · fϕ(a′) f − a′m · fϕ(a) f

=(eϕ(a)e · a′ + a · eϕ(a′)e − aτ−1( fϕ(a′) f ) − a′τ−1( fϕ(a) f )) ·m + aa′ · eϕ(m) f ,
fϕ(t(aa′))e =t · eϕ(aa′)e + fϕ(t)e · aa′ − fϕ(aa′) f · t,
fϕ((ta)a′)e =ta · eϕ(a′)e + fϕ(ta)e · a′ − fϕ(a′) f · ta

=ta · eϕ(a′)e + t · eϕ(a)e · a′ + fϕ(t)e · aa′ − fϕ(a) f · ta′ − fϕ(a′) f · ta

=t · (a · eϕ(a′)e + eϕ(a)e · a′ − a′τ−1( fϕ(a) f ) − aτ−1( fϕ(a′) f )) + fϕ(t)e · aa′.

Then

(eϕ(aa′)e − eϕ(a)e · a′ − a · eϕ(a′)e + aτ−1( fϕ(a′) f ) + a′τ−1( fϕ(a) f )) ·m = m · fϕ(aa′) f ,

fϕ(aa′) f · t = t · (eϕ(aa′)e − eϕ(a)e · a′ − a · eϕ(a′)e + aτ−1( fϕ(a′) f ) + a′τ−1( fϕ(a) f )).

According to Lemma 2.2, fϕ(aa′) f ∈ fZ(A) f . That is, aa′ ∈ A0. Thus, A0 is a subalgebra of eAe.
Take an arbitrary element a in eAe satisfying a = a2. By (2.35) and (2.37), we have that for each

m in eA f and t in fAe,

eϕ(am) f =eϕ(a(am)) f = eϕ(a)e · am + a · eϕ(am) f − am · fϕ(a) f
=eϕ(a)e · am + a · eϕ(a)e ·m + a · eϕ(m) f − 2am · fϕ(a) f ,

fϕ(ta)e = fϕ((ta)a)e = ta · eϕ(a)e + fϕ(ta)e · a − fϕ(a) f · ta
=ta · eϕ(a)e + t · eϕ(a)e · a + fϕ(t)e · a − 2 fϕ(a) f · ta.

Then combining with (2.35) and (2.37), we obtain that

(eϕ(a)e − eϕ(a)e · a − a · eϕ(a)e) ·m + 2am · fϕ(a) f = m · fϕ(a) f , (2.39)
t · (eϕ(a)e − a · eϕ(a)e − eϕ(a)e · a) + 2 fϕ(a) f · ta = fϕ(a) f · t. (2.40)
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Left and right multiplication by a respectively implies that

am · fϕ(a) f = a · eϕ(a)e · am, (2.41)
fϕ(a) f · ta = ta · eϕ(a)e · a. (2.42)

In view of (2.41) and (2.42), equations (2.39) and (2.40) can be reformed to

(eϕ(a)e − eϕ(a)e · a − a · eϕ(a)e + 2a · eϕ(a)e · a) ·m = m · fϕ(a) f ,
t · (eϕ(a)e − eϕ(a)e · a − a · eϕ(a)e + 2a · eϕ(a)e · a) = fϕ(a) f · t.

According to Lemma 2.2, fϕ(a) f ∈ fZ(A) f . That is, a = a2
∈ A0. Thus, A0 contains all idempotents

in eAe.
Take arbitrary elements a, a′ in eAe. By (2.35) and (2.37), we have that for each m in eA f and t

in fAe,

eϕ([a, a′]m) f =eϕ([a, a′])e ·m + [a, a′] · eϕ(m) f −m · fϕ([a, a′]) f ,
eϕ([a, a′]m) f =eϕ(aa′m) f − eϕ(a′am) f

=[eϕ(a)e, a′]m + [a, eϕ(a′)e] ·m + [a, a′] · eϕ(m) f ,
fϕ(t[a, a′])e =t · eϕ([a, a′])e + fϕ(t)e · [a, a′] − fϕ([a, a′]) f · t,
fϕ(t[a, a′])e = fϕ(taa′)e − fϕ(ta′a)e

=t · [a, eϕ(a′)e] + t · [eϕ(a)e, a′] + fϕ(t)e · [a, a′].

Then

(eϕ([a, a′])e − [eϕ(a)e, a′] − [a, eϕ(a′)e]) ·m = m · fϕ([a, a′]) f ,
fϕ([a, a′]) f · t = t · (eϕ([a, a′])e − [a, eϕ(a′)e] − [eϕ(a)e, a′]).

According to Lemma 2.2, fϕ([a, a′]) f ∈ fZ(A) f . That is, [a, a′] ∈ A0. Thus, A0 contains all com-
mutators in eAe.

Since A0 is a subalgebra of eAe, and A0 contains all idempotent and commutators in eAe, we
have that S(eAe) ⊆ A0. Since eAe = S(eAe), we conclude that eAe = A0.

Claim 2. fA f = S( fA f ) implies eϕ( fA f )e ⊆ eZ(A)e.
The proof of Claim 2 is similar to the proof of Claim 1.

Claim 3. (i) implies that fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.
It’s obvious according to Claim 1 and 2.

Claim 4. (ii) implies that fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.
By Claim 1, we only need to prove eϕ( fA f )e ⊆ eZ(A)e. If n ≥ 3, for each a in eAe, m in eA f , t

in fAe and b in fA f , since [a, b] = 0 and pn(a, b,m, f , ..., f ) = pn(a, b, t, e, ..., e) = 0, we obtain that

0 =ϕ(pn(a, b,m, f , ..., f )) = pn(ϕ(a), b,m, f , ..., f ) + pn(a, ϕ(b),m, f , ..., f )
=[[ϕ(a), b] + [a, ϕ(b)],m],

0 =ϕ(pn(a, b, t, e, ..., e)) = pn(ϕ(a), b, t, e, ..., e) + pn(a, ϕ(b), t, e, ..., e)
=[[ϕ(a), b] + [a, ϕ(b)], t].

According to Lemma 2.2, we have

[ fϕ(a) f , b] + [a, eϕ(b)e] ∈ Z(A).
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By Claim 1, we have fϕ(eAe) f ⊆ fZ(A) f ⊆ Z( fA f ), and [ fϕ(a) f , b] = 0. If n ≥ 3, it follows that
[a, eϕ(b)e] = 0 for each a in eAe and b in fA f . If n = 2, for each a in eAe and b in fA f , we have that

0 = ϕ([a, b]) = [ fϕ(a) f , b] + [a, eϕ(b)e]

which follows that [a, eϕ(b)e] = 0. Thus, we have eϕ( fA f )e ⊆ Z(eAe) for each n ≥ 2. Since
Z(eAe) = eZ(A)e, we conclude that eϕ( fA f )e ⊆ eZ(A)e.

Claim 5. (iii) implies that fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.
The proof of Claim 5 is similar to the proof of Claim 4.

Claim 6. (iv) implies that fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆ eZ(A)e.
If n ≥ 3, suppose that eAe satisfies (2.27). Similar to the proof of Claim 4, we have that

[ fϕ(a) f , b] + [a, eϕ(b)e] ∈ Z(A) (2.43)

for each a in eAe and b in fA f . Then [eAe, eϕ( fA f )e] ⊆ eZ(A)e ⊆ Z(eAe). Since eAe satisfies
(2.27), it follows that

eϕ( fA f )e ⊆ Z(eAe). (2.44)

SinceZ(eAe) = eZ(A)e, we have that eϕ( fA f )e ⊆ eZ(A)e. On the other hand, by (2.44), we have
[a, eϕ(b)e] = 0 for each a in eAe and b in fA f . In view of (2.43), we obtain [ fϕ(a) f , b] = 0 for each
a in eAe and b in fA f . That is, fϕ(eAe) f ⊆ Z( fA f ). Since Z( fA f ) = fZ(A) f , we obtain that
fϕ(eAe) f ⊆ fZ(A) f . The proof in case that fA f satisfies (2.27) goes in a similar way.

If n = 2, for each a in eAe and b in fA f , we have that

0 = ϕ([a, b]) = [ fϕ(a) f , b] + [a, eϕ(b)e].

Then, [ fϕ(a) f , b] = [a, eϕ(b)e] = 0. That is, fϕ(eAe) f ⊆ Z( fA f ) and eϕ( fA f )e ⊆ Z(eAe). Since
Z( fA f ) = fZ(A) f andZ(eAe) = eZ(A)e, we conclude that fϕ(eAe) f ⊆ fZ(A) f and eϕ( fA f )e ⊆
eZ(A)e.

Proof. [Proof of Theorem 2.10] According to Lemmas 2.5, 2.15, 2.16, 2.17 and Theorem 2.3, we only
need to prove that δ is an antiderivation when (ii-1) holds.

Without loss of generality, we suppose that eAe has no nonzero central ideal. The following
discussion is partially similar as Claim 6 in Theorem 2.3, and we will omit several complicated
procedures. If n is even, then in view of (2.9), (2.11), (2.14) and thatA is 2-torsion free, we obtain
that δ(m) = 0 and δ(t) = 0 for each m in eA f and t in fAe. Thus, δ = 0. If n is odd, then in view of
(2.14) and Claim 3 in Theorem 2.3, we have that for each m1,m2 in eA f and t1, t2 in fAe,

[δ(m1),m2] + [δ(m2),m1] = 0 and [δ(t1), t2] + [δ(t2), t1] = 0. (2.45)

Take arbitrary elements m,m1,m2 in eA f . If n ≥ 3, since pn(m1,m2,m, f , ..., f ) = 0, we have that

0 =ϕ(pn(m1,m2,m, f , ..., f ))
=[[ϕ(m1),m2],m] + [[m1, ϕ(m2)],m]
=[[ϕ(m1),m2] + [m1, ϕ(m2)],m]
=[[δ(m1),m2] + [m1, δ(m2)],m].

Or if n = 2, then

0 =ϕ([[m1,m2],m])
=[ϕ([m1,m2]),m]
=[[ϕ(m1),m2] + [m1, ϕ(m2)],m]
=[[δ(m1),m2] + [m1, δ(m2)],m].
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Thus, for each n ≥ 2 and for each m,m1,m2 in eA f , we have that

[[δ(m1),m2] + [m1, δ(m2)],m] = 0. (2.46)

Similarly, since pn(m1,m2, t, e, ..., e) = pn(t1, t2,m, f , ..., f ) = pn(t1, t2, t, e, ..., e) = 0 when n ≥ 3, we can
conclude that

[[δ(m1),m2] + [m1, δ(m2)], t] = 0, (2.47)
[[δ(t1), t2] + [t1, δ(t2)],m] = 0, (2.48)
[[δ(t1), t2] + [t1, δ(t2)], t] = 0 (2.49)

for each n ≥ 2 and for each m,m1,m2 in eA f and t, t1, t2 in fAe. Considering (2.46), (2.47), (2.48),
(2.49) and Lemma 2.4, it follows that

[δ(m1),m2] + [m1, δ(m2)] ∈ Z(A) and [δ(t1), t2] + [t1, δ(t2)] ∈ Z(A). (2.50)

The subtraction of (2.45) and (2.50) leads to 2[δ(m1),m2] ∈ Z(A) and 2[δ(t1), t2] ∈ Z(A). Since A
is 2-torsion free, we have that

[δ(m1),m2] = δ(m1)m2 −m2δ(m1) ∈ Z(A) and [δ(t1), t2] = δ(t1)t2 − t2δ(t1) ∈ Z(A). (2.51)

Hence,

m2δ(m1) ∈ Z(eAe) and δ(t1)t2 ∈ Z(eAe)

for each m1,m2 in eA f and t1, t2 in fAe. It follows obviously that eA f · δ(eA f ) and δ( fAe) · fAe
are central ideals of eAe. Since eAe has no nonzero central ideal, we confirm that eA f · δ(eA f ) =
δ( fAe) · fAe = {0}. According to (2.51), we confirm that δ(eA f ) · eA f = fAe · δ( fAe) = {0}. By
lemma 2.5, we obtain that δ is an antiderivation.

The proof in case that fA f has no nonzero central ideal goes in a similar way.

Proof. [Proof of Corollary 2.13] According to Theorem 2.10, if A satisfies one of (i-1), (i-2), (i-3)
and (i-4), and if A satisfies (ii-1) or (ii-2), then arbitrary Lie n-derivation ϕ on A is of the form
ϕ = d + δ + γ, where d is a derivation on A, δ is a singular Jordan derivation and antiderivation
onA, and γ is a linear mapping fromA intoZ(A) vanishing on all (n− 1)−th commutators ofA.
By Lemma 2.5, we know that δ satisfies (2.24):

δ(eA f ) · eA f = eA f · δ(eA f ) = δ( fAe) · fAe = fAe · δ( fAe) = {0}.

Since (iii), we conclude that δ(eA f ) = δ( fAe) = {0}. That is, δ = 0.

In Corollary 2.13, we would mention that eA f = fAe = {0} if and only if both conditions (ii-2)
and (iii) hold. And if condition (ii-2) holds, then A = S(A) if and only if condition (i-1) holds.
Thus, we can obtain the following corollary.

Corollary 2.18. Suppose thatA is a 2- and (n − 1)-torsion free algebra satisfying the property (1.2), and
thatA = S(A). Suppose that one of conditions (i) and (ii) holds:

(i) n is even, andA satisfies (2.25),

(ii) eA f = fAe = {0}.

Then every Lie n-derivation onA is standard.

l
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3. Applications

Let G = (A,M,N,B) be a generalized matrix algebra, where A and B are two unital algebras,
and AMB and BNA are two bimodules. M is said to be faithful, if M satisfies that aM = 0 implies a = 0
and that Mb = 0 implies b = 0 for each a ∈ A and b ∈ B. G is said to be trivial if MN = NM = {0}.

Corollary 3.1. Let G = (A,M,N,B) be a 2- and (n − 1)-torsion free generalized matrix algebra, where A
and B are two unital algebras, M is a faithful (A,B)-bimodule, and N is a (B,A)-bimodule. Suppose that n
is even, and that one of following conditions (i-1) - (i-4) holds:

(i-1) A = S(A) and B = S(B),

(i-2) A = S(A) andZ(A) = eZ(G)e,

(i-3) B = S(B) andZ(B) = fZ(G) f ,

(i-4) A or B satisfies (2.27) when n ≥ 3,Z(A) = eZ(G)e andZ(B) = fZ(G) f .

And suppose that one of the following conditions (ii-1) - (ii-4) also holds:

(ii-1) A or B has no nonzero central ideal,

(ii-2) Z(G) = { a + b a ∈ eZ(G)e, b ∈ fZ(G) f , am0 = m0b } for some m0 ∈M,

(ii-3) Z(G) = { a + b a ∈ eZ(G)e, b ∈ fZ(G) f , t0a = bt0 } for some t0 ∈ N,

(ii-4) G satisfies (2.25).

Then every Lie n-derivation on G is standard.

Corollary 3.2. Let G = (A,M,N,B) be a 2- and (n − 1)-torsion free generalized matrix algebra, where A
and B are two unital algebras, M is a faithful (A,B)-bimodule, and N is a (B,A)-bimodule. If one of the
following statements holds:

(i-1) A = S(A) and B = S(B),

(i-2) A = S(A) andZ(A) = eZ(G)e,

(i-3) B = S(B) andZ(B) = fZ(G) f ,

(i-4) A or B satisfies (2.27) when n ≥ 3,Z(A) = eZ(G)e andZ(B) = fZ(G) f .

And suppose that one of conditions (ii-1) and (ii-2) also holds:

(ii-1) A or B has no nonzero central ideal,

(ii-2) G satisfies (2.25).

If

(iii) for each m in M and t in N, it follows that m·N = {0} = N ·m implies m = 0, and that M·t = {0} = t·M
implies t = 0,

then every Lie n-derivation on G is standard.

Proof. [proof of Corollaries 3.1 and 3.2] Obviously, G satisfies (1.2). According to Corollaries 2.12
and 2.13, we obtain corollaries 3.1 and 3.2.

Corollary 3.3. Let G = (A,M,N,B) be a 2- and (n − 1)-torsion free trivial generalized matrix algebra,
where A and B are two unital algebras, M is a faithful (A,B)-bimodule, and N is a (B,A)-bimodule. Suppose
that one of following conditions (i) - (v) holds:
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(i) A = S(A) and B = S(B),

(ii) G = S(G),

(iii) A = S(A) andZ(A) = eZ(G)e,

(iv) B = S(B) andZ(B) = fZ(G) f ,

(v) A or B satisfies (2.27) when n ≥ 3,Z(A) = eZ(G)e andZ(B) = fZ(G) f .

If n is even or M = N = {0}, then every Lie n-derivation on G is standard.

Proof. Since G is trivial, G satisfies (2.25). In fact, a trivial generalized matrix algebra satisfying
(iii) is a generalized matrix algebra satisfying M = N = {0}.

Corollary 3.4. Let A = Ms(A) be a 2- and (n − 1)-torsion free full matrix algebra, where A is a unital
algebra with centerZ(A) and s ≥ 3. Then every Lie n-derivation on Ms(A) is standard.

Proof. Ms(A) can be represented as of the form
(

A M1×(s−1)(A)
M(s−1)×1(A) Ms−1(A)

)
, which is a generalized

matrix algebra and M1×(s−1)(A) is faithful. In view of [3, Example 5.6] and [7, Lemma 1], conditions
(i-4) and (ii-1) in Theorem 2.10 hold. According to [4, Corollary 4.4], every Jordan derivation of
Ms(A) is a derivation. Thus, the proof is finished.

Corollary 3.5. Let A = M2(A) be a 2- and (n − 1)-torsion free full matrix algebra, where A is a unital
algebra with center Z(A). Suppose that A is a commutative algebra or a noncommutative prime algebra.
Then every Lie n-derivation on M2(A) is standard.

Proof. If A is commutative, we can assert that (i-4) and (ii-2) in Theorem 2.10 hold. Actually,
take arbitrary elements a in eZ(M2(A))e and b in fZ(M2(A)) f , which follows that am = mτ(a) and
bt = tτ−1(b) for each m in eZ(M2(A)) f and t in fZ(M2(A))e. Assume that there exists nonzero
element m0 in eM2(A) f satisfying am0 = m0b. We can obtain that b = τ(a). Thus, am = mb and
bt = ta for each m in eZ(M2(A)) f and t in fZ(M2(A))e if am0 = m0b, i.e., (ii-2) in Theorem 2.10
holds. If A is noncommutative prime, it’s not difficult to prove that (i-4) and (ii-1) in Theorem 2.10
hold. According to [4, Corollary 4.4], every Jordan derivation of M2(A) is a derivation. Thus, the
proof is finished.

Corollary 3.6. Let T = (A,M,B) be a 2- and (n − 1)-torsion free triangular algebra, where A and B are
two unital algebras, and M is a faithful (A,B)-bimodule. Suppose that one of following conditions (i) - (v)
holds:

(i) A = S(A) and B = S(B),

(ii) T = S(T ),

(iii) A = S(A) andZ(A) = eZ(T )e,

(iv) B = S(B) andZ(B) = fZ(T ) f ,

(v) A or B satisfies (2.27) when n ≥ 3,Z(A) = eZ(T )e andZ(B) = fZ(T ) f .

Then every Lie n-derivation on T is standard.

Proof. Since fT e = {0}, it’s obvious that T satisfies (1.2), (2.25), (2.27) and fϕ(eA f )e = eϕ( fAe) f =
{0}. According to Theorem 2.10, the proof is finished.

Corollary 3.7. LetA = Ts(A) be a 2- and (n− 1)-torsion free upper triangular matrix algebra, where A is
a unital algebra with centerZ(A) and s ≥ 3. Then every Lie n-derivation on Ts(A) is standard.
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Corollary 3.8. LetA = T2(A) be a 2- and (n− 1)-torsion free upper triangular matrix algebra, where A is
a unital algebra with center Z(A). Suppose that A is a commutative algebra or a noncommutative prime
algebra. Then every Lie n-derivation on T2(A) is standard.

Remark 3.9. The proof of Corollaries 3.7 and 3.8 is more or less similar to the proof of Corollaries 3.4 and
3.5. We would mention that Corollary 3.7 is not true in case that s = 2. In [3, Section 7], the authors
construct an example. Let A be aZ2−graded algebra overR, i.e., an algebra of the form A = A0 +A1, where
A0,A1 ⊆ A and multiplication in A is such that A0A0 ⊆ A0, A1A1 ⊆ A1, A0A1 ⊆ A1 and A1A0 ⊆ A1.
Suppose thatZ(A) = A0 and ϕ is a map onA = T2(A). Define that

ϕ

(
a0 + a1 m0 + m1

b0 + b1

)
=

(
b1 −m1

a1

)
for each a0 + a1, m0 + m1 and b0 + b1 in A. Then ϕ is a Lie n-derivation and is not standard.

Corollary 3.10. LetA = algN be a nest algebra, whereN is a non-trivial nest in a Hilbert spaceH and
dimH ≥ 2. Then every Lie n-derivation on algN is standard.

Proof. By [6], algN can be viewed as a triangular algebra. Let A0 = E(algN)E, where E is the
orthogonal projection on N . Assume that d is a central derivation of A0. Since A0 is also a nest,
we can find an orthonormal projection e onto A0, and view A0 as a triangular algebra. Since
d(e) ∈ Z(A0) and d(e) = d(ee) = ed(e) + d(e)e, we have d(e) = ed(e) = d(e)e = ed(e)e = 0. Similarly, we
have d(E−e) = 0. For each m ∈ eA0(E−e), since d(m) ∈ Z(A0) and d(m) = d(em(E−e)) = ed(m)(E−e),
we have d(m) = 0. For each a ∈ eA0e and m ∈ eA0(E− e), since 0 = d(am) = d(a)m, we have d(a) = 0.
Similarly, we have d(b) = 0 for each b ∈ (E − e)A0(E − e). Then d = 0. That is, there exists no
nonzero central derivation onA0. SinceZ(algN) = CI, it obviously follows that (v) in Corollary
3.6 holds. Thus, the proof is finished.

Corollary 3.11. LetA be a unital 2- and (n − 1)-torsion free prime algebra with a nontrivial idempotent
e. Suppose that one of following conditions (i-1) - (i-4) holds:

(i-1) eAe = S(eAe) and fA f = S( fA f ),

(i-2) eAe = S(eAe) andZ(eAe) = eZ(A)e,

(i-3) fA f = S( fA f ) andZ( fA f ) = fZ(A) f ,

(i-4) Z(eAe) = eZ(A)e andZ( fA f ) = fZ(A) f .

And suppose that one of the following conditions (ii-1) - (ii-5) also holds:

(ii-1) eAe or fA f is noncommutative,

(ii-2) eAe or fA f has no nonzero central ideal,

(ii-3) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , am0 = m0b } for some m0 ∈ eA f ,

(ii-4) Z(A) = { a + b a ∈ eZ(A)e, b ∈ fZ(A) f , t0a = bt0 } for some t0 ∈ fAe,

(ii-5) A satisfies (2.25).

Then every Lie n-derivation onA is standard.

Proof. If exe · eA f = {0}, i.e., (exe)A f = {0}, then exe = 0. And if eA f · f x f = {0}, i.e., eA( f x f ) = {0},
then f x f = 0. Thus, A satisfies (1.2). According to [4, Corollary 4.5], every Jordan derivation
of A is a derivation. If eAe is commutative, then eAe obviously satisfies (2.27). Or if eAe is
noncommutative, then eAe satisfies (2.27) by [14, Theorem 2], and it’s not difficult to prove that
eAe has no nonzero central ideal. According to Theorem 2.10, the proof is finished.
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Corollary 3.12. Let A = B(X) be an algebra of all bounded linear operators, where X is a Banach space
over the complex field C and dimX ≥ 2. Then every Lie n-derivation on B(X) is standard.

Proof. Obviously, B(X) is a unital prime algebra with a nontrivial idempotent e. Since the center
Z(B(X)) = CI, we have that Z(eB(X)e) = eZ(B(X))e and Z( f B(X) f ) = fZ(B(X)) f . If eB(X)e
is commutative and eB(X) f = {0}, then B(X) satisfies (2.25). Or if eB(X)e is commutative and
eB(X) f , {0}, then we can choose an arbitrary nonzero element m0 in eB(X) f . For arbitrary
elements λ · eIe in Z(eB(X)e) and µ · f I f in Z( f B(X) f ) satisfying (λ · eIe)m0 = m0(µ · f I f ), since
(λ ·eIe)m0 = λm0 and m0(µ · f I f ) = µm0, we have thatλ = µ andλ ·eIe+µ · f I f = λI ∈ Z(B(X)), which
follows that (ii-3) in Corollary 3.11 holds. According to Corollary 3.11, the proof is finished.

Corollary 3.13. LetA be a factor von Neumann algebra acting on a Hilbert spaceH with dim(A) ≥ 2.
Then every Lie n-derivation onA is standard.

Proof. Obviously,A is a unital prime algebra with nontrivial idempotents p1, p2. LetAi j = piAp j
where 1 ≤ i, j ≤ 2. Since the center Z(A) = CI, we have that Z(A11) = p1Z(A)p1 and Z(A22) =
p2Z(A)p2. IfA11 is commutative andA12 = {0}, thenA satisfies (2.25). Or ifA11 is commutative
andA12 , {0}, then we can choose an arbitrary nonzero element m0 inA12. For arbitrary elements
λ ·p1Ip1 inZ(A11) and µ ·p2Ip2 inZ(A22) satisfying (λ ·p1Ip1)m0 = m0(µ ·p2Ip2), since (λ ·p1Ip1)m0 =
λm0 and m0(µ · p2Ip2) = µm0, we have that λ = µ and λ · p1Ip1 + µ · p2Ip2 = λI ∈ Z(A), which
follows that (ii-3) in Corollary 3.11 holds. According to Corollary 3.11, the proof is finished.

Corollary 3.14. Let A be a von Neumann algebra with no central summand of type I1. Then every Lie
n-derivation onA is standard.

Proof. According to [10, Lemmas 4] and [11, Lemma 1], A is a unital algebra with a nontrivial
idempotent p satisfying (1.2) and (iii) in Corollary 2.13. Denote that q = I − p. Let A11 = pAp,
A12 = pAq, A21 = qAp and A22 = qAq. By [10, Lemma 5], we have that Z(A11) = pZ(A)p
and Z(A22) = qZ(A)q. Let d0 be an arbitrary central inner derivation of A11, i.e., there exists an
element a′11 in A11 such that d0(a11) = [a′11, a11] ∈ Z(A11) for each a11 in A11. By the Kleinecke-
Shirokov theorem [8, Lemma 2.2], we have d0(a11)2 = 0 for each a11 in A11. It follows form [11,
Lemma 1] that d0 = 0. Thus, (i-4) in Corollary 2.13 holds. LetI be the central ideal ofA11. For each
a11 in I, since a11A11 ⊆ I ⊆ Z(A11) and [5, Lemma 5], we have a11 = 0. Thus, (ii-1) in Corollary
2.13 holds. According to Corollary 2.13, the proof is finished.

Remark 3.15. In this section, we give several applications of the results in Section 2. Some results in
this section can be seen in other papers. Corollaries 3.1 and 3.2 are partially proved by [16, Theorem 1].
Corollaries 3.4 and 3.5 are partially proved by [17, Theorem 2.1], [2, Corollaries 5.5 and 5.6] and [16,
Corollaries 2 and 3]. Corollary 3.6 is partially proved by [3, Theorem 5.9]. Corollary 3.10 can be seen in [3,
Corollary 6.4]. Corollary 3.12 improves [9, Theorem 1.1]. Corollary 3.14 can be seen in [8, Theorem 2.3].
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