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Abstract. In this paper, a system of generalized operator equilibrium problems(for short, SGOEP) in the
setting of topological vector spaces is introduced. Applying some properties of the nonlinear scalarization
mapping and the maximal element lemma an existence theorem for SGOEP is proved. Moreover, using Ky
Fan’s lemma an existence result for the generalized operator equilibrium problem(for short, GOEP) is estab-
lished. The results of the paper can be viewed as a generalization and improvement of the corresponding
results given in [1, 2, 5, 8].

1. Introduction and Preliminaries

Throughout the paper, unless otherwise specified, we use the following notations.
Let I be an index set, for each i € I, let X; and Y; stand for topological vector spaces(for short, t.v.s.) and
L(X;, Y;), the space of all continuous linear operators from X; into Y;. Consider a family of nonempty
convex subset {Ki}ie; with K; in L(X;, Y;). The symbol ITjc;K; denotes the cartesian product of K;. So for each
f € jeiKj, we have f = (f})jer, where f; € K.
Foreachie I, letC; : [T K — 2Yi be a set-valued mapping such that, for each f € IT;elK;, Ci(f) is closed,
pointed convex cone such that e; € intC;(f) (we recall that a subset C;(f) of Y; is convex cone and pointed
whenever AC;(f) + (1 — A)Ci(f) € Ci(f), forall 0 < A < 1, 2Ci(f) € Ci(f) and Ci(f) N =Ci(f) = {Oy,}, resp.), for
more details see [7].
Also for eachi € I, let F; : ITje/K; X K; — 2Yi be a set-valued mapping. We consider the following problem
which we call system of generalized operator equilibrium problem(for short, SGOEP):
Find f* = (f],*)]-d € I1j¢iK; such that for each i € I,

Fi(f*, 9)) € —Ci(f*), Vygi € Ki. @D

We remark that, for suitable choices of I, F;, K;, X;, Y; and C;, SGOEP (1) reduces to the preoblems presented
in [1, 8] and the references therein.

When [ is singelton, thatis F; = F, X; =X, Y, =Y, K, =KCLXY),CG=C:K— 2Y, then (1) reduces to
the following problem which is called a generalized operator equilibrium problem(for short, GOEP) and
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studied in [8]:
Find f* € K such that
E(f,9) £ =C(f), VgeK @)

Now, we recall some concepts and results which are used in the sequel.
Definition 1.1. [2] Let X and Y be two topological spaces. A set valued mapping G : X —> 2V is called

(i) upper semicontinuous(u.s.c.) at x € X if for each open set V containing G(x), there is an open set U containing
x such that for each t € U, G(t) C V; G is said to be u.s.c. on X if it is u.s.c. atall x € X;

(ii) lower semicontinuous(l.s.c.) at x € X if for each open set V with G(x) NV # 0, there is an open set U containing
x such that for each t € U, G(t) NV # 0; G is said to be l.s.c. on X if it is Ls.c. at all x € X;

(ii1) closed if the graph of G, that is, the set {(x, y) : x € X, y € G(x)}, is a closed set in X X Y;
(iv) compact if the closure of range G, that is, clG(X), is compact, where G(X) = U ex G(%).

Remark 1.2. One can see that if G(x) is compact and G is u.s.c., then for any net {x,} C X such that x, — x and
for every yo € G(x,) there exist y € G(x) and a subnet {yg} of {ya} such that ys — y.

The nonlinear scalarization mapping that has a crucial role in the paper, was first introduced in [6] in order
to apply to study the vector optimization theory and vector equilibrium problems.

Definition 1.3. [6, 10] Let X be a topological vector space with the convex and pointed cone C. The formula
Ee(x) =inflre R:re—x € C},

where x € X and e € intC, defines a mapping from X into R(The real line) and is called the nonlinear scalarization
mapping on X(with respect to C and e).

The following lemma characterizes some of the important properties of the nonlinear scalarization mapping
which are used in the sequel.
Lemma 1.4. [3, 9] Let X be a t.v.s. and C be a closed, pointed convex cone of X with e € intC. Then for each r € R
and x € X the following statements are satisfied:
(i) E(x) =minfre R:re—x¢eC).

(ii) E(x) < v = re—xeC.

(iii) &(x) < r & re—x € intC.

(iv) E(x) =r & x € re — IC, where JC is the topological boundary of C.

@) y2 =1 € C= &(11) < Ee(v2)-

(vi) The mapping &, is continuous, positively homogeneous and subadditive(that is sublinear) on X.

For proving an existence result of an eqeuilibrium problem, Ky Fan’s lemma plays a key role. We are going
now to state it. Before stating it we need the following definition.

Definition 1.5. [4] Let K be a nonempty subset of topological vector space X. A set-valued mapping T : K — 2%
n
is called a KKM-mapping if, for every finite subset {x1, xa, ..., X} of K, conv{xi, xa, ..., X} is contained in U T(x;),

i=1
where conv denotes the convex hull.
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Ky Fan in 1984 obtained the following result, which is known as Ky Fan’s lemma.

Lemma 1.6. (Ky Fan-1984) [4] Let K be a nonempty subset of topological vector space X and T : K — 2X be a
KKM-mapping with closed values in K. Assume that there exists a nonempty compact convex subset B of K such that

T(x) is compact. Then

xeB

ﬂ T(x) # 0.

xeK

Definition 1.7. A set-valued mapping F : K —> 2Y is called C(.)-natural quasi convex if for any f,g € K and
A €[0,1], there exist h € K€ L(X,Y) and p € [0, 1] such that

FAf + (1= AN)g) € uE(f) + (1 = wE(g) = C(h).

In the spacial case if we take Y = R and C(h) = R, = {r € R : r > 0}, then the definition of C(.)-natural quasi
convexity converse to R -natural quasi convexity.

Definition 1.8. Let C : K C L(X,Y) — 2Y be a set-valued mapping and C(f) be a convex cone, for each f € K.
Then the set-valued mapping F : K x K — 2 is said to be

(i) C(.)-pseudomonotone, if for any f and g € K,
E(f,9) € ~C(f) = (g, f) < =C(@)

(ii) strongly C(.)-pseudomonotone, if for any f and g € K,
F(f,9) & —intC(f) = F(g, f) € ~C(9)-

Note that every strongly C(.)-pseudomonotone map is C(.)-pseudomonotone map.

2. Main results

The following maximal element theorem which proved by Ky Fan’s lemma will be used in establishing
some existence results in this paper.

Theorem 2.1. Foreachi € I, let K; be a nonempty convex subset of L(X;, Y;) and let T; : I1j;K; — 2Ki be g set-valued
mapping satisfying the following conditions:

(i) Yieland Vf = (fj)je1 € ILjelK;; fi ¢ convl'i(f), where f; is the ith projection of f;
(ii) Yi € land Yg; € Ki; T71(g;) is open in T1je[Kj;

(iii) There exist a nonempty compact subset D of I1j;K; and a nonempty compact convex subset E; C K;, Vj € 1
such that V f € I1je[K; \ D there exists j € I such that T';(f) N E; # 0.

Then there exists f* € I1jiK; such that T;(f*) = 0, for each j € I.
Proof. Let a mapping T : I1je;Kj —> 2'ierKi e defined by
I(f) = ek \ T (F), Vf = (F)jer € K.
jel

Applying (ii), I(f) is closed in I1je;K;, for each f € I1je[K;. We claim that T' is a KKM-mapping.
To verify this, let B = {(z})jel, (z?)jd, ...(z;.’)jel} CIjeKjand z* = (z})jel € convB.
If, on the contrary, we asuume that z* ¢ | J,_, F((z;”) je1), then for each m = 1,2, ...,n, there exists j,, € I such that

* -1/ m
z' e l"jm (ij)'
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where z}?f is the j,th projection of (z;”) je1- Thus

z;.'fn €l (z') Cconul'y, (z), m=1,2,..,n.

Applying z* = (z))jer € convB, it follows that

%

1 2 n
j zj,}

€ conviz: ,z5 ,...,
m m Jm Jm

z j

C conol';, (z°),

which is a contradiction to (i) and this completes the proof of the assertion. Moreover, it follows from condition (iii)

that
() T(fe) €D
(f])jelenjelEj
Indeed, if g € m(fj)jelenjelEj L'((f)je1), then it follows that
g¢ | i) vfi € E;
jel

This immediately implies that T'j(g) (VE; = 0,Vj € I, and so g € D.

Since (fer e, T(f) is a closed subset of the compact set D (note that the values of T are closed), we get that
M ferte; T(f) is a compact subset of D, and so T satisfies all the assumptions of Lemma 1.6. Hence () fery, .k, T(f) # 0.
Thus there exists f* = (f],*)jel € Ije;K; such that

f e, Vf = (fjer € jerKj.

This implies that
Fel i vieLvf ek,

jel
Thus
f]' ¢ Fj(f*), V] €l, Vf] € K]'.
Therefore I';(f*) = 0, for each j € I. This completes the proof. O
Following the same arguments as in the proof of Theorem 2.1, we can get the following result.

Theorem 2.2. Let all assumptions of Theorem 2.1 and the following conditions hold:

(i) Vieland Vf € I1iKj; Ti(f) is convex;

(ii) Vi€ Iand Vg; € K;, T';1(g;) is open in T1g[K;

(iii) There exist a nonempty compact subset D of I1jK; and a nonempty compact convex subset E; C K;, Vi € I,
such that V f € I1jeiK; \ D there exists i € I with I';(f) N E; # 0.

Then
(a) if i € I such that T;(f) # 0,V f € I1jefK;, then there exist i € I and f € I1j[K; such that f; € T;(f).
(b) ifVieland Vf € I1jgK;, fi € Ti(f), then there exists f* € I1jK; such that T'i(f*) = 0, for each i € I.

Now applying the properties of nonlinear scalarization mapping and Lemma 2.1, we prove the following
existence theorem for SGOEP.

Theorem 2.3. For each i € I, let K; be nonempty and convex subset of L(X;, Y;) and F; : I1jgK; X K; — 2Yi bea
mapping satisfying the following conditions:
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(i) Vi€ land V(fj)jer € HjelKj, Fi((fj)jer, fi) € —C((fj)je1), where f; is the ith component of (f;) jer;
(ii) Vi €land ¥(f)jer € I1jK;, the mapping g; —> &e,0Fi((f})jer, 9:) is Ry-natural quasi convex;

(iti) Vi € I and Vg; € K;, the set
{(f))jer € jerK; : Fi((fj)jer, 9:) £ —C((f))jen)},

is closed in ITje[K;

(iv) There exist a nonempty compact subset D of I1j;K; and a nonempty compact convex subset E; € K;, Vi € I
such that Y(f;)jer € T1jerK; \ D; there exist i € [ and g; € E; with

Fi((fjer, g7) © =Cil(f))jen)-
Then the solution set of SGOEP is nonempty and relatively compact.
Proof. Foreachi € I, define a set-valued mapping
T;: e K — 25,
as follows
Li((f)jer) = {gi € Ki = &, (Fil(f)jer, 91) N (0, 00) = 0},
forall (f;)je1 € IjelK;.

We claim that, Ti((f;)je1) is convex, Vi € I and (f)jer € Ije1K;. Let i € I and (f;)je1 € I1jeiK; be arbitrary and fixed.
Let g}, g7 € Ti((fj)jer) and A € [0,1]. Then

‘Sc’i(Fi(((fj)jEI)/ !]lm)) N (O, 00) = (Z), m = 1,2. (3)

Since &,,0Fi((f})je1, -) is Ry-natural quasi convex mapping, there exists u € [0,1] such that

EeOFi((f)jer, Agi + (1= A)g7) C e, oFi(f))jer, g;)
+ (1= WEOFi((fjer, 97) — Rs.
Now, inclusion (3) and Lemma 1.4, imply that
& OFi(f)jer, Ag; + (1= 1)g?) N (0, 00) = 0.
Hence
Agi + (1= g7 € Ti(f)je-
Therefore I'i((f)er) is convex.
Applying (iii), we have condition (ii) of Theorem 2.2. Indeed, Vi € I and Vg; € K, the complement of T'(g;) in K can
be defined as
T H9))" = {(fi)jer € jeKj = g & Ti((fy) jen))
={(f))jer € MjeiK; : &, 0Fi((f))jer, gi) N (0, +00) # 0}
={(f))jer € jerK; : Fi((f)jer, 9i) € —Ci((f})jen)}-
Applying condition (iii), (Fi‘l(g,-))c is closed in I1j[K;. That is, Fi‘l(g,-) is open in I1e(K;.

Now, we show that Vi € I and (f})jer € I1jerK;, fi & Ti((f})jer)-
Condition (i) and Lemma 1.4, imply that

ée,-OFi((fj)jEI/ fl) ,Z (—OO, O]/ Vie I, v(f])]EI € H]EIK]
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Thus

fi € Ti((f)jen)-
Applying (iv), we have condition (iv) of Theorem 2.2. Hence, applying Theorem 2.2, there exists f* € I1jK; such
that Ti(f*) = 0, for each i € 1. Then applying Lemma 1.4, we get

Fi(f',g:) ¢ —Ci(f),Vgi e K;, Vi€ L. @

Thus f* is a solution of SGOEP.
To prove the relatively compactness of the solution set, we claim that the solution set, that is

{f € DK : Fi(f, 9:) € —Ci(f), Vi€ I,Vg; € Ki}
is a subset of D. Otherwise, there exists f* € K\ D such that
Fi(f', 90 € =Ci(f"), Vi€ l, Vgi € Ki.
Applying (iv), there exists i € I and g € E;, such that
Fi(f*,g) € =Ci(f"),
which is a contradiction. This completes the proof. [
The next result is a special case of Theorem 2.3 when [ is singelton.

Theorem 2.4. Let X and Y be two t.v.s. and K be a nonempty convex subset of L(X,Y), C be a closed, pointed convex
cone in Y with e € intC and also F : K X K —> 2Y be a set-valued mapping with nonempty values. Assume that the
following conditions hold:

(i) forall f € K, F(f, f) € =C(f);
(ii) for all fixed f € K, the mapping g — &.0F(f, g) is Ry —natural quasi convex;

(iii) for all g € K, the set
{f € K:E(f,9) € =C(H}

is open in K;

(iv) there exist a nonempty compact convex subset D of K and a nonempty compact subset E of K such that for each
f € K\ D, there exists g € E satisfying F(f, g) € —C(f).

Then the solution set of GOEP is nonempty and relatively compact.

Remark 2.5. IfF(f,.) is C(.)—natural quasi convex, then the mapping g — £.0F(f, ) is R, —natural quasi convex.
Therefore Theorem 2.4 is valid when one replaces E,0F(f,.) by F(f,.).

The next example shows that although Theorem 2.4 is true when F(f,.) is C(.)—natural quasi convex but
condition (ii) is sharper than it.

Example 2.6. Assume that
_ ) I xeQn[-1,1]
f(x)‘{ 41 xeQrn[-1,1].

Define the mapping F : [-1,1] —s 2% by
F(x) = [f(x), f(x) + 1] X [3,4],
E0F(x) = [3,4], where C = {(x,y) : x,y > 0} and e = (1, 1) € intC.
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Remark 2.7. If the set-valued mapping f — F(f, g) is u.s.c., then the set
S={f e K:F(f,g) € —intC},

is open. Indeed, let fy € S. Since F is u.s.c. mapping in its first variable, there exists an open set V of fo such that
for each f € V, we have E(f, g) C —intC. This means that fy is an interior point of S. Hence S is open. Therefore,
if one replace —C(f) by —intC in the condition (iii) in Theorem 2.4, one can underestand that the solution set of the
following problem is nonempty:

Find f* € I1jiK; such that for eachi € 1,

Fi(f", gi) & —intC,¥g; € K. ©

Remark 2.8. It seems, reviewing the proof of Lemma 3.1 and Lemma 3.3 given in [8], which are important in the
proof of Theorem 3.4 of [8], some parts of them are not clear. Similarly, we can say the above statements about Lemma
3.1 and Theorem 3.2 of [1].

Next we prove the following lemma which is a new type of Lemma 3.3 given in [8] and Theorem 3.2 in [1] which is
necessary to prove an existence result.

Lemma 2.9. Let X and Y be two topological vector spaces and K be a nonempty convex subset of L(X,Y). Suppose
that the set-valued mapping F : K X K — 2Y satisfies the following conditions:

(i) Fis C(.)—pseudomonotone;
(i) F(f,f) £ Y\C(f), VfeK;
(iii) ifF((1 = B)g +tf, f) € Y\ C(1 - g + tf), Vit € [0, 1], then F(f, g) & ~C(f);
(iv) for each f € K, the mapping g — F(f, g) is C(.)-convex, i.e.,
F(f,1-tg+th) € (1 - t)F(f, g) + tF(f,h) — C(f),Vg,h € K, ¥t € [0, 1].

Then the following are equivalent:
(a) 3f € Ksuch that F(f,g) £ —C(f), Vg € K;
(b) Af € Ksuch that F(g, f) € —C(g), Vg € K.

Proof. (a) = (b): It is obvious from the definition of C(.)—pseudomonotonicity.
(b) = (a): Assume that g is an arbitrary element of K. For each t € (0,1), define hy = g + t(f — g). Applying (b), we
have

E(hi, 9) € ~C(), ¥t € (0, 1),

We assert that
F(hy, f) £ Y\ C(hy), Vte(0,1).

Otherwise, there exists t € (0,1) such that F(h;, f) € Y \ C(hy).
It follows from (iv) that

F(hy, hy) € (1 — )F(hy, g) + tF(hy, f) — C(hy)
C —C(hy) + Y\ C(hy) — C(hy)
CY\C(h) - Chy) C Y\ Chy),

which is a contradiction to (ii). Therefore, for all t € (0, 1), we have
F(hy, f) € Y\ C(hy).
Now, applying (iii), we get F(f, g) £ —C(f). This complets the proof. [
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Proposition 2.10. Under the hypothesis of the previous lemma the solution set of the generalized operator equilibrium
problem(GOEP) is convex.

Proof. Let fi, f> be solutions of GOEP. Applying the previous lemma, we have
F(g,f) < =C(9), Vg e K i=1,2.
Applying (iv) of Lemma 2.9, for all t € (0, 1), we have

Fg,(1-0fi +tf2) € (1= HF(g, f1) + tF(g, f2) - C(g9) € —C(g), Vg € K.

Applying Lemma 2.9, we get
F(1=fi +tf,9) € ~C((1 = i +1f), Vg € K.

This means (1 — t)fi + tf, is a solution of GOEP and the proof is complete. [

Remark 2.11. (a) Condition (ii) of Lemma 2.9 implies the following assumption which there exists in page 1 in [8].

F(g,9) £ —C(9), Vg € K.

(b) If 0 & C(f), for each f € K, then condition (iii) of the previous lemma is still valid where the set-valued mapping F
has compact values and F is v-hemicontinuous at the first variable, that is the set valued mapping A — F(f + Ag, h)
isu.s.c.at A = 0%, forall f,g,h € K, (see, Lemma 3.3 of [8] ) and the graph of C : K — 2Y is closed. Indeed, let

F(1-Hg+1tf, ) € Y\ C((1 - g +1f), Yt € (0,1).

Hence
Jh e F(1-tg+tf, H)NC(1 - b)g +tf),

and applying u.s.c. of the mapping t — F((1—t)g +tf, f) at 0%, there exist a subnet {h,} of {h:} and h € F(g, f) such
that hy, — h.

On the other hand, since the graph of C : K — 2Y is closed and hy, € C((1 —t)g + tf), we get h € C(g). Consequently,
h e F(g, f) and h ¢ —C(f). This completes the proof of the assertion. Therefore, Lemma 2.9 improves Lemma 3.3 in
[8].

By a similar argument as given for Lemma 2.9 and using Remark 2.11, we can deduce the following
result.

Lemma 2.12. Let X and Y be two topological vector spaces and K be a nonempty convex subset of L(X,Y). Let the
set-valued mapping F : K x K — 2Y satisfies the following conditions:

(i) for each g € K, the set-valued mapping f — F(f, g) is upper semicontinuous with compact values;
(ii) F is strongly C(.)-pseudomonotone;
(iii) F(f, f) € —intC(f),Vf € K;
(iv) for each f € K, the set-valued mapping g — F(f, g) is C(f)-convex;

(v) The mapping f — Y \ —=intC(f), for each f € K, has closed graph.

Then the following are equivalent:
(a) Af € K such that F(f, g) ¢ —intC(f),¥g € K;
(b) f € K such that F(g, f) € —C(g), Vg € K.
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Proof. (a) = (b): It is clear from (ii) that (a) implies (D).
(b) = (a): Assume that (b) holds and g € K is an arbitrary element of K. Foreach t € [0, 1], put hy = (1 —t)f + tg. It
follows from (b) that

F(hy, f) < =C(hy), Yt € [0,1]. (6)

Now, (iv) implies that
F(hy, hy) € (1 = H)F(hy, f) + tF(hy, g) — C(hy),

and so (6) implies that
F(h, hy) € (1 = £)(=C(hy)) + tE(hy, g) — C(hy) € tF(hy, g) — C(hy).
Since F(hy, hy) € —intC(hy) (condition (iii)) and —intC(h;) — C(h;) € —intC(h;), we have
F(h, g) € —intC(hy), Yt € [0, 1].
Then we can choose t € (0,1] such that t — 0% and
wy € F(hy, g) NY \ —intC(hy).

Applying (i), there exist subnet {wy,} of {w} and w € F(f, g) and w € F(f, g) such that w;, — w. Since h;, — f (as
t — 0%), applying (v), we get (f, w) € Y \ —intC(.). This means that w ¢ —int(C(f)). This completes the proof. [

Note that if for each f € K, C(f) is open and convex cone, then the previous lemma is a new version of

Lemma 3.3 given in [8].

The following example shows that the C(.)—pseudomonotoneity in Lemma 2.12 is essentional.

Example 2.13. Ifwe take X =Y =R, K = [0, 1], C(f) = [0, +o0], L(R, R) =~ R and we define F: KX K — 2Y by
F(f,g) =1{f + g}, Vf,g € K, then it is easy to verify that all the hypothesis of Lemma 2.12 are satisfied except (ii).
Also, one can check that each solution of the problem given by (a) in Lemma 2.12 is not a solution of part (b).

Theorem 2.14. Let all the assumptions of Lemma 2.9 hold and for each f € K € L(X,Y), the mapping g — F(f, g)
is lower semicontinuous. If there exist a nonempty compact subset B of K and a nonempty convex compact subset D
of K such that for all f € K\ B there exists g € D such that F(g, f) £ —C(g), then the solution set GOEP is nonempty
and compact.

Proof. Define S, T: K C L(X,Y) — 2¥ by

S(g) =1{f e K: F(f,9) £ -C(f) \ {0},
T(9) ={f € K:F(g, f) € —C(g)}

It is obvious from (i) of Lemma 2.9 that S(g) € T(g), for each g € K.
We claim that S is KKM-mapping. Otherewise, there exist fi, f, ..., fu € Kand t; > 0, Y./, t; = 1, such that
f =X tifi,and
F(f, fiy < -C(H\{0},i=1,2,...,n.

Since F is convex in the second variable (see condition (iv) of Lemma 2.9), we get
E(f, f) = F(f, ) tif) € Y BE(f, ) = C(f)
i=1 i=1

c Z ti(=C(f) \ {0}) = C(f)
i=1
c -C(f) \ {0},
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which is a contradiction to (ii) of Lemma 2.9. Hence S is a KKM-mapping, and so T is a KKM. The values of
T are closed, because of the lower semicotinuity of F. By the hypothesis of theorem, it is clear that () sep T(f)
is a closed sbset of B, and so (¢p T(f) is compact. Now, we can apply the Ky Fan’s lemma. Hence that there
exists f* € ek T(f). Itis obvious that the solution set of GOEP is equal to the set () ;ex T(f). Consequently,
the solution set of GOEP is nonempty and a compact subset of B. This completes the proof. [J

Remark 2.15. Theorem 2.14 is a new version of Theorem 3.4 of [8] by relaxing the compactness of values of the
mapping F and replacing upper semicontinuity of F by lower semicontinuity. Further, the coercivity condition given
is Theorem 2.14 improves the coercivity condition presented by Definition 2.8 in [8]. Moreover, Theorem 2.14 provides
conditions for which the solution set of GOEP is compact. Finally, it seems that the proofs of Theorems 3.4 and 3.5
of [8] based on Lemma 3.3 contain some gaps, for instance, see line 6 of page 6 and line 5 from below in the proof of
Theorem 3.5, where the authors assumed that the set {f,} U {f} is compact.
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