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Abstract. The paper studies the open-hereditary property of semi-separation axioms and applies it to the
study of digital topological spaces such as an n-dimensional Khalimsky topological space, a Marcus-Wyse
topological space and so on. More precisely, we study various properties of digital topological spaces
related to low-level and semi-separation axioms such as T 1

2
, semi-T 1

2
, semi-T1, semi-T2, etc. Besides, using

the finite or the infinite product property of the semi-Ti-separation axiom, i ∈ {1, 2}, we prove that the
n-dimensional Khalimsky topological space is a semi-T2-space. After showing that not every subspace of
the digital topological spaces satisfies the semi-Ti-separation axiom, i ∈ {1, 2}, we prove that the semi-Ti-
separation property is open-hereditary, i ∈ {1, 2}. All spaces in the paper are assumed to be nonempty and
connected.

1. Introduction

In relation to the study of semi-separation axioms, many concepts were established such as a regular
open set [37], a semi-open set [25], an α-set [32], a preopen set [30], an s-regular set [29] and so on.
Furthermore, based on these notions, various types of mappings were developed such as an irresolute map
[6], a semi-continuous mapping, a semi-homeomorphism (a bijection such that the images of semi-open
sets are semi-open and inverses of semi-open sets are semi-open) [6] and so forth.

The paper [26] introduced that a subset A of a topological space (X,T) is called generalized closed (g-closed
for short) if Cl(A) ⊂ U whenever A ⊂ U and U ∈ T. The paper [25] developed the notion of a T 1

2
-space with

the property that every g-closed set is closed. Thus it is obvious that a T 1
2
-space places between a T0- and a

T1-space. The paper [10] proves that a topological space X is T 1
2

if and only if each singleton of X is open
or closed. Hence a space X satisfies the separation axiom semi-T 1

2
if for each point p of X at least one of the

sets {p}, X − {p} is semi-open, i.e. for each point p of X the set {p} is either semi-open or semi-closed [7, 26].
The separation axioms semi-Ti, where i = 0, 1

2 , 1, 2, etc (see [3, 5, 25, 27]), are obtained from the definitions
of the usual separation axioms Ti after replacing open sets by semi-open ones. Hence the axiom Ti obviously
implies the axiom semi-Ti [7] but the converse does not hold. Moreover, in case i ≤ j, the axiom semi-T j
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implies the axiom semi-Ti, and the converse does not hold [6]. As usual, a property is called a semi-topological
property if the property is preserved by a semi-homeomorphism. Then the axioms semi-Ti, i ∈ {0, 1

2 , 1, 2} are
proved to have the semi-topological property [6]. Moreover, a property is hereditary if the property passes
from a topological space to every subspace with respect to the relative topology [31]. Besides, a property is
called open-hereditary (resp. closed-hereditary) if the property passes from a topological space (X,T) to every
open set (resp. every closed set) of (X,T) with respect to the relative topology.

Since the low-level separation axioms or the semi-separation axioms play important roles in applied
topology including digital topology, computational topology and so on, the paper studies their properties
on digital topological spaces such as Khalimsky, Marcus-Wyse topological space, axiomatic locally finite
space [16, 24], space set topology [18], etc.

Especially, we will study the following topics:
• A study of the preopen or the nowhere dense property of subsets of digital topological spaces.
• Are the semi-Ti-separation axioms, i ∈ {1, 2} hereditary properties ?
• A study of the finite or the infinite product property of the semi-Ti-separation axiom, i ∈ {1, 2}.
Since we will often use the terminology “ Khalimsky (resp. Marcus-Wyse)” in this paper, hereafter

we use the notation “K-(resp. M-)” instead of “Khalimsky (resp. Marcus-Wyse)”, if there is no danger of
ambiguity.

This paper is organized as follows. Section 2 provides some basic notions on K-topology. Section 3
studies some topological properties of the n-dimensional K-topological space and of the M-topological
space related to the dense and the nowhere dense property of subsets of digital topological spaces. Sec-
tion 4 investigates some properties of the n-dimensional K-topological space associated with the semi-T 1

2

separation axiom, semi-open subsets, semi-closed subsets and further, we develop the infinite product
property of the semi-T1-separation axiom. Section 5 proves the open-hereditary property of a semi-T1- and
a semi-T2-space. Section 6 concludes the paper with a summary and questions for further work.

2. Preliminaries

To study low-level separation axioms and semi-separation axioms of digital topological spaces such as
K-topological spaces and M-topological spaces, let us recall basic notions related to this work. A topological
space (X,T) is called an Alexandroff space if every point x ∈ X has the smallest open neighborhood in (X,T)
[2]. Motivated by the Alexandroff topological structure [1, 2], several kinds of digital topological spaces and
locally finite spaces were developed such as an n-dimensional K-topological space [21], an M-topological
space, an axiomatic locally finite space [24], a space set topological space [18] and so on [15, 21, 24, 28].
Furthermore, a study of their properties is included in the papers [11, 20–22, 24, 29].

In digital topology we often take the following: A graph theoretical approach with digital connectivity
on Zn [34], a K- topological approach [21, 22], an M-topological approach [28], a locally finite topological
approach [24] and so on.

First of all, let us recall some basic notions from digital graph theory [34, 35]. Motivated by the study of
low-dimensional digital images X ⊂ Zn,n ∈ {1, 2, 3} [34], we have studied nD digital images X ⊂ Zn,n ∈ N
with the k-adjacency relations of Zn,n ∈ N [12] (see also [14]), as follows:

For a natural number m, 1 ≤ m ≤ n, two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,

are k(m,n)-adjacent if

at most m of their coordinates differ by ± 1, and all others coincide. (2.1)

In terms of the operator of (2.1), the k(m,n)-adjacency relations of Zn,n ∈ N, are obtained [12] (see also
[14]) as follows:

k := k(m,n) =

n−1∑
i=n−m

2n−iCn
i ,where Cn

i =
n!

(n − i)! i!
. (2.2)
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A. Rosenfeld [34] called a set X(⊂ Zn) with a k-adjacency a digital image, denoted by (X, k). Indeed, to
study digital images on Zn in the graph-theoretical approach [34, 35], using the k-adjacency relations of Zn

of (2.2), we say that a digital k-neighborhood of p in Zn is the set [34]

Nk(p) := {q ∈ Zn
| p is k-adjacent to q} ∪ {p}. (2.3)

For instance, for a point p := (x, y) ∈ Z2 we have{
N4(p) = {(x ± 1, y), p, (x, y ± 1)}
N8(p) = {(x ± 1, y), p, (x, y ± 1), (x ± 1, y ± 1).}

}
Second, let us now recall basic notions of the n-dimensional K-topological space, n ≥ 1. Khalimsky line

topology κ on Z, denoted by (Z, κ), is induced by the set {[2n − 1, 2n + 1]Z |n ∈ Z} as a subbase [2] (see also
[21]), where a, b ∈ Z, we often use the notation [a, b]Z := {x ∈ Z | a ≤ x ≤ b}. In the present paper we call
([a, b]Z, κ[a,b]Z )(or for short [a, b]Z if there is no danger of ambiguity) a Khalimsky interval. Furthermore,
the product topology on Zn induced by (Z, κ) is called the Khalimsky topology on Zn (or the n-dimensional
Khalimsky topological space), denoted by (Zn, κn). Besides, for a subset X ⊂ Zn, the subspace induced by
(Zn, κn) is obtained, denoted by (X, κn

X) and called a K-topological space.
Let us now investigate the structure of (Zn, κn). A point x = (xi)i∈[1,n]Z ∈ Zn is pure open if all coordinates

are odd, and pure closed if each of the coordinates is even and the other points in Zn are called mixed [22].
These points are shown like the following symbols: The symbols �(resp. •) means a pure closed point(resp.
a mixed point) (see Figure 1) and further, a black jumbo dot represents a pure open point. In addition, in the
present paper we denote by (Zn)o (resp. (Zn)e) the set of all pure open (resp. pure closed) points of (Zn, κn).
Besides, we use the notation (Zn)m for the set of all mixed points of (Zn, κn).

In relation to the further statement of a mixed point in (Z2, κ2), for the point p = (2m, 2n + 1)(resp.
p = (2m + 1, 2n)), we call the point p closed-open (resp. open-closed) [36]. In terms of this perspective, we
clearly observe that the smallest (open) neighborhood of the point p := (p1, p2) of Z2, denoted by SNK(p) ⊂ Z2,
is the following:

SNK(p) :=


{p} if p is pure open,
{(p1, p2 ± 1), p} if p is open-closed,
{(p1 ± 1, p2), p} if p is closed-open,
N8(p) if p is pure closed.

 (2.4)

Hereafter, in (X, κn
X), for a point p ∈ X we use the notation SNK(p) ∩ X := SNX(p) for short.

Third, let us now recall basic concepts on Marcus-Wyse topology as another digital space. The M-
topology on Z2, denoted by (Z2, γ), is induced by the set {Up} in (2.5) below as a subbase [28], where for point
p = (x, y) ∈ Z2

Up := SNM(p) := N4(p) if x + y is even. (2.5)

In relation to the further statement of a point in Z2, in the paper we call a point p = (x1, x2) double even
if x1 + x2 is an even number such that each xi is even, i ∈ {1, 2}; even if x1 + x2 is an even number such that
each xi is odd, i ∈ {1, 2}; and odd if x1 + x2 is an odd number [28].

In all subspaces of (Z2, γ) of Figure 1-3, the symbol ♦ means a double even point or a even point, and the
symbol • means an odd point. In view of (2.5), we can obviously obtain the following: under (Z2, γ) the
singleton with either a double even point or an even point is the closure containing the given point. In
addition, the singleton with an odd point is clearly the smallest open neighborhood of the given point. For
a set X ⊂ Z2 we can take the subspace, denoted by (X, γX), induced by (Z2, γ). As usual, for a subset X ⊂ Z2

we will consider (X, γX) [28] as a subspace of (Z2, γ), and it is called an M-topological space.
A locally finite space is a topological space in which every point has a finite neighborhood [31]. It is

clear that whereas every locally finite space is Alexandroff, not every Alexandroff space is locally finite.
Indeed, an Alexandroff space with T0 axiom need not be locally finite. But under (Zn, κn) these notions of
local finiteness and Alexandroff are equivalent.
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3. Some Topological Properties of Digital Topological Spaces

In this section, we investigate various topological properties of (Zn, κn) and (Z2, γ) such as a dense subset,
a nowhere dense subset and so forth, which will be substantially used in Sections 4 and 5. Indeed, for a
topological space (X,T) we say that a subset A of X is nowhere dense if Int(Cl(A)) = ∅ [31], where “Cl(resp.
Int)” means the closure (resp. the interior) operator of the given set. Also, a subset A of X is called dense if
Cl(A) = X. To do this work, we now recall some properties of an open and a closed set of (Z2, κ2).

According to the properties (2.3) and (2.4), by using some properties of the closure and the interior
operator, we obtain the following:

Lemma 3.1. A subset B of (Z2, κ2) is open if and only if
N8(p) ⊂ B whenever p := (2m, 2n) ∈ B, or
{2m + 1} × [2n − 1, 2n + 1]Z ⊂ B whenever (2m + 1, 2n) ∈ B, or
[2m − 1, 2m + 1]Z × {2n + 1} ⊂ B whenever (2m, 2n + 1) ∈ B.

 (3.1)

Lemma 3.2. A subset C of (Z2, κ2) is closed if and only if
N8(q) ⊂ C whenever q := (2m + 1, 2n + 1) ∈ C, or
[2m, 2m + 2]Z × {2n} ⊂ C whenever (2m + 1, 2n) ∈ C, or
{2m} × [2n, 2n + 2]Z ⊂ C whenever (2m, 2n + 1) ∈ C.

 (3.2)

As a generalization of Lemmas 3.1 and 3.2, we obtain the following:

Remark 3.3. A subset B of (Zn, κn) is open if and only if
N3n−1(p) ⊂ B whenever p := (2m1, 2m2, · · · , 2mn) ∈ B, or
{2m1 + 1} × · · · × {2mi−1 + 1} ×N2(2mi) × {2mi+1 + 1} × · · · × {2mn + 1} ⊂ B
whenever pi := (2m1 + 1, · · · , 2mi−1 + 1, 2mi, 2mi+1 + 1, · · · , 2mn + 1) ∈ B, i ∈ [1,n]Z.


Remark 3.4. A subset C of (Zn, κn) is closed if and only if

N3n−1(q) ⊂ C whenever q := (2m1 + 1, 2m2 + 1, · · · , 2mn + 1) ∈ C, or
{2m1} × · · · × {2mi−1} ×N2(2mi + 1) × {2mi+1} × · · · × {2mn} ⊂ C
whenever qi := (2m1, · · · , 2mi−1, 2mi + 1, 2mi+1, · · · , 2mn) ∈ C, i ∈ [1,n]Z.


In view of the property (3.2), under (Zn, κn), for the point q := (2m1 + 1, 2m2 + 1, · · · , 2mn + 1), mi ∈ Z the

closure of the singleton {q} is the set
{q} := N3n−1(q) (3.3)

By using the above properties, we now investigate dense and nowhere dense subsets of (Zn, κn) and
(Z2, γ).

Theorem 3.5. (1) In (Zn, κn), (Zn)o is a dense subset of (Zn, κn).
(2) Under (Zn, κn), (Zn)e is a nowhere dense subset of (Zn, κn).
(3) Under (Zn, κn), (Zn)m is a nowhere dense subset of (Zn, κn).

Proof. (1) Owing to Remarks 3.3 and 3.4, for any p ∈ Zn
\ (Zn)o we obtain (SNK(p) \ {p}) ∩ (Zn)o , ∅ so that

Cl((Zn)o) = Zn because the derived set of (Zn)o is equal to Zn
\ (Zn)o, which completes the proof.

(2) Since Cl((Zn)e) = (Zn)e and any nonempty subset of (Zn)e is not an open subset of (Zn, κn)(see Remark
3.3), the interior of Cl((Zn)e) is an empty set. Namely, Int(Cl((Zn)e) = ∅, which completes the proof.

(3) Since Cl((Zn)m) = Zn
\ (Zn)o and any nonempty subset of (Zn)m is not an open subset of (Zn, κn)(see

Remark 3.3), we conclude that Int(Cl((Zn)m)) is an empty set, which completes the proof.



S.-E. Han / Filomat 32:13 (2018), zzz–zzz 5

In view of Remark 3.3, we obtain the following:

Remark 3.6. Under (Zn, κn), every nonempty open set O contains at least one point in (Zn)o.

Let us move onto the study of the above properties from the viewpoint of M-topology, as follows.

Lemma 3.7. A subset B of (Z2, γ) is open if and only if

N4(p) ⊂ B whenever p ∈ {(2m, 2n), (2m + 1, 2n + 1)}, p ∈ B (3.4)

Lemma 3.8. A subset C of (Z2, γ) is closed if and only if

N4(q) ⊂ C whenever q ∈ {(2m + 1, 2n), (2m, 2n + 1)}, q ∈ C (3.5)

Based on Lemma 3.7 and 3.8, we obtain the following:

Theorem 3.9. (1) In (Z2, γ), (Z2)o is a dense subset of (Z2, γ).
(2) Under (Z2, γ), (Z2)e is a nowhere dense subset of (Z2, γ).

Proof. (1) Owing to Lemmas 3.7 and 3.8, for any p ∈ Z2
\ (Z2)o we obtain (SNM(p) \ {p}) ∩ (Z2)o , ∅ so that

Cl((Z2)o) = Z2 because the derived set of (Z2)o is equal to Z2
\ (Z2)o, which completes the proof.

(2) Since Cl((Z2)e) = (Z2)e and any nonempty subset of (Z2)e is not an open subset of (Z2, γ) (see Lemmas
3.7 and 3.8), we conclude that the interior of Cl((Z2)e) is an empty set. Namely, Int(Cl((Z2)e) = ∅, which
completes the proof.

4. Some Properties of the Semi-T1-Structure Related to Digital Topological Spaces

This section proves the infinite product property of the semi-T1-separation axiom (see Theorem 4.4 and
Remark 4.5). Owing to this property, for example (Zn, κn),n ∈ N is a semi-T1-space and further, (Z2, γ) is
also a semi-T1-space (see Example 4.6 and Theorem 4.7). Recall that a set A of a topological space (X,T)
is called semi-open if there is an open set O such that O ⊂ A ⊂ Cl(O) (or equivalently, A ⊂ Cl(Int(A))) [25].
In addition, a set B of a topological space (X,T) is called a semi-closed if there is a closed set F such that
Int(F) ⊂ B ⊂ F (or equivalently, Int(Cl(B)) ⊂ B) [25]. We recall that a topological space (X,T) is a semi-T 1

2

space if each singleton of (X,T) is semi-open or semi-closed. For instance, (Z, κ) is a semi-T 1
2
-space [4].

It is well known that each of (Zn, κn) and (Z2, γ) is an Alexandroff space with the axiom T0, n ∈ N [22].
As a generalization of this approach, we obtain the following:

Theorem 4.1. ([4]) An Alexandroff space with the separation axiom T0 is a semi-T 1
2

space.

By Theorem 4.1, for example, (Zn, κn) is also a semi-T 1
2
-space [15]. In view of Theorem 4.1, we can

observe that a semi-T 1
2
-separation axiom does not place between the T0- and the T 1

2
-separation axiom.

As a semi-separation axiom which is stronger than the semi-T 1
2
-separation axiom, we introduce the

following:

Definition 4.2. ([27]) We say that a topological space (X,T) is a semi-T1-space if any two distinct points
p, q ∈ X have their own semi-open sets SO(p) and SO(q) such that q < SO(p) and p < SO(q), where SO(x)
means a semi-open set containing the given point x.

Besides, it turns out that a topological space (X,T) is a semi-T1-space if and only if every singleton is
semi-closed [27].
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Example 4.3. The Khalimsky line (Z, κ) is a semi-T1 space [32].
More precisely, since every singleton {2n},n ∈ Z is a closed set in (Z, κ), it is semi-closed. Next, we

need to only prove that every singleton {2n + 1},n ∈ Z is semi-closed in (Z, κ). Since we have the following
property with Z \ Cl({2n + 1}) := O ∈ (Z, κ),

O ⊂ Z \ {2n + 1} ⊂ Cl(O) = Z \ {2n + 1}, (4.1)

because Cl({2n + 1}) = {2n, 2n + 1, 2n + 2}, which guarantees the assertion.

Unlike the product property of the separation axioms T0 and T1, it is well known that the separation
axiom T 1

2
does not have the product property. For instance, whereas (Z, κ) is a T 1

2
-space, the product space

(Z2, κ2) is not a T 1
2
-space.

The paper [4] proves the finite product property of the semi-T 1
2
-separation axiom. Motivated by this

fact and by using the finite product property of the interior operator and the product property of the closure
operator, we study the finite product property of a semi-T1-space. Indeed, the paper [8] referred to the finite
product property of a semi-T1-space (see Corollary 3.2 of [8]) by using some properties of a semi-R0-space.
However, the present paper proves this product property by using the definition of a semi-T1-space in a
simpler way and further, proves the infinite product property a semi-T1-space (see Remark 4.5), as follows:

Theorem 4.4. The semi-T1-separation axiom has the finite product property.

Proof. Let (Xα,Tα) be semi-T1-spaces,α ∈M := [1,n]Z. Then we prove that the product space (
∏

α∈M Xα,
∏

α∈M Tα)
is also a semi-T1-space. More precisely, under (

∏
α∈M Xα,

∏
α∈M Tα), take any point p := (pα)α∈M ∈ Zn. Then

we need to prove that each singleton {p} is semi-closed in the product space. Owing to the the property
“semi-T1” of (Xα,Tα), each singleton {pα} consisting of one of the coordinates of the given point p has a
closed set in (Xα,Tα), denoted by Cα, such that

Int(Cα) ⊂ {pα} ⊂ Cα. (4.2)

Let us recall both the product property of the interior operator, i.e. in case M is finite, for any subset
Aα ⊂ Xα, Int(

∏
α∈M Aα) =

∏
α∈M Int(Aα) and in case M is infinite, Int(

∏
α∈M Aα) ⊂

∏
α∈M Int(Aα); and the

product property of the closure operator, i.e. Cl(
∏

α∈M Aα) =
∏

α∈M Cl(Aα). According to the property (4.2),
for any singleton {p} in (

∏
α∈M Xα,

∏
α∈M Tα) we obtain

Int(
∏
α∈M

Cα) =
∏
α∈M

Int(Cα) ⊂ {p} ⊂
∏
α∈M

Cα. (4.3)

Indeed, owing to the property (4.4) below,
∏

α∈M Cα of (4.3) is closed.∏
α∈M

Cα =
∏
α∈M

Cl(Cα) = Cl(
∏
α∈M

Cα). (4.4)

Due to the property (4.3), the singleton {p} is semi-closed in (
∏

α∈M Xα,
∏

α∈M Tα), which completes the
proof.

Remark 4.5. As for the assertion of Theorem 4.4, we have the infinite product property of the semi-T1-
separation axiom because the property (4.3) can be generalized into the following property

Int(
∏
α∈M

Cα) ⊂
∏
α∈M

Int(Cα) ⊂ {p} ⊂
∏
α∈M

Cα,

and further, owing to (4.4), the assertion is proved.

By Example 4.3 and Theorem 4.4, we obtain the following:
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Example 4.6. Since (Z, κ) is obviously a semi-T1 space, by Theorem 4.4, (Zn, κn) is a semi-T1 space, n ∈ N
[32].

Le us now prove that the M-topological space (Z2, γ) is also a semi-T1-space, as follows:

Theorem 4.7. (Z2, γ) is a semi-T1-space.

Proof. Let us take any two distinct points p, q ∈ Z2. Without loss of generality, according to the property
(2.5), we may take p ∈ {(2m, 2n), (2m + 1, 2n + 1) |m,n ∈ Z} and q ∈ {(2m + 1, 2n), (2m, 2n + 1) |m,n ∈ Z}. Then
we prove that each singleton {p} and {q} is semi-closed.

(Case 1) Since the singleton {p} is closed in (Z2, γ), it is obviously semi-closed.
(Case 2) Whereas the singleton {q} is open in (Z2, γ), we have the following property (see Lemmas 3.7

and 3.8)
Z2
\ Cl({q}) := O ⊂ Z2

\ {q} = Cl(O), (4.5)

which implies that the singleton {q} is semi-closed.

5. Open-Hereditary Property of a Semi-T1 and a Semi-T2-Space

In this section we study the hereditary property of the semi-T1-separation axiom. Indeed, not every
subspace of the digital topological spaces satisfies the semi-T1-separation axiom, as the following remark
shows:

Remark 5.1. The Khalimsky subspace ([0, 5]Z, κ[0,5]Z ) does not satisfy the semi-T1-separation axiom because
the singleton {1} is not semi-closed in ([0, 5]Z, κ[0,5]Z ) (for more details, see the proof of Lemma 5.3(2) below).

To study the hereditary property of semi-separation axioms, let us recall basic notion of digital paths,
as follows:

Definition 5.2. ([13]) (1) We say that a finite sequence P := (xi)i∈[0,m]Z in (Zn, κn) is simple K-path if xi and x j
in P are K-adjacent if and only if either j = i + 1 or i = j + 1, where two distinct points x and y are called
K-adjacent if y ∈ SNK(x) or x ∈ SNK(y) [22].

(2) We say that a finite sequence P := (xi)i∈[0,m]Z in (Z2, γ) is simple M-path if xi and x j in P are M-adjacent if
and only if either j = i + 1 or i = j + 1, where two distinct points x and y are called M-adjacent if y ∈ SNM(x)
or x ∈ SNM(y) [17].

Let us investigate the hereditary property of a semi-T1-space with the following lemma.

Lemma 5.3. (1) Any simple K-path P := (p1, p2, · · · , pl) in (Zn, κn) is a semi-T1-space, where p1, pl ∈ (Zn)o and
|P | ≥ 3.

(2) A simple K-path P := (p1, p2, · · · , pl) in (Zn, κn) is not a semi-T1-space, where either of p1 and pl belongs to
(Zn)e and |P | ≥ 3.

(3) Any simple M-path Q := (m1,m2, · · · ,ml) in (Z2, γ) is a semi-T1-space, where both m1 and ml are odd points
in (Z2, γ) and |Q | ≥ 3.

(4) A simple M-path Q := (m1,m2, · · · ,ml) in (Z2, γ) is not a semi-T1-space, where either of m1 and ml is double
even or even in (Z2, γ) and |Q | ≥ 3.

Proof. (1) Under the hypothesis, according to Definition 2, the number l should be odd. Since each point
p2t ∈ P, t ∈ [1, l−1

2 ]Z belongs to the set (Zn)e, the singleton {p2t} is semi-closed because {p2t} is closed in (P, κn
P).

Next, since the singleton {p2t−1}, p2t−1 ∈ P, t ∈ [1, l−1
2 ]Z, belongs to the set (Zn)o ∪ (Zn)m, the singleton {p2t−1} is

also semi-closed because for the singleton {p2t−1}we have the following property with P \ Cl({p2t−1}) := O ∈
(P, κn

P)
O ⊂ P \ {p2t−1} ⊂ Cl(O). (5.1)
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For instance, consider the simple K-path (P := (pi)i∈[1,5]Z , κ
2
P) in Figure 1(a). Then (P, κ2

P) is a semi-T1-space.
To be specific, the singleton {p}, p ∈ {p2, p4}, is closed in (P, κ2

P) and it is obviously semi-closed. Next, whereas
the singleton {q}, q ∈ {p1, p3, p5}, is open in (P, κ2

P) and it is obviously semi-closed in (P, κ2
P).

(2) Under the hypothesis, to prove that the given simple K-path P := (pi)[1,5]Z is not a semi-T1-space,
we may assume that p1 belongs to (Zn)e. Let us now take the point p2 ∈ P. Then the singleton {p2} is not
semi-closed so that P is not a semi-T1-space. For instance, consider the simple K-path (P := (pi)i∈[1,5]Z , κ

2
P) in

Figure 1(b). Then the singleton {p2} is not semi-closed in (P, κ2
P) because

P \ Cl({p2}) := O ⊂ P \ {p2} * Cl(O),

and Cl(O) = {p3, p4, p5}.
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Figure 1: Configuration of the semi-T1-axiom of both a simple K-path and a simple M-path.

(3) Under the hypothesis, according to Definition 2, the number l should be odd. Since each point
m2t ∈ Q, t ∈ [1, l−1

2 ]Z is double even or even points in (Z2, γ), the singleton {m2t} is semi-closed because {m2t}

is closed in (Q, γQ). Next, since the point m2t−1 ∈ Q, t ∈ [1, l
2 ]Z is odd point, by using the method similar to

(5.1), the singleton {m2t−1} is semi-closed.
For instance, consider the simple M-path (Y := (mi)i∈[1,5]Z , γY) in Figure 1(c), where m1 := (1, 0),m2 :=

(2, 0),m3 := (2, 1),m4 := (3, 1),m5 := (4, 1). Then (Y, γY) is a semi-T1-space. To be specific, since each singleton
{p} ⊂ {m2,m4} is closed in (Y, γY), it is obviously semi-closed. Next, whereas each singleton {p} ⊂ {m1,m3,m5}

is open in (Y, γY), it is obviously semi-closed in (Y, γY).
(4) Under the hypothesis, consider the M-path (Z := (mi)i∈[1,l]Z , γZ) in Figure 1(d). We may assume that

m1 is a double even or an even point in (Z2, γ). Then the point m2 ∈ Q is odd point in (Z2, γ) so that the
singleton {m2} is not semi-closed. To be specific, take Z := (mi)i∈[1,5]Z , where m1 := (0, 0),m2 := (1, 0),m3 :=
(1, 1),m4 := (2, 1),m5 := (3, 1) (see Figure 1 (d)). Then the point {m2} is not semi-closed in (Z, γZ) because

Q \ Cl({m2}) := O ⊂ P \ {m2} * Cl(O),

Cl(O) = {m3,m4,m5}. Hence (Z, γZ) is not a semi-T1-space.

Let us now ask if a finite K-plane is a semi-T1 space.

Proposition 5.4. (1) Let X be the set [2m + 1, 2m + k + 1]Z × [2n + 1, 2n + k + 1]Z, where m,n ∈ Z, k ∈ 2N. Then
the subspace (X, κ2

X)(⊂ (Z2, κ2)) is a semi-T1-space.
(2) Let Y be the set [2m, 2m + k]Z × [2n + 1, 2n + k]Z,m,n ∈ Z, k ∈ 2N. Then (Y, κ2

Y) is not a semi-T1-space.
(3) Let Z be the set [2m, 2m + k + 1]Z × [2n, 2n + k + 1]Z,m,n ∈ Z, k ∈ 2N. Then (Z, κ2

Z) is not a semi-T1-space.
(4) Let W be the set [2m+1, 2m+k+1]Z×[2n, 2n+k+1]Z,m,n ∈ Z, k ∈ 2N. Then (W, κ2

W) is not a semi-T1-space.

Proof. (1) By Theorem 4.4, Remark 5.1 and Lemma 5.3, the proof is completed because both [2m+1, 2m+k+1]Z
and [2n + 1, 2n + k + 1]Z are simple K-paths.
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(2) Based on Lemmas 3.1 and 3.2, let us take the singleton {p}, p := (1, 1) in Figure 2(a). Then the singleton
{p} is not semi-closed in (Y, κ2

Y).
(3) Based on Lemmas 3.1 and 3.2, consider the singleton {q}, q := (1, 1) in Figure 2(b). Then the singleton

{q} is not semi-closed in (Z, κ2
Z).

(4) By using the method similar to the proof of (2), the proof is completed.

(0, 1)


(a)


(3, 4)


(1, 1)
 (2,1)
 (3,1)


p


(0, 0)


(b)


(3, 3)


(1, 0)
 (2,0)
 (3,0)


q


(0, 3)


Y:=
 Z:=


Figure 2: (a)-(b) Configuration of the non-hereditary both the semi-T1- and the semi-T2-space, where (Y, κ2
Y) and (Z, κ2

Z) are portions
of (Z2, κ2).

In view of Theorems 4.4 and 4.7, and Example 4.6 and Proposition 5.4(2)-(4), we obtain the following:

Remark 5.5. (1) Let X be an Alexandroff semi-T1-space and Y ⊂ X. Then Y need not be a semi-T1-space.
(2) Let X1,X2 be an Alexandroff semi-T1-space and Z ⊂ X1 × X2. Then Z need not be a semi-T1-space.

In view of Proposition 5.4 (2)-(4), not every finite K-plane is not a semi-T1-space. Besides, owing to
Example 4.6 and Theorem 4.7, we obtain the following:

Proposition 5.6. A semi-T1-separation property is not hereditary.

Motivated by Proposition 5.4, we prove that a semi-T1 space has the open-hereditary property.

Theorem 5.7. A semi-T1-separation property is open-hereditary.

Proof. We need to prove that if (X,T) := X is a semi-T1 space and Y is an open subset of X, then the subspace
(Y,TY) := Y is a semi-T1-space. Let p ∈ Y ⊂ X. We need to prove that there is a closed set F′ in (Y,TY) such
that Int(F′) ⊂ {p} ⊂ F′. Owing to the semi-T1 structure of (X,T), for any point p ∈ Y ⊂ X there is a closed set
F in (X,T) such that

Int(F) ⊂ {p} ⊂ F or Int(Cl({p})) ⊂ {p}. (5.3)

Let us now consider the following two cases:
(Case 1) In (5.3), assume Int(Cl({p})) = {p}, i.e. we may assume Int(F) , ∅. Then the closed set F contains

a unique non-empty open set denoted by O(p)(∈ (X,T)) such that O(p) = {p} ⊂ F. It is obvious that if the set
{p} is open in X, then it is open in Y and further, since F is a closed set in X, F ∩ Y is also closed in (Y,TY).
Thus we obtain the closed set F ∩ Y in (Y,TY) such that

F ∩ Y ⊂ Y ⊂ X. (5.4)

Let us now adapt the interior operator into (5.4). Then we have{
IntX(F ∩ Y) = IntX(Y) ∩ IntY(F ∩ Y)
= Y ∩ IntY(F ∩ Y) = IntY(F ∩ Y),

}
(5.5)
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where for a subset B ⊂ Y ⊂ X we denote by IntX(B) (resp. IntY(B)) the interior of B under the topology (X,T)
(resp. (Y,TY)). In (5.5), since IntX(F ∩ Y) = {p}, we have IntY(F ∩ Y) = {p} so that in (Y,TY)

IntY(F ∩ Y) ⊂ {p} ⊂ F ∩ Y.

Hence the subspace Y is semi-T1.
(Case 2) In (5.3), assume Int(Cl({p})) = ∅. It is obvious that if the set {p} is nowhere dense in X, then it is

also nowhere dense in Y. Hence the subspace Y is semi-T1.

Let us now move onto the study of semi-T2-structure of digital topological spaces.

Definition 5.8. ([27]) We say that a topological space (X,T) is a semi-T2-space if any two distinct points
p, q ∈ X have their own semi-open sets SO(p) and SO(q) such that SO(p) ∩ SO(q) = ∅, where SO(x) means a
semi-open set containing the given point x.

Theorem 5.9. (Z2, γ) is a semi-T2-space.

Proof. Consider two distinct points p and q in (Z2, γ).
(Case 1) In case p and q are not M-adjacent to each other. Namely, p < SNM(q) and q < SNM(p). Take the

sets {
X(p) := SNM(p) \ (SNM(p) ∩ SNM(q)) and
X(q) := SNM(q) \ (SNM(q) ∩ SNM(p)).

}
Then X(p) = SO(p) and X(q) = SO(q) such that SO(p) ∩ SO(q) = ∅.

(Case 2) In case p and q are M-adjacent. Namely, p ∈ SNM(q) or q ∈ SNM(p) so that we have the following
two cases.

(Case 2-1) In case each of p and q is an odd point in (Z2, γ), we have SO(p) = {p} and SO(q) = {q}. Then
SO(p) ∩ SO(q) = ∅.

(Case 2-2) In case each of p is a double even or even point and q is an odd point in (Z2, γ), we have
SO(p) = SNM(p) \ {q} and SO(q) = {q}.

Then SO(p) ∩ SO(q) = ∅.

The paper [33] developed the product property of a semi-T2-space.

Theorem 5.10. ([33]) A semi-T2-space has the finite product property.

Remark 5.11. Since (Z, κ) is a semi-T2-space, by Theorem 5.9, we confirm that (Zn, κn) is a semi-T2-space
[32].

Proposition 5.12. (1) A semi-T2-separation property is not hereditary.
(2) A semi-T2-separation property is not closed-hereditary.

Proof. (1) As a counterexample, consider the subspace (X, κX), where X := [0, 1]Z (see Figure 3(e)). Whereas
the space (Z, κ) is a semi-T2-space, the subspace (X, κX) is not a semi-T2-space because SO(0) = X and
SO(1) = {1}.

(2) As a counterexample, consider the subspace (Y, κY), where Y := [0, 2]Z (see Figure 3(c)). Although
the space (Z, κ) is a semi-T2-space, the closed subspace (Y, κY) is not a semi-T2-space because for the distinct
points 0 and 1 there are smallest semi-open sets

SO(0) = {0, 1} and SO(1) = {1}

so that SO(0) ∩ SO(1) , ∅, which implies that (Y, κY) is not a semi-T2-space.

Theorem 5.13. A semi-T2-separation property is open-hereditary.
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Figure 3: (a)-(b) Configuration of the open-hereditary property of the semi-T2-structure of both (Zn, κn) and (Z2, γ); (c) Non-closed-
hereditary property of a semi-T2-space; (d) The open-hereditary property of a semi-T2-space; (e) Non-hereditary property of a
semi-T2-space.

Proof. We need to prove that if (X,T) := X is a semi-T2 space and Y is an open subset of (X,T) then the
subspace (Y,TY) := Y is a semi-T2-space. To be specific, consider distinct two points p, q ∈ Y ⊂ X. Then
there are two semi-open sets SO(p) and SO(q) in (X,T) such that SO(p)∩ SO(q) = ∅. Since Y is an open set in
(X,T) the sets SO(p) ∩ Y and SO(q) ∩ Y are semi-open sets in (Y,TY) such that (SO(p) ∩ Y) ∩ (SO(q) ∩ Y) = ∅.
Hence the subspace Y of the space X is semi-T2.

Example 5.14. (1) Consider the spaces (X, κ2
X) (see Figure 3(a)) and (Y, γY) (see Figure 3(b)) which are

respectively open subspaces in (Z2, κ2) and (Z2, γ). By Proposition 5.12, those are semi-T2-spaces. To be
specific, take the two distinct points p, q in (X, κ2

X) (see Figure 3(a)). Then we have SO(p) = {(1, 1), (1, 2), (2, 2)}
and SO(q) = {(3, 2), (3, 3)} which are disjoint. Besides, for two points p, q in (Y, γY) then we have SO(p) =
{(0, 3), (1, 3)} and SO(q) = {(2, 3), (2, 4)}which are disjoint.

(2) Consider the subspace (W, κW), where W := [1, 3]Z (see Figure 3(d)). Then the open subspace (W, κW)
is a semi-T2-space because for any distinct two points p and q in W there are smallest semi-open sets SO(p)
and SO(q) so that SO(p) ∩ SO(q) = ∅, where SO(1) = {1},SO(2) ∈ {{1, 2}, {2, 3}},SO(3) = {3}, which implies
that (W, κW) is a semi-T2-space.

6. Concluding Remark and Further Work

We have studied various properties of semi-Ti-separation axioms, i ∈ { 12 , 1, 2}. In particular, although
semi-Ti-spaces, i ∈ {1, 2} do not have the hereditary property, it turns out that they have the open-hereditary
property.

As a further work, motivated by Theorem 4.1, we have the following problems.

Question 6.1. Under what condition does the T 1
2
-separation axiom imply the semi-T1-separation axiom?

Question 6.2. Under what condition does the T1-separation axiom imply the semi-T2-separation axiom?

Besides, after developing some new digital topological spaces, we need to study some topological
properties related to low-level separation axioms and their corresponding semi-separation axioms.
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[19] D.S. Janković, I.L. Reilly, On semi separation properties, Indian J. Pure Appl. Math. 16 (1985) 957–964.
[20] J.M. Kang, S.-E. Han, Compression of Khalimsky topological spaces, Filomat 26 (2012) 1101–1114.
[21] E.D. Khalimsky, Applications of connected ordered topological spaces in topology, Conf. Math. Department Provoia (1970).
[22] E. Khalimsky, R. Kopperman, P.R. Meyer, Computer graphics and connected topologies on finite ordered sets, opology Appl. 36

(1990) 1–17.
[23] S. El-Kohm, Semi-open and semi-closed sets in digital topological spaces, Commun. Fac. Sci. Univ. Ank. Series A1 53 (2004) 1–6.
[24] V. Kovalevsky, Axiomatic Digital Topology, J. Math. Imaging Vision 26 (2006) 41–58.
[25] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70 (1963) 36–41.
[26] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 19 (1970) 89–96.
[27] S.N. Maheshwari, R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles 89 (1975) 395–402.
[28] D. Marcus, F. Wyse et al., A special topology for the integers (Problem 5712), Amer. Math. Monthly 77 (1970) 1119.
[29] N. Mariappan, M.L. Thivagar, Some separation properties of the digital line, Internat. J. Comput. Appl. (2013) 975–987.
[30] A. Mashhour, M. Abd El-Monsef, S. El-Deeb, On precontinous and weak precontinous mappings, Proc. Math. Phys. Soc. Egypt

51 (1981) 47–53.
[31] J.R. Munkres, Topology. A First Course, Prentice-Hall, Inc. 1975.
[32] S.I. Nada, Semi-open and semi-closed sets in digital topological spaces, Commun. Fac. Sci. Univ. Ank. Series A1 53 (2004) 1–6.
[33] T. Noiri, On semi-T2-spaces, Ann. Soc. Sci. Bruxelles Ser. I 90 (1976) 215–220.
[34] A. Rosenfeld, Digital topology, Amer. Math. Monthly 86 (1979) 76–87.
[35] A. Rosenfeld, Digital straight line segments, IEEE Trans. Comput 23 (1974) 1264–1269.
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