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Abstract. This article is concerned with the estimating problem of heteroscedastic partially linear errors-
in-variables (EV) models. We derive the strong consistency rate for estimators of the slope parameter and
the nonparametric component in the case of known error variance with negative association (NA) random
errors. Meanwhile, when the error variance is unknown, the strong consistency rate for the estimators of
the slope parameter and the nonparametric component as well as variance function are considered for NA
samples. In general, we concluded that the strong consistency rate for all estimators can achieve o(n~/4).

1. Introduction

Consider the following heteroscedastic partially linear EV model

yi =&+ g(ti) + €, )
xi =& + Ui,

where €; = g;e;, aiz = f(u;), (&, ti, u;) are design points, (¢, x;, y;) are observed samples, &; are the potential
variables cannot be observed, y; are the response variables, and x; are observed with measurement errors

ui, Egi = 0, while ¢; are random errors with Ee; = 0. f € R is an unknown parameter that needs to be
estimated. /() is a function defined on close interval [0, 1] satisfying

& = h(t) +v;. )

where v; are also nonrandom design points.

Model (??) and its special cases have been widely studied by many authors. Firstly, when the &; can
be accurately observed, 07 = 2, and the errors ¢; are independent identically distribution(i.i.d). the model
reduces to the general partially linear regression model, which was put forward by Engle et al. (1986). And
then, when g(t) =0, oiz = f(u;), the model becomes into heteroscedastic linear model, which was extensively
studied by Carroll (1982), Robinson (1987) and Carroll and Hardle (1989). In addition, when g(f) # 0 and
the errors €; are i.i.d, the model (??) degenerates into partially linear EV model, which can be seen in Cui
and Li (1998), Wang (1999), Liang et al. (1999) and so on. In recent years, semi-parametric EV models have
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been widely concerned. The EV models are widely applied in economy, biology and forestry. Early results
of EV model can be seen in Fuller (1987), Cheng and Van Ness (1999) and Carrol (1995).

However, the independence assumption for the errors ¢; in model (??) is not always appropriate in
applications, especially for sequentially collected economic data, which often exhibit evident dependencies
in the errors. So, for practical application, people need to weaken the restriction on independence. As we
all known, the NA sequence is a weak dependent sequence, and it has extensive application in multivariate
statistical analysis and systems reliability. When &; is fully observed, the model (1.1) becomes semi-
parametric model with NA samples, which has been studied by Baek and Liang (2006) for its strong
consistency. However, few literature involves in the partially linear EV model for NA samples. Therefore,
our paper is dedicated to this problem. We studied the strong consistency for the estimators of 8, f(-), and
g().

A finite family of random variables {X;,1 < i < n} is said to be NA random variables if for every pair of
disjoint subsets A and B of {1,2,...,n},we have

COV(fl(Xi,i € A),fz(X],] S B)) <0

whenever f; and f, are coordinatewise increasing function and such that the covariance exists. An infinite
family of random variables is NA if every finite subfamily is NA.

The NA sequence was introduced by Alam and Saxena (1981); Then Joag-Dev and Proschan(1983) dis-
covered the the character of multivariate distribution of NA sequence; Liang (2000) discovered complete
convergence; Joag-Dev and Proschan(1983) discovered fundamental properties; Roussas derived asymp-
totic normality of the kernel estimate with a probability density function. NA sequence not only has been
applied in the multivariate statistical analysis, reliability theory, seepage theory, but also in the oceans,
weather, environment, risk analysis and time series analysis. In a word, the NA sequence has attracted
considerable attention of scholars home and abroad recently. Therefore, this paper assumes that the error
is NA sequence, which has certain theoretical significance and practical value.

The paper is organized as follows. In Section ??, we list some assumptions. The main results are given
in Section ??. A simulation study is presented in section ??. Some preliminary lemmas are stated in Section
?2. Proofs of the main results are provided in Sections ??. Conclusions are provided in Section ??.

2. Assumptions

(AO) Let {e;, 1 < i < n} be a sequence of NA random variables with mean zero, and let {u;, 1 < i < n} be
a sequence of independent random variables with mean zero. {¢;, 1 < i < n} is independent with

{ui,1 <i < n}. Assume that Eei2 =1, sup, Ele;] < oo, for some p > 4, sup, E|u;|’ < oo, for some p > 4,
Ey; = B}, > 0is known.

(A1) Let{v;,1 <i < n}in condition (1.2) be a sequence satisfying
(i) limy—en ! XL 07 = g (0 < Zo < 0);

(ii) limy—e sup,(Vnlogn)™ maxi<m<n | Yizq vj| < 00, where{j1, fo, ..., ju} be a permutation of (1,2, ..., 1)
suchthat Vjj 2 Vp 2 ... 2 V).

(A2) (i) 0 <mp < min<icy f(1i) < Maxi<i<y f(4i) < Mo < oo;

(i) f(-), g(-) and h(:) are continuous functions and satisfy the first-order Lipschitz condition on [0,1].
(A3) The probability weight functions W,;(t;) are weight functions defined on [0, 1] and satisfy

(1) maxi<jen Yimg Waj(ti) = O(1);

(i) maxy<izn X1y Wai(8)I(|t: — t;

(ifi) maxi<;jen Wajti) = o(n~?log™"n);

> n~14) = o(n~14);
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(A4) Let W,;(-) (1 <i<n)be weight functions defined on [0,1]. Condition (A3) is satisfied replacing t; and
W,,; by u; and Wi, respectively.

Remark 2.1. Conditions (A0)-(A4) are standard regqularity conditions and used commonly in the literature, see
Hiirdle et al.(2000), Gao et al.(1994) and Chen et al.(1988);

Remark 2.2. Under some mild conditions, the following two weight functions satisfy hypothesis (A3):

a =1f5’ f—s
w0 =+ » 1<( P )ds,
t—tnp o ot

Wi = K(==) ]Z:. K

where s; = (t; + t;-1)/2, i =1,2,...,n—1,50 = 0,s, = 1,K(-) is the Parzen-Rosenblatt kernel function, which
we can see in Parzen(1962) or Hérdle et al.(2000), and the /1, are bandwidth parameters.

3. Main Results

For model (??), we want to seek the estimators of § and g(-). Firstly, when the errors are homoscedastic
and the &; can be observed, we can apply the least squares estimation LSE method to estimate the parameter
B. On the one hand, we assume the parameter 8 is known, and then to estimate g(-); for each given 8, we
have g(t;) = E(y; — xiB), 1 < i < n. Therefore, based on the (x;, t;, y;), we can define the estimator of g(-), that
is g5, (t, B) = Y.y Whi(t)(yi — xif). Then, based on the model (2?), we can also define the LSE of § by following
formula:

Y [1: - - gt B)] — =262 = min
i=1

On the other hand, under this condition of partially linear EV model, Liang et al.(1999) improved the LSE
on the basis of the usual partially linear model, and employ the estimator of parameter g, as follow

pr = Z(x —“2)] in%’- 1)

i=1

where %; = x; — Yiiy Waj(t)x), Ji = yi — Loy Waj(t)y;-
Secondly, when the errors are heteroscedastic, we consider two different cases according to f(). If
02 = f(u;) are known, then the B; is modified to be the weighted least-squares estimator (WLSE)

n

- [Z oA - B2 Zo;%yi. (2)

i=1

In fact, the 01.2 = f(u;) are unknown and must be estimated. In the case, we have E[y; — & — g(t)]* = f(u:),
from Eei2 = 1, Therefore, the estimator of f(u;) can be defined by

fulus) = Z Waj(u) (@ — %iL)* — B2 )
j=1

For convenience, we assume that min; <<, f,(;) > 0. Then we can define a nonparametric estimator of 01,2,
6%1 = fu(u;). In consequence, when the errors are heteroscedastic and unknown, the WLSE of 8 is

—[Z s -2 Y s @

i=1
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Meanwhile, using ﬁL, BWU BWz/ we can define three estimators for g(-):

g = Y Wuli - xifo), (5)
i=1

() = Y Wal®)yi - xibw,), (6)
i=1

aw® =) WalH(Wi - xibw,)- 7)
i=1

In this paper, we provide some notions and a definition that will be used in the process of proof.

hi = h(t;) — Z Wijti)h(t)), 0i=vi— Z Wijtvj, §i = g(t:) - Z Wij(tig(t)),
=1

=1 j=1

n n 2
&=¢€— Z Wai(te;,  fi = pi— Z Wit &i=&- 2 Waj()ej,
j=1 =1 =
ni = € — Wif, Sy = Z &, T, = Z 0 °&,
i=1 i=1
S%n = Z(izz - Efl)r T%n = Z Gi—z(")zi2 - EP)’ u%" - Z 6;'2(]212 - E“)'

i=1 i=1 i=1

Definition 3.1. Let {Xt,t =0,%1,+2,--- } be a strictly stationary time series. Forn =1,2,--- , define

p(n) = sup Corr(X, Y)|

XeL2(F°,.),YeL2(FY)

where F]l: denotes the o-algebra generated by {Xt,i <t< ]}, and L? (Fé) consists of F{—measurable random
variables with finite second moment.

When f(-) is known, we give the strong consistency rate for LSE and WLSE of g and g(-).
Theorem 3.2. Suppose that (A0)-(A3) are satisfied. Then
(@) PL—B=oni)as.
(b) Pw, —B=o0(n"7)as.
Theorem 3.3. Suppose that (A0)-(A3) are satisfied. For V¥ t € [0, 1], we have
(@) gu(t) - Egut) = o(n™%) as.
(b)  Gw,(t) = Egw, (t) = o(n" 1) as.
When f(-) is unknown, we give the strong consistency rate for LSE and WLSE of 8, g(-) and f(:).

Theorem 3.4. Suppose that (A0)-(A4) are satisfied, where p > 6 in (A0). For ¥ u € [0, 1], we have

fa) = Efu(u) = o(n1) as.



F. Author, S. Author / Filomat 32:13 (2018), zzz—zzz 5
Theorem 3.5. Suppose that (A0)-(A4) are satisfied, where p > 6 in (A0). Then

Bw, =B =o(n"%) as.

Theorem 3.6. Suppose that (A0)-(A4) are satisfied, where p > 6 in (A0). For ¥ t € [0, 1], we have

gw,(t) = Egw, () = o(n‘%) as.

4. Simulation Study
In this section, we carry out a simulation to study the finite sample performance of the proposed

estimators. In particular:

(i) we compare the performance of the estimators among 1, fw, and Bw, by their mean squared errors
p p g 1 » Py q
(MSE), also, we compare the performance of the estimators among §.(-), dw,(-) and gw,(-) by their
global mean squared errors (GMSE);

(ii) we give the boxplots for the estimators of § and g(-).
Observations are generated from
yi =&if +g(t) + €,
xi =&+, 1=1,2,---,n,
where f = 1, g(t) = sin(2nt), 07 = f(u;), f(u) = [1 + 0.5cosQmu)?, t; = (i — 0.5)/n and u; = (i — 1)/n,
& = 12 +v; with v; = sin(@))/(n'?). {u;, 1 <i < n}is an iid. N(0,0.2%) sequence. Following Joag-Dev and
Proschan (1983), we know ’that {e;, 1 < i < n} is a multivariate normal distribution with E(ey,--- ,e,) =
(0,--+,0), Cov(e;,ej) = 47U fori# j and Var(e;) = 0.5* for 1 < i < n. For the proposed estimators, the
weight functions are taken as
K(E=t)/h) o K= w)/by)
S K- t)/h) > K(( — u)/by)

where K(-) is a Gaussian kernel function, h, and b, are two bandwidth sequences.

Whi(t) =

4.1. The MSE for estimators of B, g(-) and f(-)
In this subsection, we generate the observed data with sample sizes n = 100, 300 and 500 from the
model above. The MSE of the estimators for § based on M = 500 replications are defined as

NI T 2
MSE@) = 12} [B0D - o]
I=1

The GMSE of the estimators for g(-) is defined as

n
2

M
GMSE(§) = A% Y. Y [tk D - g(t)]
=1 k=1

We compute the MSE or GMSE for each estimators based on M = 500 replications and a grid of
bandwidths h,, and b, from 0.01 — 0.99. Choose the optimal bandwidths to minimize the MSE or GMSE.
The optimal bandwidths are chosen to minimize the MSE or GMSE. The smaller the MSE and GMSE are,
the closer the estimators will be to the true values and the better the effects of the estimators will be. The
minimum MSE or GMSE and the corresponding optimal bandwidths for the estimators are reported in
Tables 1-2.

From Tables 1-2, it can be seen that: (i) for every fixed n, the ,éwl have smaller MSE than that of the ﬁwz ;
(ii)for every fixed n, the gw1 have smaller GMSE than that of the ju;. The estimated value Sy is closer
to the true value own to known f(-). (iii)the MSE or GMSE of all estimators decrease as the increasing of
sample size n. So, our estimates are better.
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Table 1: The MSE for the estimators of § and corresponding optimal bandwidths

MSE MSE MSE

n AL hy Bw, I Bw, hy hy
100 0.1701 0.3600 0.0152 0.3900 0.0421 0.3800 0.1400
300 0.0840 0.3500 0.0046 0.3900 0.0167 0.3800 0.1500
500 0.0501 0.3600 0.0029 0.3900 0.0070 0.3800 0.1400

Table 2: The GMSE for the estimators of g(-) and f(-) and corresponding optimal bandwidths

GMSE GMSE GMSE GMSE

n gL h dwy h Jw, h hy fa hy hy
100 0.0943 0.3500 0.0637 0.4000 0.0739 0.3800  0.1300 0.6155 0.4000 0.1300
300 0.0878 0.3500 0.0668 0.3900 0.0649 0.3800  0.1300 0.5837 0.3900 0.1200
500 0.0806 0.3500 0.0654 0.3900 0.0613 0.3900 0.1400 0.5652 0.4000 0.1600

4.2. Boxplots

In this subsection, we give the boxplots for the estimators. Under the condition that f(-) is known or
unknown, we consider all estimators of  and g(-) taking the optimal bandwidths. In Figure 1, we give the
boxplots for ﬁL, ﬁw1 and ﬁWz with n = 100, 300 and 500, respectively. In Figure 2, we provide the boxplots
for the MSE of §.(), dw, (-) and gw, (-) with n = 100, 300 and 500, respectively.

From Figures 1-2, one can see that: (i) the estimators fy, and fw, has better performance than f; (ii)the
estimators g, and gw, has better performance than §;; (iii) for every estimator, the MSE of the estimators
decrease as the increasing of sample size 7. So, our estimates are better.

5. Preliminary Lemmas

In the sequel, let ¢, c1,- -+ and C,Cy, - - - be some finite positive constants, whose values are unimportant
and may change. a, = O(b,) means |a,| < Clb,|, while a, = o(b,) means a,/b, — 0. a* = max(0,q),
a- = max(0,—a). And let {¢;, 1 <i < n} be a stationary NA sequence with zero mean. Now, we introduce
several lemmas, which will be used in the proof of the main results.

Lemma 5.1 (Baek and Liang (2006), Lemma 3.1). Let o > 2. Assume that {a,;, 1 < i < n,n > 1} is a triangular

array of real numbers with maxi<i<y layil = O(m™2) and Y.._; a2, = o(n™*/*(logn)™). If sup, Ele;l’ < co for some

bMSE-eps-converted-to.pdf

Figure 1: The boxplots for B, fw, and B, with N=500, n=100,300 and 500, respectively.
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gMSE-eps-converted-to.pdf

Figure 2: The boxplots of MSE for 41, §w, and dw, with N=500, n=100,300 and 500, respectively.

p > 2a/(a —1). Then

n

Z ayie; = o(n V%) as.

i=1
Remark 5.2. In Lemma ??, it is quite clear that p > 2 as a — oo and },i_; apie; = o(1) a.s.; and p > 4 when a > 4
and Y.!; anie; = o(n™Y*) a.s. In addition, if all of the "0” is changed into "O”, the conclusion is also right.

Lemma 5.3 (Hirdle et al. (2000), Lemma A.3). Let Vy,---,V, be independent random variables with EV; = 0,
finite variances and sup, e, E|VjI" < C < oo (r > 2). Assume that {ay;, k,i=1,--- ,n} is a sequence of real numbers

such that sup, ;. laxil = O(n™") for some 0 < py < 1and Y7 aj = O(n??) for po 2 max(0,2/r — p1). Then

Zakivk' = O(n"*logn) a.s. fors = (p1 — p2)/2.

maxXx
1<i<n

Lemma 5.4 (Liu and Gan(2003)). Assume a, is a array of positive real numbers, and Y., 02/a> < oo, where
02 = Var(e,). If 0 < a, T co. Then
n
€i
— =0(1) as.
Z . o(1) as

i=1
Lemma 5.5 (Xu Bing(2002)). Assume ¢; be a sequence of strong mixing, and Ee; = 0, when p > 2, sup,, E|€,'(p <
2
co. And suppose that ¥, 4 (Z?zl aﬁilogn)p/ <ocoand Y an)P=2/P < co. Then

Z agzie; = o0(1) a.s.

i=1
where a(n) is the mixing coefficient, {a,;,i = 1,2, ..., } are real sequence.

Following the proof line of Lemma 4.7 in Zhang and Liang (2011), one can verify the following Lemma
2.

Lemma 5.6. (a) Under (A0) and (A3), we have S3  — S% as.

(b) Under (A1), (A2) and (A3), one can imply that n™' Y., 512 — Yo, maxi<i<y & = o™V and S2 YL & <
G

(c) Using (A1), (A2) and (A3), imply that C; <n~t Y, oi‘chiz <Cuand T2 YL, |a;2€,~| <C

(d) Let A; = A(ti) = Ly Waj(t)A(E), where A(-) = f(-), g() or h(-). Then (A2)(ii) and (A3)(ii) imply that
maXi<i<y |Aj] = o(n=14).
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6. Proof of Main Results

In the sequel, we use the Abel Inequality (Hérdle et al. (2000), page 183). Let A1, Ay, --- , Ay;
Bi,By, -+ ,By (B1 2 By 2 --+ 2 B, > 0) be two sequences of real numbers, and Sy = Zle A;, M1 = minj<<, S,
M, = maxy<<y Sk. Then, BiM; < Y;_; AkBx < BiMy. Let E;, Fi(1 < i < n) to be arbitrary real numbers and
(j1,j2,"* , jn) be a permutation of (1,---,n) such that F;, > F;, > --- > F; . Then from the above equation,

we have
n
DO ETTR) SR R} oot
i=1
ZEI

Proof of Theorem ??. We prove only (a), as the proof of (b) is analogous. From (??) and (??), write that

IA

Cmax |F;| max
1<i<n 1<m<n

Sul Z(Si + 1)(Fi - EB — ) + 2B

™
=
|
=
1l

n

- {Z[@w €= =]+ Y 6 Mz}
i=1

i=1

- s;{ ,B)+2Mz€z 2(#— EB + ég”

ﬁg Zzwnj(tl 51#],3 ZZWn,(t )516‘]
i=1 i=1 j=1 i=1 j=1
n](t )ez/'l] ZZWn](t )Hz“:] +222Wn](t )i tip
i=1 j=1 i=1 j=1 i=1 j=1
+ an(ti)wnk(ti)ujek - Z Z Z Wn]-(ti)Wnk(t,-)y]-ykﬁ}
i=1 j=1 k=1 i=1 j=1 k=1
12
= SL% ZAkn. 1)
k=1

Therefore, to prove f, — f = o(n™/*) a.s. we need to verify S;?A, = o(n""*) as. fork =1,2,---,12. Using
Lemma ??(a)(b), we only need to verify that n 1A, = o(n~'/4) as.

Step 1. Here, we prove that S;%2A;, = o(n™'/*) as.
Firstly, from (A0), we find out {n; = ; — u;f ,i > 1} are sequences of NA random variables with En; =0,

sup;, E(mr "p + CsupiE|yi)p < oo, for some p > 4. Since
S,:ZAM = Z 517]1 : Z Bm’?z .
i=1 S
max|B | < max @ o(n_%) Z B = Z 5—12 =0m™
1<i<n " 1<i<n 52 B ! = in "~ = Sf}l h )

We have S,2A1, = o(n/%) a.s. by (A0), Lemma ??, Lemma ?? and Remark ??.
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Step 2. We prove that S;;2A,, = o(n™1/4) a.s.

Since {u;, i =1,2,...,n} is a sequence of independent random variables, {e;, i = 1,2, ..., n} are sequences
of NA random errors, independent of {u;, i > 1}, and Ey; = Ee; = 0. So Cov(use;, ujej) = 0, then
Corr(uie;, pjej) = 0. From definition ??, {u;€;, i > 1} are sequences of p-mixing random variables, and the
mixing coefficients p(n) = 0. In this situation, we can know p-mixing is also a sequence of strong mixing
from Fan and Yao (2003), and we have 0 < a(n) < p(n)/4 = 0. Therefore, {u;e;, i < 1} is a sequences of strong
mixing random variables with the mixing coefficients a(n) = 0. So, in Lemma ??, let p = 4 + 0 for some

4+5/2
6> 0and a, = n%*. Then we have Y, (Zzl(n‘3/4)210gn) 2 oo, and Y74 a(n)?P=2/P < oo, So
n 1 n
3 1
n1 E uiei = o(1) as. - E uiei =o(n"%) as. 2)
i=1 i=1

Thus, S;%Ay, < %’ Y yi€i| =o(n ) as.

Step 3. We prove that S;;2Ay, = o(n~"*) a.s. for k = 3,4,5,6,10,12.
By applying (A0), (A3) and Lemma ?? taking @ = 4 and Lemma ??, one can verity that

Z Wij(ti)u;
=1

= o(n_%) as. 3)

i (Ci - ECi) = O(”%IOgn) a.s. max

i=1

where (; = |[Ji , 1z or ;.
So, From Lemma ??(b)(d) and (??), one can achieve that

S2As, < ‘Z. E2)B = O(n~tlogn) a.
S, Ay < —'Zégz' <= {Q%Z)E){ggﬁ(%ﬂ =o(n" ) a.

525, < ;'ZMF‘[Z(#H%PZWIHZW"J””f
p i=1
< %[gnaX( (sl = Ele]) + ZEM)E‘&’H%
S T S
i<l<n

In the same way, from Lemma ?2(b)(d) and (??), S2 Ak, = o(n V%) as. for k = 6,10, 12.

Step 4. Here, we prove that S;2Ay, = o(n"/*) a.s. fork = 7,8,9,11.

Firstly, the {e;,i = 1,2,..,n} is a stationary NA sequence with zero mean, let e;“ = (leil + €)/2 and
€. = (leil — €)/2. 1t’s easy to know that the sequences {elf’,i =1,2,..n} and {e;,i = 1,2,..n} are all NA
sequence satisfying |e;| = €] + €;. From Lemma ?? and (A0), one can get

n n n
%Zki( = % e;+%Ze;
i=1 i=1 i=1
1y 1y 1y
= - A (e:r - Eef) + L (ez - Eel’) + ;‘ E|ei|
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Hence, by applying (A0) and (A3), Lemma ?? taking a = 4, one can obtain that

maxXx
1<i<n

Z an(ti)ej‘ = o(n_%) a.s. 6)
j=1

From Lemma ?2(b), (??), (??) and (??), we have

n n

S;2A7n < % Z |§,|‘ Z‘ Wn]'(i’,')ej = 0(1’1_%) a.s.
i=1 j=1

S2Ag < %Z = anj(ti)yj =o(n i) as.
i=1 j=1

The proof of S;2 Ay, = o(n™/*) a.s. for k = 9,11. is analogous. Thus, the proof of Theorem ?? is completed. m

Proof of Theorem ??. We prove (a), the proof for (b) is similar. From (??), note that

A —Equ(t) = Y Wty — xpr - Eyi + Eo)]
i=1
= Z Whi(t)(ei — wip) + Z Wm-(t)éi(ﬁ - BL)
i=1 i=1
=Y WaOSE(B —Bu) + Y Wit - pr)
i=1 i=1

=) WaiOE[ui(p - p)]
i=1

= Fln(t) + an(t) — F3n(t) + F4n(t) — F5n(i’).

Therefore, we only need to prove that Fy,(t) = o(n"V4) a.s. fork=1,2,---,5
Firstly, We prove that |8 — fi| = o(n™/*) a.s. and E(f — p)> = O(n™"). By the proof of Theorem ?? we have

|ﬁ - BL| = o(n‘%) as. (6)

Meanwhile, we take the same notations of Ay, for k = 1,2,---,12 as in the proof of Theorem ??. Observe
that

12 12
E[s,6c -] =E]) Au] < Y E@w).
k=1 k=1

Noticing that {€; — ;5,1 < i < n}is a sequence of NA variables and {€;u;, 1 < i < n} are sequences of a-mixing
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variables. Applying (A0), (A2), Lemma ??(a)(b) and (??), one can achieve that

sup — E Z &el + Z Eurp*-2 i él‘zeilv‘iﬁ)
n i=1
sup ;( Z EEer + Z EIEuIB +2E va‘ ’gfe,-yiﬁb
sup C(O(n) +0(n) + JZ EZE(—: Z EzEy2ﬁ2) < o0

IA

sup n E(A1)?

IN

<
i=1
-1 2 1y 2 C/\ 22
supn E(A2,)” = sup EE( eiyi) < sup E<Zal Hy) < o0
n n i=1 n i=1
slip nE(As)” = sgp% L E(yl —:.H)ﬁz < s1ip o< @
sup n_lE(Ag,,)2 = sup rle{ [Z Whj(ti )el]y]} = sup {Z E[Z an(ti)ei]zEy}z}
n n j=1 i=1
< swpS[Y Y W Z JEi] < c: ZZWW
n M j=1 i=1 j=1 i=1
< Cax > W,i(t) llnax; Woilt) < oo

Similarly, one can deduce that sup, n™'E(A,)* < o fork =4,5,---,7,9,---,12. by (A0), (A2), (A3), Lemmas
?2(a)(b)(d), (??) and (??). Therefore, from Lemma ??(a)(b)(d), one can deduce that

Ef—p?=0@m") ElpL-pl=0@n"? (7)

So, from (A0), (A2), (A3), Lemma (?2), (?2), (?2), (??) and (??), one can get

[Fu()| = 21 ()€ = pip) = o(n™?) as.

[Fant)] < (ﬁ—,@L)‘{Igii>n<|&|-;Wm(t)=0(n’3) as.
[Fau(t)| < Elﬁ—ﬁLl-rggx]a|fwm<t>=o<n-1>
[Fut)] < [B-Fil- ma<X|Zan(t)Hz)—0(n ) as,
[Fsn(5)| < %Zwma) EiE(p - fu) = 06

Thus, the proof of Theorem ?? is completed. ]
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Proof of Theorem ??. From (??), write that

fawt) = Efu(u)

Iln(u)

Y W)@ = %ipu)? — E@i — o] + ERERE - B)
i=1
Y Woatw){[(@& - 5B + EB - o) + (B — o) + 7]
i=1
—E[(& - ) + EB - ) + (B - Bu) + 3] | + E2ER - )
Y Waitw[ (€~ 1ip) = E@ = ]+ ), Wil 828 ~ pu)?
i=1 i=1
=) W) EEB - pu? + Y W) (i — Z2)(8 - pu)?
i=1 i=1
= Y WalwE[(@? - E2)B - o] + 2 ) Wailw)éigi(p - fu)
i=1 i=1
-2 Z Wi () &EGEB — Br) + 2 Z Woi(u)Ei(& — fip)(B — Br)
i=1 i=1
-2} Wal)GE[@ - @B~ p)] +2 ) Wi &ifis( — u)?
i=1 i=1
-2 )" W EE[ (B - p?] +2 ) Wai)di(&i — i)
i=1 i=1
+2 Z Wi (w)gifii(B — pr) — 2 Z Wni(u)ﬁiE[Fli(ﬂ - 3L)]
i=1 i=1
+2) " Waitw|& - (22 - E2)8](6 - po)
i=1
-2} WoiGw)E{[em — (a2 - EDpJ(6 - fu)
16 -
Z Ikn(u)'
k=1
Y Wit (e - i)’ - Eles = ) |+ Y W] Y Wasttte; - P
i=1 i=1 j=1
=Y W] Y Waitte - wp)|
i=1 j=1
22} Y Wailw) Wi (t)(es = piB)(e; - )

i=1 j=1

+2 Z Z wni(u)wnj(ti)E[(ei — tip)ej = #jﬁ)]

i=1 j=1

Jin(u) + Jon(u) = Jan (1) = 2]4n (1) + 2[5, (1)

Therefore, we only need to verify that J;,(u) = o(n~'*) as. Ii,(u) = o(n™Y*) as. for t = 1,2,---,5,k =
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1,2,---,16.

Noticing that n; = (ei - yi‘B) and {n;,1 < i < n} is a sequence of NA random variables with En; = 0. Then

[(e - pip)" ~ Elei - )] = [ - E?]

([6r) = T+ [() - E(7 )]} = o

Therefore {p;, 1 < i < n}is a sequence of NA random variables with mean zero and sup;, Elpif® < oo.
Thus, from (A0), (A3), (A4), Lemma ??, Lemma ??, (??), we have

Jul) < max ;Wm(umj:o(n-l) as.
n 2 n . L
Jul) < max| Y Woit)e; - i) - Y, Woilw) = ofn™?) as.
T i=1
i) < max| Y Wit)(e; - )| max Y [WasC)e; - uif)| = ol ™) as.
- = =l

Similarly, one can prove that J;, (1) = o(n"Y*) a.s. for t = 3,5. Meanwhile, From (A0), (A3), (A4), Lemma
??, (??), (??), (??) we can deduce that



IZn (u)

14)1 (u)

14111 (1/[)

Ly (1)

I43n(u)

1611(”)

1871 (1/[)

Lon (1)

IA

IA

IA

IN

IA

IN
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u)' = o(n_%) a.s.

ﬁ ﬁL max )51

Z Waia){(2 = B2)(B = Bu)? = 2u: ), Waj(tpi(B — fu)?
i=1 j=1

+[ Z an(tf)yj]z(ﬁ - BL)Z}
=1
Ty1n(u) = 20400 () + Iyzn ().

Z‘ luf = E21- (B - Bu)? - max Wiiu) = o(n™?) as.
o(n™%) - Zl', - max| Z; Waj(t)ay| - max W) = o(n™}) ass
=
o(n2)- Zl" Wai(u) - max ' Zf an(ti)er =o(n™") as.
=
B = B[ max |7 max |&; (an‘ Woiu) = o(n™") a.s.
B~ e max|E] Z;‘ W) (€5 = i) - ; Wa(t)(e; = i)
o(n-i)[g Wiu)(Je: = pip| ~ Ele: — | + Eles - pip])
gzgzn; Wm(u)’ Zn:‘ Wj(ti)(ej — y;ﬁ)” =o(n"1) as.
&
6 - Bl max|£] Zl" Wi(a) ot — ]21 Wt
ot X, ]~ ] + ]

1<i<n

maxzn: Wm(”)’ Zn: an(ti)uiH =o(n?) as.
i=1 j=1

In the same way, from (A0), (A3), (A4), Lemma ??, (??), (??), (??), (??) and (??), one can get Iy, (1) =
o(n‘%) as.fork=3,57,9,11,---,16. Thus, the proof of Theorem ?? is completed. [ ]

Proof of Theorem 2?. According to Theorem ?2(b), it suffices to show that B, — fw, = o(n”%) a.s. From (??),
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(??) and (??) we have
[ % ) o~ i+ G+ ul% D oiT S - i+ + )
1 1 .
- (T_%n - u_%n); iz[(éi"‘(uz (Gi + & — [up) +‘—‘yﬁ]
Z(o-z 5| + )G + & — ) + E26]
1n i=1
U2 -T2 X 5 5 -
= J2—T21" Z Ui_z[cfifii +&& — & + fudi + fué — (57 - Ey)ﬁ]
In"1n i=1
+— Z(O‘:Z - 6;12)[51!?1 + 5161 51[1 ip+ figi + fi€; — (‘u, H‘u)ﬁ]
In i=
12 1
= Z Gkn-
k=1

Therefore, we only need to verify that Gy, = o(n‘i) as. fork=1,2,---,12
Step 1. we prove that

max|f, () - ()| = o(n™}) as. ®)

Observe that |f;(ui) - f(ui)( < |f;(u,') - Ef;(ui)| + |Ef;,(ui) - f(ui)|. From Theorem 3.3 we know that
‘ ﬁ(u,-) -E f;(ui)l = o(n'*) a.s.. From the proof of the Theorem ??, (A0),(A3), and Lemma ??, one can
deduce that |E o(ug) - f(ui)| = o(n1/4)

Step 2. Then, we prove that

2 _ 2
{Ei); mz -0 2| o(n_i) as. # = o(n_%) a.s. and 9)
o | 1n ln|

When 1 is large enough, we known from (A2) and (??) that,

0<m < minﬂ(ui) < maxﬁ(u,-) <M; < o0 as. (10)
1<i<n 1<i<n
From (??) and (??)
u u
max 672—6’2| —f( ) = i) —o(n’%)
1<isn | ™ ! 1<1<n fnz ;) f(uy)
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Note that from (A0), (A2), (A3) Lemma ?? and (22), (22), (?2), we have

U, -7 < maxon? - Zix -g
) - fw)] <u>| o
TS ) fn) ,Z:" =

= oY 24 2oz ;+Z ZWn](t)y] +2( & )
i=1 i=1 i=1 j=1 i=1
12 11|V Wan] + 2 | Y Wateou) = ot
i=1 j=1 i=1 j=1

On the other hand, from (??), (A0), (A1), (A2), (A3), Lemma ?? and (??), one can deduce that n™!|T? —Ta| =
o(1) a.s. easily. Therefore, we get C3n < T%n < Cynas. and Csn < U%n < C¢n a.s. So, (??) is satisfied.

Step 3. Finally, we prove Gy, = o(n‘%) as. fork=1,2,---,12.
From Lemma ??, (??) and (??), one can deduce that

U3, - T
_ 1/2
Gy, < ?;2§WZ| |max)g,| o(n~"'“)as.
1n~ 1n i=1
ln | _ 3/4
Gy < ll’I;lla<n )UZ 2 Z|e,|{r<1a>2|£| on™"*)as.
In"1n i=1
In the same way, from (A0), (A2), Lemma ??, and (??), (??) and (??), one can deduce that Gy, = o(n""*)a.s. fork =
3,4,---,12. Thus, the proof of Theorem ?? is completed. [ ]
Proof of Theorem ??. The proof of Theorem ?? is similar to the proof of Theorem ?? ]
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