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Abstract. By using Leray-Schauder’s alternative, we study the existence and uniqueness of solutions
for some Hadamard and Riemann-Liouville fractional neutral functional integrodifferential equations with
finite delay, whereas the uniqueness of the solution is established by Banach’s contraction principle. An
illustrative example is also included.

1. Introduction

In this paper, we establish existence, uniqueness results for the Hadamard and Riemann-Liouville
fractional neutral functional integrodifferential equations with finite delay described by

HDα















u(t) −
m

∑

i=1

Iβihi(t, ut)















= f (t, ut), t ∈ J := [1,T], (1)

u(t) = ϕ(t), t ∈ [1 − r, 1], r > 0, (2)

where HDα denotes the Hadamard fractional derivative of order α, 0 < α ≤ 1, Iβi is the Riemann-Liouville
fractional integral of order βi > 0, i = 1, 2, · · · ,m, f , hi : J × C([−r, 0],R)→ R are given continuous functions
satisfying some assumptions that will be specified later and ϕ ∈ C([1 − r, 1],R) with ϕ(1) = 0. For any
function u defined on [1 − r,T] and any t ∈ J, we denote by ut the element of C([−r, 0],R) and is defined by
ut(θ) = u(t+θ), θ ∈ [−r, 0]. Here ut(·) represents the history of the state from time t−r up to the present time t.

In the last years, there is a strong development of the study of fractional differential equations and in-
clusions involving Riemann-Liouville and Caputo type fractional derivatives, see [1–3], and the references
therein. Besides these derivatives, there is an other fractional derivative introduced by Hadamard in 1892
[12], which is known as Hadamard derivative and differs from aforementioned derivatives in the sense that
the kernel of the integral in its definition contains logarithmic function of arbitrary exponent. A detailed
description of Hadamard fractional derivative and integral can be found in [8–10] and references cited
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therein. Recently, several papers were devoted to fractional differential equations and inclusions defined
by Hadamard fractional derivative [4, 5, 15, 17] etc.
On the other hand, functional and neutral functional differential equations arise in the mathematical mod-
elling of biological, physical, and engineering problems, see, for example, the texts [6, 7, 14, 16] and the
references cited therein.

The rest of this paper is organized as follows. In Section 2, we give some notations for Hadamard
fractional calculus. In Section 3, we present two existence and uniqueness results by using the Banach
contraction principle and Leray-Schauder nonlinear alternative. Finally, an examples is given to illustrate
our main results.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts that we need in the sequel. By
C(J,R) we denote the Banach space of all continuous functions from J into R with the norm

‖u‖∞ := sup{|u(t)| : t ∈ J}.

Also C([−r, 0],R) is endowed with the norm

‖φ‖C := sup{|φ(θ)| : −r ≤ θ ≤ 0}.

The following definitions are devoted to the basic concepts of Hadamard and Riemann-Liuoville types
fractional calculus. For more details, see A. A. Kilbas et al. [13].

Definition 2.1. The Hadamard derivative of fractional order q for a function 1 : (1,∞)→ R is defined as

HDq
1(t) =

1

Γ(n − q)

(

t
d

dt

)n ∫ t

1

(

log
t

s

)n−q−1 1(s)

s
ds, n − 1 < q < n, n = [q] + 1,

where [q] denotes the integrer part of the real number q and log(·) = loge(·).

Definition 2.2. The Hadamard fractional integral of order q for a function 1 : (1,∞)→ R is defined as

Iq
1(t) =

1

Γ(q)

∫ t

1

(

log
t

s

)q−1 1(s)

s
ds, q > 0,

provided the integral exists.

Definition 2.3. The Riemann-Liuoville fractional integral of order p > 0 of a continuous function h : (1,∞)→ R is
defined by

Iph(t) =
1

Γ(p)

∫ t

1

h(s)

(t − s)1−p
ds,

provided the right side is pointwise defined on (0,∞).

3. Existence and uniqueness results

Let us defining what we mean by a solution of problem (1.1)− (1.2).

Definition 3.1. A function u ∈ C([1 − r,T],R), is said to be a solution of (1.1) − (1.2) if u satisfies the equation

HDα
[

u(t) −
∑m

i=1 Iβihi(t, ut)
]

= f (t, ut) on J, and the condition u(t) = ϕ(t) on [1 − r, 1].
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To prove the existence of solutions to (1.1)− (1.2), we need the following auxiliary Lemma.

Lemma 3.2. Let 0 < α ≤ 1 and σ : J → R be a continuous function. The linear problem

HDα[u(t) − γ(t)] = σ(t), t ∈ J (3)

u(t) = ϕ(t), t ∈ [1 − r, 1], (4)

has a unique solution which is given by:

u(t) =























γ(t) + 1
Γ(α)

∫ t

1

(

log t
s

)α−1 σ(s)
s ds, if t ∈ J

ϕ(t), if t ∈ [1 − r, 1].

(5)

For the proof of Lemma 3.2, it is useful to refer to [5, 13].

In the sequel, we need the following assumptions.

(H1) The functions f , hi : J × C([−r, 0],R) → R are continuous and there exist positive functions µ, ψi, i =
1, 2, · · ·,m,with bounds ‖µ‖ and ‖ψi‖, i = 1, 2, · · ·,m, respectively such that:

| f (t, x) − f (t, y)| ≤ µ(t)‖x − y‖C,

and

|hi(t, x)− hi(t, y)| ≤ ψi(t)‖x− y‖C,

for t ∈ J and x, y ∈ C([−r, 0],R).

(H2) There exists a function p ∈ C([1,T],R+) and a continuous nondecreasing function Φ : [0,∞)→ [0,∞)
such that

| f (t, x)| ≤ p(t)Φ(‖x‖C), for each (t, x) ∈ [1,T] × C([−r, 0],R).

(H3) There exists a constant k > 0 such that

|hi(t, x)| ≤ k, for each (t, x) ∈ [1,T] × C([−r, 0],R), i = 1, 2, · · · ,m.

(H4) There exist constants 0 < α ≤ 1 and M, k > 0 such that:

M
‖p‖∞Φ(M)(log T)α

Γ(α+1) +
∑m

i=1
k Tβi

Γ(βi+1)

> 1.

Our first existence result for (1.1)− (1.2) is based on the Banach contraction principle.

Theorem 3.3. Assume that assumption (H1) hold. If

(log T)α

Γ(α + 1)
‖µ‖ +

m
∑

i=1

Tβi

Γ(βi + 1)
‖ψi‖ < 1,

then there exists a unique solution for (1.1)− (1.2) on the interval [1 − r,T].
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Proof Transform the problem (1.1) − (1.2) into a fixed point problem. Consider the operator N : C([1 −
r,T],R)→ C([1 − r,T],R) defined by

Nu(t) =























1
Γ(α)

∫ t

1

(

log t
s

)α−1 f (s,us)

s ds +
∑m

i=1 Iβihi(s, us), t ∈ J

ϕ(t), t ∈ [1 − r, 1].

(6)

Let u, v ∈ C([1 − r,T],R). Then, for t ∈ J,

|N(u)(t)−N(v)(t)| ≤ 1

Γ(α)

∫ t

1

(

log
t

s

)α−1

| f (s, us) − f (s, vs)|
ds

s

+

m
∑

i=1

1

Γ(βi)

∫ t

0

(t − s)βi−1|hi(s, us) − hi(s, vs)|ds

≤ 1

Γ(α)
‖µ‖‖u − v‖[1−r,T]

∫ t

1

(

log
t

s

)α−1 ds

s

+

m
∑

i=1

1

Γ(βi)
‖ψi‖‖u − v‖[1−r,T]

∫ t

0

(t − s)βi−1ds

=
(log t)α

Γ(α + 1)
‖µ‖‖u − v‖[1−r,T] +

m
∑

i=1

tβi

Γ(βi + 1)
‖ψi‖‖u − v‖[1−r,T].

Consequently,

‖N(u)(t)−N(v)(t)‖[1−r,T] ≤














(log T)α

Γ(α + 1)
‖µ‖ +

m
∑

i=1

Tβi

Γ(βi + 1)
‖ψi‖















‖u − v‖[1−r,T],

which implies that N is a contraction, and hence N has a unique fixed point by Banach’s contraction
principle.

Our second existence result for (1.1) − (1.2) is based on the following nonlinear alternative of Leray-
Schauder.

Lemma 3.4. (Nonlinear alternative [11])

Let E be a Banach space, C a closed, convex subset of E, U an open subset of C and 0 ∈ U. Suppose that F : U → C
is a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or

(ii) there is a u ∈ ∂U (the boundary of U in C) and λ ∈ (0, 1) with u = λF(u).

Theorem 3.5. Assume that assumptions (H2)− (H4) hold. Then (1.1)− (1.2) has at least one solution on [1− r,T].

Proof We consider the operatorN : C([1 − r,T],R)→ C([1 − r,T],R) defined by (6).
We shall show that the operatorN is continuous and completely continuous.
Step 1:N is continuous.



Mohamed I. Abbas / Filomat 32:13 (2018), zzz–zzz 5

Let {un} be a sequence such that un → u in C([1 − r,T],R). Let η > 0 such that ‖un‖∞ ≤ η. Then

|N(un)(t) −N(u)(t)| ≤ 1

Γ(α)

∫ t

1

(

log
t

s

)α−1

| f (s, uns) − f (s, us)|
ds

s

+

m
∑

i=1

1

Γ(βi)

∫ t

0

(t − s)βi−1|hi(s, uns) − hi(s, us)|ds

≤ 1

Γ(α)

∫ T

1

(

log
t

s

)α−1

sup
s∈[1,T]

| f (s, uns) − f (s, us)|
ds

s

+

m
∑

i=1

1

Γ(βi)

∫ T

0

(t − s)βi−1 sup
s∈[1,T]

|hi(s, uns) − hi(s, us)|ds

≤
‖ f (·, un·) − f (·, u·)‖∞

Γ(α)

∫ T

1

(

log
t

s

)α−1 ds

s

+

m
∑

i=1

‖hi(·, un·) − hi(·, u·)‖∞
Γ(βi)

∫ T

0

(t − s)βi−1ds

≤
(log T)α‖ f (·, un·) − f (·, u·)‖∞

Γ(α + 1)
+

m
∑

i=1

Tβi‖hi(·, un·) − hi(·, u·)‖∞
Γ(βi + 1)

.

Since f and hi are continuous functions, we have

‖N(un)(t) −N(u)(t)‖∞ ≤
(log T)α‖ f (·, un·) − f (·, u·)‖∞

Γ(α + 1)
+

m
∑

i=1

Tβi‖hi(·, un·) − hi(·, u·)‖∞
Γ(βi + 1)

→ 0,

as n→ ∞. Consequently, N is continuous.

Step 2:N maps bounded sets into bounded sets in C([1 − r,T],R).
Indeed, it is sufficient to show that for any η∗ > 0 there exists a positive constant L such that for each
u ∈ Bη∗ := {u ∈ C([1 − r,T],R) : ‖u‖∞ ≤ r∗}, we have ‖N(u)‖∞ ≤ L.

|N(u)(t)| ≤ 1

Γ(α)

∫ t

1

(

log
t

s

)α−1

| f (s, us)|
ds

s
+

m
∑

i=1

1

Γ(βi)

∫ t

0

(t − s)βi−1|hi(s, us)|ds

≤
‖p‖∞Φ(‖u‖[1−r,T])

Γ(α)

∫ t

1

(

log
t

s

)α−1 ds

s
+

m
∑

i=1

k

Γ(βi)

∫ t

0

(t − s)βi−1ds

≤
(log T)α‖p‖∞Φ(η∗)

Γ(α + 1)
+

m
∑

i=1

k Tβi

Γ(βi + 1)
:= L.

Step 3:N maps bounded sets into equicontinuous sets of C([1 − r,T],R).
Let t1, t2 ∈ [1,T], t1 < t2, Bη∗ be a bounded set of C([1 − r,T],R) as in Step 2, and let u ∈ Bη∗ . Then
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|N(u)(t2) −N(u)(t1)|

≤ 1

Γ(α)

∣

∣

∣

∣

∣

∣

∫ t1

1

[

(

log
t2

s

)α−1

−
(

log
t1

s

)α−1
]

f (s, us)
ds

s

+

∫ t2

t1

(

log
t2

s

)α−1

f (s, us)
ds

s

∣

∣

∣

∣

∣

∣

+

m
∑

i=1

1

Γ(βi)

∣

∣

∣

∣

∣

∣

∫ t2

t1

(t2 − s)βi−1hi(s, us)ds

+

∫ t1

0

[(t2 − s)βi−1 − (t1 − s)βi−1]hi(s, us)ds

∣

∣

∣

∣

∣

∣

≤
‖p‖∞Φ(η∗)

Γ(α)

(∫ t1

1

[

(

log
t2

s

)α−1

−
(

log
t1

s

)α−1
]

ds

s
+

∫ t2

t1

(

log
t2

s

)α−1 ds

s

)

+

m
∑

i=1

k

Γ(βi)

(∫ t2

t1

(t2 − s)βi−1ds +

∫ t1

0

[(t2 − s)βi−1 − (t1 − s)βi−1]ds

)

.

Therefore, we get

|N(u)(t2) −N(u)(t1)| ≤
‖p‖∞Φ(η∗)

Γ(α)

(∫ t1

1

[

(

log
t2

s

)α−1

−
(

log
t1

s

)α−1
]

ds

s

+

∫ t2

t1

(

log
t2

s

)α−1 ds

s

)

+

m
∑

i=1

k

Γ(βi + 1)

(

t
βi

2
− t

βi

1

)

.

As t1 → t2 the right-hand side of the above inequality tends to zero. The equicontinuity for the cases
t1 < t2 ≤ 0 and t1 ≤ 0 ≤ t2 is obvious.

As a consequence of Steps 1 to 3 it follows by the Arzelá-Ascoli theorem that N : C([1 − r,T],R) →
C([1 − r,T],R) is continuous and completely continuous.

Step 4: We show that there exists an open set U ⊆ C([1 − r,T],R) with u , λN(u) for λ ∈ (0, 1) and
u ∈ ∂U.
Let u ∈ C([1 − r,T],R) and u = λN(u) for some 0 < λ < 1. Thus, for each t ∈ [1,T], we have

u(t) = λ















1

Γ(α)

∫ t

1

(

log
t

s

)α−1

f (s, us)
ds

s
+

m
∑

i=1

Iβihi(s, us)ds















.

|u(t)| ≤ 1

Γ(α)

∫ t

1

(

log
t

s

)α−1

p(s)Φ(‖us‖C)
ds

s

+

m
∑

i=1

k

Γ(βi)

∫ t

0

(t − s)βi−1ds

≤
‖p‖∞Φ(‖u‖[1−r,T])(log T)α

Γ(α + 1)
+

m
∑

i=1

k Tβi

Γ(βi + 1)
,

which can be expressed as
‖u‖[1−r,T]

‖p‖∞Φ(‖u‖[1−r,T])(log T)α

Γ(α+1) +
∑m

i=1
k Tβi

Γ(βi+1)

≤ 1.

In view of (H4), there exists M such that ‖u‖[1−r,T] ,M. Let us set

U = {u ∈ C([1 − r,T],R) : ‖u‖[1−r,T] < M}.
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Note that the operatorN : U → C([1 − r,T],R) is continuous and completely continuous. From the choice
of U, there is no u ∈ ∂U such that u = λN(u) for some λ ∈ (0, 1). Consequently, by the nonlinear alternative

of Leray-Schauder type (Lemma 3.4), we deduce that N has a fixed point u ∈ U which is a solution of
(1.1)− (1.2). This completes the proof.

4. An illustrative example

In this section, we illustrate the existence results obtained in Section 3 with the aid of the following
example. Consider the following Hadamard and Riemann-Liouville fractional neutral functional integrod-
ifferential equation:



















HD
1
2

[

u(t) −
∑3

i=1 I
3i+2

3
|u|t

(i+4 log t)(1+|u|t )

]

= 1
4+e−t2

( |u|t
2(1+|u|t ) +

1
4

)

, t ∈ [1,
√

e ],

u(t) = ϕ(t), t ∈ [1 − r, 1].

(7)

Here, α = 1
2 , m = 3, β1 =

5
3 , β2 =

8
3 , β3 =

11
3 , T =

√
e, and

hi(t, x) = |x|
(i+4 log t)(1+|x|) , i = 1, 2, 3, f (t, x) = 1

4+e−t2

( |x|
2(1+|x|) +

1
4

)

.

Clearly,

| f (t, x) − f (t, y)| =
∣

∣

∣

∣

∣

∣

1

2(4 + e − t2)

(

|x|
1 + |x| −

|y|
1 + |y|

)
∣

∣

∣

∣

∣

∣

≤ 1

2(4 + e − t2)

‖x − y‖
(1 + |x|)(1+ |y|)

≤ 1

2(4 + e − t2)
‖x − y‖,

and

|hi(t, x) − hi(t, y)| =
∣

∣

∣

∣

∣

∣

1

(i + 4 log t)

(

|x|
1 + |x| −

|y|
1 + |y|

)

∣

∣

∣

∣

∣

∣

≤ 1

(i + 4 log t)

‖x − y‖
(1 + |x|)(1+ |y|)

≤ 1

(i + 4 log t)
‖x − y‖, for x, y ∈ R, i = 1, 2, 3.

Hence, assumption (H1) hold with µ(t) = 1
2(4+e−t2)

, ψi(t) =
1

(i+4 log t) , ‖µ‖ =
1
8 and ‖ψi‖ = 1

i+2 . Since,

(log T)α

Γ(α + 1)
‖µ‖ +

m
∑

i=1

Tβi

Γ(βi + 1)
‖ψi‖ ≈ 0.9309 < 1,

therefore, by Theorem 3.3, there exists a unique solution for (7) on the interval [1 − r,
√

e ].

Also, we have | f (t, x)| ≤ 1
4 ( 3

4 ) and |hi(t, x)| ≤ 1
3+4 log

√
e
= 1

5 . Thus we get p(t) = 1
4 , Φ(‖x‖) = 3

4 and k = 1
5 .

Further, using the assumption (H4),

M
‖p‖∞Φ(M)(log T)α

Γ(α+1) +
∑m

i=1
k Tβi

Γ(βi+1)

> 1.

We find that M > 0.729604. Therefore, all the conditions of Theorem 3.5 are satisfied. Hence, problem (7)
has at least one solution on [1 − r,

√
e ].
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