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Abstract. Let U be a unital ⋆-algebra and δ : U → U be a linear map behaving like a derivation or an
anti-derivation at the following orthogonality conditions on elements of U: xy = 0, xy⋆ = 0, xy = yx = 0
and xy⋆ = y⋆x = 0. We characterize the map δ when U is a zero product determined algebra. Special
characterizations are obtained when our results are applied to properly infinite W⋆-algebras and unital
simple C⋆-algebras with a non-trivial idempotent.

1. Introduction

Several authors studied linear (additive) maps that behave like homomorphisms, derivations or (right,
left) centralizers of (Banach) algebras when acting on special products. We refer the reader to [1, 2, 4, 11]
for a full account of the topic and a list of references. An interesting question is concerned with derivations.
Over the last few years considerable attention has been paid to characterizations of derivations through
zero products (for instance, see [1, 2, 4, 8, 11, 13] and the references therein). Motivated by these research, in
this paper we consider the problem of characterizing linear maps on ⋆-algebras behaving like derivations
or anti-derivations at orthogonal elements for several types of orthogonality conditions.

Throughout this paper all algebras and linear spaces will be over the complex fieldC. LetU be an algebra
andM be aU-bimodule. Recall that a linear map d : U →M is called a derivation if d(xy) = xd(y) + d(x)y
for all x, y ∈ U. Each map of the form x 7→ xµ − µx, where µ ∈ M, is a derivation which will be called an
inner derivation. Also d is called an anti-derivation if d(xy) = yd(x)+ d(y)x for all x, y ∈ U.

It was shown in [4] and [7] that every additive map δ behaving like a derivation at zero product elements
on a unital prime ring A containing a nontrivial idempotent must have the form δ(x) = d(x) + ξx, where
d : A→ A is an additive derivation and ξ is a central element ofA. Note that nest algebras are important
operator algebras that are not prime. Jing et al. in [17] showed that, for nest algebras on a Hilbert space and
standard operator algebras on a Banach space, the set of linear maps acting on zero products like derivations
with δ(1) = 0 coincides with the set of inner derivations. Li et al. showed in [18] that every linear map δ
behaving like a derivation on zero products with δ(I) = 0 on a nest subalgebra of a factor von Neumann
algebra is a derivation. In [13] additive maps on some operator algebras behaving like (α, β)-derivations are
characterized. In [8] additive maps on a prime ring acting on some orthogonality condition are described
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where the ring has an involution and nontrivial idempotents. For other related references, see [13, 14] and
the references therein.

In this paper we consider the problem of characterizing linear maps behaving like derivations or anti-
derivations at orthogonal elements for several types of orthogonality conditions. In particular, we consider
the subsequent conditions on a linear map δ : U → U where U is a zero product determined ⋆-algebra
with unity:

(i) derivations through one-sided orthogonality conditions

xy = 0 =⇒ xδ(y) + δ(x)y = 0 [P1];

xy⋆ = 0 =⇒ xδ(y)⋆ + δ(x)y⋆ = 0 [P2];

(ii) anti-derivations through one-sided orthogonality conditions

xy = 0 =⇒ yδ(x) + δ(y)x = 0 [P3];

xy⋆ = 0 =⇒ δ(y)⋆x + y⋆δ(x) = 0 [P4];

(iii) derivations through two-sided orthogonality conditions

xy = yx = 0 =⇒ xδ(y) + δ(x)y = yδ(x) + δ(y)x = 0 [P5];

xy⋆ = y⋆x = 0 =⇒ xδ(y)⋆ + δ(x)y⋆ = δ(y)⋆x + y⋆δ(x) = 0 [P6];

where x, y ∈ U. Our purpose is to investigate whether the above conditions characterize derivations
(⋆-derivations) or anti-derivations (⋆-anti-derivations) on zero product determined ⋆-algebras with unity.
Also we give applications of our results for some C⋆-algebras. Particularly, we characterize linear maps
behaving like derivations or anti-derivations at orthogonal elements for several types of orthogonality
conditions on properly infinite W⋆-algebras or unital simple C⋆-algebras with a non-trivial idempotent,
which includes B(H ), the set of all bounded operators on a Hilbert spaceH with dimH ≥ 2.

2. Primary tools

We denote the center of an algebra U by Z(U) and the Lie bracket defined by [x, y] = xy − yx for all
x, y ∈ U. Let U be a ⋆-algebra with unity 1 and d : U → U be a map. We say that d is a ⋆-map if
d(x⋆) = d(x)⋆ for all x ∈ U. Note that if d is a derivation or an anti-derivation, then d(1) = 0.

Remark 2.1. Let d : U → U be an inner derivation where d(x) = xµ − µx for some µ ∈ U. If d is a ⋆-map, then

x⋆µ − µx⋆ = µ⋆x⋆ − x⋆µ⋆ for all x ∈ U. So Reµ =
1

2
(µ + µ⋆) ∈ Z(U). Conversely for µ ∈ U with Reµ ∈ Z(U),

the map d :U →U defined by d(x) = xµ − µx is a ⋆-inner derivation.

LetU be an algebra andM be aU-bimodule. Recall that a linear map d :U →M is called a Jordan derivation
if d(xy+ yx) = xd(y)+ d(x)y+ yd(x)+ d(y)x for all x, y ∈ U, or equivalently, d(x2) = xd(x)+ d(x)x for all x ∈ U.
Clearly, each derivation is a Jordan derivation. The converse is, in general, not true. From the classical result
of Brešar [3], each Jordan derivation on semiprime algebras is a derivation. Since every semisimple Banach
algebra is a semiprime Banach algebra and all C⋆-algebras are semisimple Banach algebras, it follows that
any Jordan derivation on a C⋆-algebra is a derivation.

The question of characterizing linear maps through zero products, Jordan products, etc. on algebras
sometimes can be effectively solved by considering bilinear maps that preserve certain zero product prop-
erties (for instance, see [1, 2, 6, 10]). Motivated by these, Brešar et al. [5] introduced the concept of zero
product (Jordan product) determined algebras, which can be used to study linear maps preserving zero
products (Jordan products) and derivable (Jordan derivable) maps at zero point.

An algebra U is called zero product determined if for every linear space X and every bilinear map
φ : U × U → X , the following holds: If φ(x, y) = 0 whenever xy = 0, then there exists a linear map



H. Ghahramani, Z. Pan / Filomat xx (2018), zzz–zzz 3

T : U → X such that φ(x, y) = T(xy) for all x, y ∈ U. IfU has unity 1, then U is zero product determined
if and only if for every linear space X and every bilinear map φ : U × U → X, the following holds: If
φ(x, y) = 0 whenever xy = 0, then φ(x, y) = φ(xy, 1) (see [12]). Also in this case φ(x, 1) = φ(1, x) for all x ∈ U.

Recall that a W⋆-algebra is called properly infinite if it contains no nonzero finite central projection and a
unital algebraU is called simple if 0 andU are the only ideals ofU.

Remark 2.2. Every algebra which is generated by its idempotents is zero product determined [6]. So the following
algebras are zero product determined:

(i) Any algebra which is linearly spanned by its idempotents.
By [16, Lemma 3. 2] and [23, Theorem 1], B(H ) is linearly spanned by its idempotents. By [23, Theorem 4],
every element in a properly infinite W⋆-algebraU is a sum of at most five idempotents. In [20] several classes
of simple C⋆-algebras are given which are linearly spanned by their projections.

(ii) Any simple unital algebra containing a non-trivial idempotent, since these algebras are generated by their
idempotents [4]. In particular, this class includes B(H ) with dimH ≥ 2.

The ideas of the proof of the next lemma come from [2].

Lemma 2.3. Let U be a zero product determined algebra with unity 1. Suppose that X is a linear space and
φ :U ×U → X is a bilinear map satisfying

xy = yx = 0 =⇒ φ(x, y) = 0 (x, y ∈ U).

Then

φ(x, y) + φ(y, x) = φ(xy, 1)+ φ(1, yx) and φ([x, y], 1) = φ(1, [x, y]),

for all x, y ∈ U.

Proof. Fix s, t ∈ U such that st = 0. Define a bilinear map ψ :U ×U → X by

ψ(x, y) = φ(tx, ys).

It is easily checked that ψ(x, y) = 0 whenever xy = 0. Since U is a zero product determined algebra, it
follows that ψ(x, y) = ψ(xy, 1) for all x, y ∈ U. Hence

φ(tx, ys) = φ(txy, s),

for all x, y ∈ U, when st = 0. Now fix arbitrary elements x, y ∈ U and define ϕ :U ×U → X by

ϕ(s, t) = φ(tx, ys) − φ(txy, s).

From the above, we see that ϕ(s, t) = 0 whenever st = 0. So ϕ(s, t) = ϕ(st, 1) for all s, t ∈ U. Thus

φ(tx, ys) − φ(txy, s) = φ(x, yst) − φ(xy, st),

for all x, y, s, t ∈ U. Setting x = s = 1, we have

φ(t, y) + φ(y, t) = φ(1, yt) + φ(ty, 1),

for all t, y ∈ U.
Now for any x, y ∈ U we have

φ(x, y) + φ(y, x) = φ(xy, 1)+ φ(1, yx)

and

φ(y, x) + φ(x, y) = φ(yx, 1)+ φ(1, xy).

By comparing these equations, we get

φ([x, y], 1) = φ(1, [x, y]),

for all x, y ∈ U.
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The condition φ(x, 1) = φ(1, x) (for all x ∈ U) does not seem to follow from Lemma 2.3. But we have the
next lemma which has been proved in [14, Theorem 3.5].

Lemma 2.4. LetU be an algebra with unity 1. Suppose that X is a linear space and φ : U ×U → X is a bilinear
map satisfying

xy = yx = 0 =⇒ φ(x, y) = 0 (x, y ∈ U).

Then

φ(x, p) + φ(p, x) = φ(xp, 1)+ φ(1, px) and φ(p, 1) = φ(1, p),

for all x ∈ U and any idempotent p ∈ U. IfU is linearly spanned by its idempotents, then

φ(x, y) + φ(y, x) = φ(xy, 1)+ φ(1, yx) and φ(x, 1) = φ(1, x),

for all x, y ∈ U.

3. Main results

From this point on, unless specified otherwise, we assume U is a zero product determined ⋆-algebra
with unity 1.

First, we characterize derivations onU through one-sided orthogonality conditions.

Theorem 3.1. Let δ :U →U be a linear map. Then

(i) δ satisfies

xy = 0 =⇒ xδ(y) + δ(x)y = 0 (x, y ∈ U) [P1]

if and only if there is a derivation d : U → U and an element ξ ∈ Z(U) such that δ(x) = d(x) + ξx for all
x ∈ U.

(ii) δ satisfies

xy⋆ = 0 =⇒ xδ(y)⋆ + δ(x)y⋆ = 0 (x, y ∈ U) [P2]

if and only if there is a ⋆-derivation d : U → U and an element ξ ∈ U such that δ(x) = d(x) + ξx for all
x ∈ U.

Proof. (i) Suppose δ satisfies [P1]. Define a bilinear map φ : U × U → U by φ(x, y) = xδ(y) + δ(x)y. If
x, y ∈ U such that xy = 0, then φ(x, y) = 0. Since U is a zero product determined algebra, it follows that
φ(x, y) = φ(xy, 1) and φ(x, 1) = φ(1, x) for all x, y ∈ U. So

xδ(y) + δ(x)y = xyδ(1) + δ(xy) and xδ(1) = δ(1)x (1)

for all x, y ∈ U. Let ξ = δ(1), then ξ ∈ Z(U). Define d : U → U by d(x) = δ(x) − ξx. By (1), it is easily
checked that d is a derivation.

The converse is proved easily.
(ii) Suppose δ satisfies [P2]. Set ξ = δ(1). Define d : U → U by d(x) = δ(x) − ξx. Then d is a linear map

which satisfies

xy⋆ = 0 =⇒ xd(y)⋆ + d(x)y⋆ = 0 (x, y ∈ U) (2)

and d(1) = 0. We will show that d is a⋆-derivation. To this end, we consider the bilinear mapφ :U×U →U
by φ(x, y) = xd(y⋆)⋆ + d(x)y. If x, y ∈ U such that xy = 0, then x(y⋆)⋆ = 0 and (2) gives φ(x, y) = 0. SinceU
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is a zero product determined algebra, we get φ(x, y) = φ(xy, 1) and φ(1, x) = φ(x, 1) for all x, y ∈ U. From
equations φ(1, x) = φ(x, 1) and d(1) = 0, we have

d(x⋆)⋆ = d(x),

for all x ∈ U. So d is a ⋆-map. Now, by equation φ(x, y) = φ(xy, 1),

xd(y⋆)⋆ + d(x)y = xyd(1⋆)⋆ + d(xy),

for all x, y ∈ U. Since d is a ⋆-map, it follows that d is a derivation.
The converse is proved easily.

Note that in part (ii) of the above theorem, it is not necessarily true that ξ ∈ Z(U). For example, take any
ξ ∈ U but not in Z(U) and define δ :U →U by δ(x) = ξx. Then δ satisfies [P2] and δ is the sum of the zero
derivation and ξx, but ξ < Z(U).

Remark 3.2. Let δ :U →U be a linear map. Then

(i) δ satisfies [P1] if and only if

δ(xy) = xδ(y) + δ(x)y − xδ(1)y (x, y ∈ U)

with δ(1) ∈ Z(U). Part (i) follows from Theorem 3.1 directly.
(ii) δ satisfies [P2] if and only if

δ(xy) = xδ(y⋆)⋆ + δ(x)y − xyδ(1)⋆ (x, y ∈ U).

To see part (ii), suppose that δ satisfies [P2]. By Theorem 3.1, there is a ⋆-derivation d : U → U and
an element ξ = δ(1) ∈ U such that δ(x) = d(x) + ξx for all x ∈ U. Since d(x) = δ(x) − ξx is a ⋆-map,
(δ(x) − ξx) = δ(x⋆)⋆ − xξ⋆ for all x ∈ U. So

δ(xy) = xd(y)+ d(x)y + ξxy

= xδ(y) + δ(x)y − xξy

= x(δ(y) − ξy) + δ(x)y

= xδ(y⋆)⋆ + δ(x)y − xyδ(1)⋆

for all x, y ∈ U. The converse is immediate.

By [24, Theorem 4.1.6] and [24, Theorem 4.1.11] respectively, every derivation on a W⋆-algebra and every
derivation on a simple C⋆-algebra with unity is an inner derivation. In view of these results and Theorem
3.1, we have the next corollary.

Corollary 3.3. LetU be a properly infinite W⋆-algebra or a unital simple C⋆-algebra with a non-trivial idempotent.
If δ :U →U is a linear map, then

(i) δ satisfies [P1] if and only if there are µ, ν ∈ U such that δ(x) = xµ − νx for all x ∈ U and µ − ν ∈ Z(U).
(ii) δ satisfies [P2] if and only if there are µ, ν ∈ U such that δ(x) = xµ − νx for all x ∈ U and Reµ ∈ Z(U).

Proof. In our proof we use the fact thatU is a zero product determined algebra. (i) Suppose δ satisfies [P1].
By Theorem 3.1-(i), there is a derivation d :U →U and an element ξ ∈ Z(U) such that δ(x) = d(x) + ξx for
all x ∈ U. Since every derivation on U is inner, it follows that d(x) = xµ − µx for all x ∈ U, where µ ∈ U.
Setting ν = µ − ξ. So δ(x) = xµ − νx for all x ∈ U and µ − ν ∈ Z(U).

The converse is clear.
(ii) Suppose δ satisfies [P2]. By Theorem 3.1-(ii), there is a ⋆-derivation d : U → U and an element

ξ ∈ U such that δ(x) = d(x) + ξx for all x ∈ U. Now d is a ⋆-derivation which is inner. So by Remark 2.1,
there is a µ ∈ U with Reµ ∈ Z(U), such that d(x) = xµ − µx for all x ∈ U. Setting ν = µ − ξ. It follows that
δ(x) = xµ − νx for all x ∈ U.

The converse is clear.
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In the next theorem we characterize anti-derivations through one-sided orthogonality conditions.

Theorem 3.4. Let δ :U →U be a linear map.

(i) Suppose that

xy = 0 =⇒ yδ(x) + δ(y)x = 0 (x, y ∈ U) [P3].

Then there is a Jordan derivation d : U → U and an element ξ ∈ Z(U) such that δ(x) = d(x) + ξx for all
x ∈ U.

(ii) Suppose that

xy⋆ = 0 =⇒ δ(y)⋆x + y⋆δ(x) = 0 (x, y ∈ U) [P4].

Then there is a ⋆-Jordan derivation d : U → U and an element ξ ∈ U such that δ(x) = d(x) + xξ for all
x ∈ U.

Proof. (i) Define a bilinear map φ : U ×U → U by φ(x, y) = yδ(x) + δ(y)x. Then φ(x, y) = 0 for all x, y ∈ U
with xy = 0. SinceU is a zero product determined algebra, we obtain φ(x, y) = φ(xy, 1) and φ(1, x) = φ(x, 1)
for all x, y ∈ U. So

yδ(x) + δ(y)x = δ(1)xy + δ(xy) and δ(1)x = xδ(1), (3)

for all x, y ∈ U. Let ξ = δ(1), then ξ ∈ Z(U). Define d : U → U by d(x) = δ(x) − ξx. By (3) and the fact that
ξ ∈ Z(U), it follows that d is a Jordan derivation.

(ii) Consider the bilinear map φ :U ×U →U by φ(x, y) = δ(y⋆)⋆x + yδ(x). If x, y ∈ U such that xy = 0,
then φ(x, y) = 0. SinceU is a zero product determined algebra, we get φ(x, y) = φ(xy, 1) and φ(1, x) = φ(x, 1)
for all x, y ∈ U. Define d :U →U by d(x) = δ(x) − xξ, where ξ = δ(1). By φ(1, x) = φ(x, 1),

δ(x⋆)⋆ + xξ = ξ⋆x + δ(x), (4)

for all x ∈ U. So d(x⋆) = d(x)⋆, for all x ∈ U and hence d is a ⋆-map. By φ(x, y) = φ(xy, 1),

δ(xy) = yδ(x) + δ(y⋆)⋆x − ξ⋆xy, (5)

for all x, y ∈ U. From (4) and (5), it follows that

d(x2) = δ(x2) − x2ξ

= xδ(x) + δ(x⋆)⋆x − ξ⋆x2 − x2ξ

= xδ(x) + δ(x)x − xξx − x2ξ

= xd(x)+ d(x)x,

for all x ∈ U. Thus d is a ⋆-Jordan derivation.

Remark 3.5. In Corollary 3.8 below, we will see that the converse of Theorem 3.4 (both parts) is not true and in part
(ii) of Theorem 3.4, ξ is not always in Z(U). Also the following equivalent conditions are contained in the proof of
Theorem 3.4.

Let δ :U →U be a linear map. Then

(i) δ satisfies [P3] if and only if

δ(xy) = δ(y)x + yδ(x) − xδ(1)y (x, y ∈ U)

with δ(1) ∈ Z(U).

(ii) δ satisfies [P4] if and only if

δ(xy) = δ(y⋆)⋆x + yδ(x) − δ(1)⋆xy (x, y ∈ U).
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If a unital algebra U contains a non-trivial idempotent e, let e1 = e and e2 = 1 − e. Define the Peirce
decomposition with respect to e by Ui j = eiUe j, i, j = 1, 2. LetM be a unital U-bimodule. We say Ui j is
faithful toM ifUi jm = {0} implies e jm = 0 and mUi j = {0} implies mei = 0, for all m ∈ M. Clearly,U11 and
U22 are always faithful toM. Peirce decomposition can be useful for characterizing derivable maps, see
[19, 21, 22].

Lemma 3.6. LetU be a unital algebra with a non-trivial idempotent e, C be the set of all commutators inU, andM
be a unitalU-bimodule. SupposeU12 andU21 from the Peirce decomposition with respect to e are faithful toM. If
d is a derivation fromU toM such that d(c) = mc,∀c ∈ C, for some fixed m ∈ M then d = m = 0.

Proof. Let e1 = e and e2 = 1 − e. For any a ∈ U and i, j = 1, 2, let ai j = eiae j ∈ Ui j. Note a12 = [e1a, e2] and
a21 = [e2a, e1], so a12, a21 ∈ C. For any a12, b12 ∈ U12 and a21, b21 ∈ U21, d(a12b12) = d(a12)b12 + a12d(b12) =
ma12b12 + a12mb12. Thus a12mb12 = 0. SinceU12 is faithful, e2me1 = 0. Similarly, from d(a21b21) = d(a21)b21 +

a21d(b21) = ma21b21 + a21mb21, we get e1me2 = 0. From d([a12, b21]) = m[a12, b21] and

d([a12, b21]) = [d(a12), b21] + [a12, d(b21)] = [ma12, b21] + [a12,mb21]

= m[a12, b21] + a12mb21 − b21ma12,

we get a12mb21 − b21ma12 = 0. It follows a12mb21 = b21ma12 = 0. Since U12 and U21 are faithful, e1me1 =

e2me2 = 0. Thus m = 0.
To see d(a) = 0,∀a ∈ U, write a = a11 + a12 + a21 + a22 by the Peirce decomposition with respect to e.

Since d(a12) = d(a21) = 0, we only need to show d(a11) = d(a22) = 0. For any b12 ∈ U12, a11b12 ∈ U12. Thus
d(a11b12) = d(b12) = 0. So d(a11b12) = d(a11)b12 + a11d(b12) gives d(a11)b12 = 0. SinceU12 is faithful, d(a11)e1 = 0.
For any b21 ∈ U21, d(a11)b21 + a11d(b21) = d(a11b21) = 0. Thus d(a11)b21 = 0. SinceU21 is faithful, d(a11)e2 = 0.
Therefore d(a11) = 0. Similarly we can show d(a22) = 0.

Corollary 3.7. LetU be a simple unital algebra with a non-trivial idempotent e and C be the set of all commutators
inU. If d is a derivation fromU toU such that d(c) = mc,∀c ∈ C, for some fixed m ∈ U then d = m = 0.

Proof. IfU is a simple unital algebra with a non-trivial idempotent e, then the Peirce decompositionUi j with
respect to e are faithful toU; indeed, to seeUi j is faithful, for any m ∈ U, if mUi j = {0}, thenUmeiUe j = {0}.
Thus UmeiU , U. So UmeiU, as an ideal of U, must be zero, and mei = 0. Similarly we can show
Ui jm = {0} implies e jm = 0. The conclusion now follows from Lemma 3.6.

Now we can easily obtain the next corollary as a consequence of Theorem 3.4.

Corollary 3.8. Let U be either a properly infinite W⋆-algebra or a simple unital C⋆-algebra with a non-trivial
idempotent. If δ :U →U is a linear map, then

(i) δ satisfies [P3] if and only if δ(x) = 0, for all x ∈ U.
(ii) δ satisfies [P4] if and only if ξ = δ(1) is skew-Hermitian and δ(x) = ξx, for all x ∈ U.

Proof. In our proof we use the fact thatU is a zero product determined algebra and every Jordan derivation
onU is a derivation.

(i) Suppose δ satisfies [P3]. By Theorem 3.4-(i), there is a Jordan derivation (hence a derivation) d :U →
U and an element ξ = δ(1) ∈ Z(U) such that δ(x) = d(x) + ξx for all x ∈ U. Putting this in Eq. 3, we get
d([x, y]) = −2ξ[x, y] for all x, y ∈ U.

IfU is a properly infinite W⋆-algebra then, by [15], every element ofU is the sum of two commutators.
In particular, the unity 1 can be written as a sum of two commutators. Thus −2ξ · 1 = d(1) = 0, so d = ξ = 0.

IfU is a simple unital C⋆-algebra with a non-trivial idempotent, d = ξ = 0 by Corollary 3.7
The converse is clear.
(ii) Suppose δ satisfies [P4]. By Theorem 3.4-(ii), there is a ⋆-Jordan derivation (hence a derivation)

d : U → U and an element ξ = δ(1) ∈ U such that δ(x) = d(x) + xξ for all x ∈ U. Putting this in
Eq. 5, we get d([x, y]) = −ξ⋆[x, y] − [x, y]ξ for all x, y ∈ U. Let δξ(x) = ξx − xξ, for all x ∈ U. Then
(d − δξ)([x, y]) = −(ξ⋆ + ξ)[x, y]. Similar to (i), we get d − δξ = 0 and ξ⋆ + ξ = 0, so ξ is skew-Hermitian and
δ(x) = d(x) + xξ = δξ(x) + xξ = ξx, for all x ∈ U.

The converse is clear.
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It should be noted that there are linear maps on unital ⋆-algebras satisfying [P3] and [P4] that are not left
multipliers, hence nonzero, as shown in the following example.

Example 3.9. Let A be an abelian unital ⋆-algebra generated by idempotents. Define a new unital ⋆-algebra as

follows: U = {

(

a b
c d

)

: a, b, c, d, ∈ A} with

(

a b
c d

)⋆

=

(

a⋆ c⋆

b⋆ d⋆

)

. For any u =

(

u11 u12

u21 u22

)

and v =

(

v11 v12

v21 v22

)

, u + v

is defined by the usual matrix addition and uv is defined by

uv =

(

u11v11 u11v12 + u12v22

u21v11 + u22v21 u22v22

)

.

Define a linear map δ onU by δ(u) =

(

0 u21

u12 0

)

. A direct computation shows δ is a ⋆-antiderivation, so δ satisfies

both [P3] and [P4], but δ is not a left multiplier, as δ(1) = 0.

Remark 3.10. A linear map δ : U → U behaving like a derivation or an anti-derivation at x⋆y = 0 can be
characterized by setting τ(x) = δ(x⋆)⋆, it follows that τ behaves like a derivation or an anti-derivation at xy⋆ = 0
and hence characterizations of δ can be obtained from [P2] and [P4], respectively.

Next we will consider a linear map δ : U → U behaving like a derivation at two-sided orthogonality
conditions.

Remark 3.11. LetU be a unital algebra and δ :U →U be a linear map. Then the following are equivalent.

(i) For all x, y ∈ U,

δ(xy + yx) = xδ(y) + δ(x)y + yδ(x) + δ(y)x − xyδ(1) − δ(1)yx.

(ii) There are linear maps d1, d2 :U →U such that, for all x, y ∈ U,

(a)

δ(xy + yx) = δ(x)y + xd1(y) + yδ(x) + d2(y)x.

(b)

d1(xy + yx) = d1(x)y+ xd1(y) + d1(y)x + yd1(x) + [x, [δ(1), y]]

and

d2(xy + yx) = d2(x)y+ xd2(y) + d2(y)x + yd2(x) + [x, [δ(1), y]].

(c)

d1(x) = d2(x) + [δ(1), x].

(iii) There are linear maps d1, d2 :U →U such that, for all x, y ∈ U,

δ(x) = d1(x) + xδ(1) = d2(x) + δ(1)x,

d1(xy + yx) = d1(x)y + xd1(y) + d1(y)x + yd1(x) + [x, [δ(1), y]]

and

d2(xy + yx) = d2(x)y + xd2(y) + d2(y)x + yd2(x) + [x, [δ(1), y]].



H. Ghahramani, Z. Pan / Filomat xx (2018), zzz–zzz 9

Proof. Let ξ = δ(1).
(i) =⇒ (ii): Define linear maps d1, d2 :U →U by

d1(x) = δ(x) − xξ and d2(x) = δ(x) − ξx.

It is clear that (a) and (c) hold for d1 and d2. From the definitions of d1 and d2, we have, for all x, y ∈ U,

d1(xy + yx) = δ(xy + yx) − xyξ − yxξ

= xδ(y) + δ(x)y + yδ(x) + δ(y)x − xyξ − ξyx − xyξ − ξyx

= xd1(y) + d2(y)x + yd1(x) + d1(x)y + xξy − xyξ

= xd1(y) + d1(y)x − [ξ, y]x + yd1(x) + d1(x)y + x[ξ, y]

= xd1(y) + d1(y)x + yd1(x) + d1(x)y + [x, [ξ, y]].

By a similar method we get

d2(xy + yx) = d2(x)y + xd2(y) + d2(y)x+ yd2(x) + [x, [ξ, y]].

(ii) =⇒ (i): From (b), d1(1) = d2(1) = 0. Define linear maps T1,T2 :U →U by

T1(x) = δ(x) − d1(x) and T2(x) = δ(x) − d2(x).

Then T1(1) = T2(1) = δ(1) and for all x, y ∈ U,

T1(xy + yx) = δ(xy + yx) − d1(xy + yx)

= δ(x)y + xd1(y) + yδ(x) + d2(y)x

− d1(x)y − xd1(y) − d1(y)x − yd1(x) − [x, [ξ, y]]

= T1(x)y + yT1(x) + d1(y)x − [ξ, y]x − d1(y)x − [x, [ξ, y]]

= T1(x)y + yT1(x) + x[y, ξ],

Setting x = 1, we get T1(y) = yξ. Similarly we obtain T2(y) = ξy. Hence

d1(y) = δ(y) − yξ and d2(y) = δ(y) − ξy.

Replacing d1(y) and d2(y) with these identities in (a), we get (i).
(i) =⇒ (iii): The proof is similar to that of (i) =⇒ (ii).
(iii) =⇒ (i): This is straightforward.

Theorem 3.12. Let δ :U →U be a linear map. Suppose that

xy = yx = 0 =⇒ xδ(y) + δ(x)y = yδ(x) + δ(y)x = 0 (x, y ∈ U) [P5].

Then, for all x, y ∈ U,

δ(xy + yx) = xδ(y) + δ(x)y + yδ(x) + δ(y)x − xyδ(1) − δ(1)yx

and

[x, y]δ(1) = δ(1)[x, y].

Also if [x, [δ(1), y]] = 0 for all x, y ∈ U, then there are Jordan derivations d1, d2 :U →U such that, for all x ∈ U,

δ(x) = d1(x) + xδ(1) = d2(x) + δ(1)x.
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Proof. Define a bilinear mapφ :U×U →U byφ(x, y) = xδ(y)+δ(x)y. Soφ(x, y) = 0, whenever xy = yx = 0.
Hence by Lemma 2.3, we get, for all x, y ∈ U, φ([x, y], 1) = φ(1, [x, y]) and

φ(x, y) + φ(y, x) = φ(xy, 1)+ φ(1, yx),

Therefore δ(1)[x, y] = [x, y]δ(1) and

xδ(y) + δ(x)y + yδ(x) + δ(y)x = δ(xy) + xyδ(1)+ δ(yx) + δ(1)yx.

Now by Remark 3.11, the rest of theorem is given.

If δ(1) ∈ Z(U), it is obvious that [x, [δ(1), y]] = 0 (x, y ∈ U) and d1 = d2 in the above theorem. Indeed, in this
case there is a Jordan derivation d :U →U such that δ(x) = d(x) + δ(1)x for all x ∈ U.

Theorem 3.13. LetU be a unital ⋆-algebra which is generated by its idempotents and δ : U →U be a linear map
satisfying [P5]. Then there is a Jordan derivation d : U → U such that δ(x) = d(x) + δ(1)x for all x ∈ U, where
δ(1) ∈ Z(U).

Proof. Define a bilinear mapφ :U×U →U byφ(x, y) = xδ(y)+δ(x)y. Soφ(x, y) = 0, whenever xy = yx = 0.
By Lemma 2.4, we get φ(p, 1) = φ(1, p) for all idempotent p ∈ U. So pδ(1) = δ(1)p for each idempotent p ∈ U.
SinceU is generated by its idempotents, it follows that δ(1) ∈ Z(U). SinceU is a zero product determined
algebra, the conclusion follows from Theorem 3.12.

In the next corollary we apply Theorem 3.13 to some C⋆-algebras which are generated by its idempotents.

Corollary 3.14. Let U be either a properly infinite W⋆-algebra or a unital simple C⋆-algebra with a non-trivial
idempotent. Suppose that δ : U → U is a linear map. Then δ satisfies [P5] if and only if there are µ, ν ∈ U such
that δ(x) = xµ − νx for all x ∈ U, where µ − ν ∈ Z(U).

Proof. SinceU is generated by its idempotents, from Theorem 3.13 it follows that there is a Jordan derivation
d : U → U such that δ(x) = d(x) + δ(1)x for all x ∈ U, where δ(1) ∈ Z(U). The rest of proof is obtained by
using a similar argument as that in the proof of Corollary 3.3-(i) .

Theorem 3.15. Let δ :U →U be a linear map. Suppose that

xy⋆ = y⋆x = 0 =⇒ xδ(y)⋆ + δ(x)y⋆ = δ(y)⋆x + y⋆δ(x) = 0 (x, y ∈ U) [P6].

Then, for all x, y ∈ U,

δ(xy) + δ(x⋆y⋆)⋆ + xyδ(1)⋆ + δ(1)yx = δ(x)y + xδ(y⋆)⋆ + δ(y)x + yδ(x⋆)⋆,

δ(xy) + δ(x⋆y⋆)⋆ + δ(1)⋆xy + yxδ(1) = δ(x⋆)⋆y + xδ(y) + δ(y⋆)⋆x + yδ(x)

and

Reδ(1)[x, y] = [x, y]Reδ(1).

Moreover,

(δ([x, y])− δ(1)[x, y])⋆ = δ([x, y]⋆) − δ(1)[x, y]⋆

and

(δ([x, y])− [x, y]δ(1))⋆ = δ([x, y]⋆) − [x, y]⋆δ(1).
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Proof. Define bilinear maps φ,ψ :U ×U → U by

φ(x, y) = xδ(y⋆)⋆ + δ(x)y and ψ(x, y) = yδ(x) + δ(y⋆)⋆x,

for all x, y ∈ U. It follows that φ(x, y) = 0 and ψ(x, y) = 0, whenever xy = yx = 0. By Lemma 2.3, we get

φ(x, y) + φ(y, x) = φ(xy, 1)+ φ(1, yx) and φ([x, y], 1) = φ(1, [x, y]),

ψ(x, y)+ ψ(y, x) = ψ(xy, 1)+ ψ(1, yx) and ψ([x, y], 1) = ψ(1, [x, y]),

for all x, y ∈ U. The desired conclusion now follows from these equations.

Theorem 3.16. LetU be a unital ⋆-algebra which is linearly spanned by its idempotents and δ :U →U be a linear
map satisfying [P6]. Then there are ⋆-Jordan derivations d1, d2 :U →U such that

δ(x) = d1(x) + δ(1)x = d2(x) + xδ(1),

for all x ∈ U, where Reδ(1) ∈ Z(U).

Proof. Define bilinear maps φ,ψ :U ×U → U by

φ(x, y) = xδ(y⋆)⋆ + δ(x)y and ψ(x, y) = yδ(x) + δ(y⋆)⋆x,

for all x, y ∈ U. It follows that φ(x, y) = 0 and ψ(x, y) = 0, whenever xy = yx = 0. By Lemma 2.4, we get
φ(x, 1) = φ(1, x) and ψ(x, 1) = ψ(1, x) for all x ∈ U. Set ξ = δ(1). Therefore

xξ⋆ + δ(x) = δ(x⋆)⋆ + ξx (6)

and

xξ + δ(x⋆)⋆ = δ(x) + ξ⋆x, (7)

for all x ∈ U. By comparing equations (6) and (7), we get x(ξ + ξ⋆) = (ξ + ξ⋆)x for all x ∈ U. Hence
Reξ ∈ Z(U).

Define d1 : U →U by d1(x) = δ(x) − ξx. Then d1 is a linear map and by (6), we have d1(x⋆) = d1(x)⋆ for
all x ∈ U. Hence d1 is a ⋆-map. If xy = yx = 0, then by hypothesis, definition of d1 and the fact that d1 is a
⋆-map and Reξ ∈ Z(U), we have

xd1(y) + d1(x)y = xd1(y⋆)⋆ + d1(x)y

= x(δ(y⋆) − ξy⋆)⋆ + (δ(x) − ξx)y = 0

and

yd1(x) + d1(y)x = yd1(x) + d1(y⋆)⋆x

= y(δ(x) − ξx) + (δ(y⋆) − ξy⋆)⋆x

= −yξx − yξ⋆x = −yx(ξ+ ξ⋆) = 0.

So d1 satisfies [P5] and d1(1) = 0. Hence by Theorem 3.12, d1 is a Jordan derivation, sinceU is a zero product
determined algebra.

By a similar method as above, we can show that there is a ⋆-Jordan derivation d2 : U → U such that
δ(x) = d2(x) + xξ for all x ∈ U.

In Theorem 3.16, if δ(1) ∈ Z(U), it is obvious that d1 = d2. Indeed, in this case there is a Jordan derivation
d : U → U such that δ(x) = d(x) + δ(1)x for all x ∈ U. Note that in this theorem, it is not necessary that
ξ ∈ Z(U). For example, take any ξ ∈ U such that ξ is not in Z(U) and Reξ ∈ Z(U). Then the linear map
δ :U →U defined by δ(x) = ξx satisfies [P6] and δ is the sum of the zero derivation and xξ, but ξ is not in
Z(U).

In the next corollary we apply Theorem 3.15 to properly infinite W⋆-algebras and unital simple C⋆-
algebras which are linearly spanned by its idempotents, several classes of such C⋆-algebras are given in
[20].
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Corollary 3.17. LetU be a properly infinite W⋆-algebra or a unital simple C⋆-algebra which is linearly spanned by
its idempotents (in particular B(H )) and δ : U → U be a linear map. Then δ satisfies [P6] if and only if there are
µ, ν ∈ U such that δ(x) = xµ − νx for all x ∈ U, where Reµ ∈ Z(U) and Re(µ − ν) ∈ Z(U).

Proof. Suppose δ satisfies [P6]. Since U is linearly spanned by its idempotents, by Theorem 3.16, there
is a ⋆-Jordan derivation d : U → U and an element ξ ∈ U such that δ(x) = d(x) + ξx for all x ∈ U and
Reξ ∈ Z(U). Since every Jordan derivation onU is a derivation and any derivation onU is inner, it follows
that d is an inner derivation. Hence there is a µ ∈ U with Reµ ∈ Z(U), such that d(x) = xµ−µx for all x ∈ U.
Letting ν = µ − ξ. So Reξ = Re(µ − ν) ∈ Z(U), Reµ ∈ Z(U) and δ(x) = xµ − νx for all x ∈ U.

The converse is proved easily.

It seems that the converse of Theorems 3.12, 3.13, 3.15 and 3.16 do not hold.

Remark 3.18. The proofs of our results regarding conditions [P1], [P3] and [P5] work in a more general setting for
characterizing maps from a zero product determined unital algebra to its bimodules. More specifically, by a similar
method we can obtain Theorem 3.1-(i), Theorem 3.4-(i) and Theorem 3.12 for a linear map δ :U →M satisfying one
of the conditions [P1], [P3] and [P5], respectively, whereU is a zero product determined unital algebra andM is a
U-bimodule.
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