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Stevo Stevića,b,c, Bratislav Iričanind, Zdeněk Šmardae

aMathematical Institute of the Serbian Academy of Sciences, Knez Mihailova 36/III, 11000 Beograd, Serbia
bDepartment of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, Republic of China

cDepartment of Healthcare Administration, Asia University, 500 Lioufeng Rd., Wufeng, Taichung 41354, Taiwan, Republic of China
dFaculty of Electrical Engineering, Belgrade University, Bulevar Kralja Aleksandra 73, 11000 Beograd, Serbia

eCEITEC - Central European Institute of Technology, Brno University of Technology, Czech Republic

Abstract. It is shown that the following symmetric system of partial difference equations

cm,n = dm−1,n + cm−1,n−1,

dm,n = cm−1,n + dm−1,n−1,

is solvable on the combinatorial domain C =
{
(m,n) ∈ N2

0 : 0 ≤ n ≤ m
}
\ {(0, 0)}, by presenting some

formulas for the general solution to the system on the domain in terms of the boundary values c j, j, c j,0, d j, j,
d j,0, j ∈N, and the indices m and n. The corresponding result for a related three-dimensional cyclic system
of partial difference equations is also proved. These results can serve as a motivation for further studies of
the solvability of symmetric, close-to-symmetric, cyclic, close-to-cyclic and other related systems of partial
difference equations.

1. Introduction

By Cm
n , 0 ≤ n ≤ m, we denote the binomial coefficients, which are obtained, for example, as the coefficients

of the polynomial Pm(x) = (1 + x)m, m ∈N0, that is,

Pm(x) = Cm
0 + Cm

1 x + Cm
2 x2 + · · · + Cm

m−1xm−1 + Cm
mxm,

for an m ∈N0.
The coefficients satisfy the following equalities

Cm
0 = Cm

m = 1, m ∈N0, (1)
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and the recurrent relation

Cm
n = Cm−1

n + Cm−1
n−1 , (2)

for all m,n ∈N such that n < m. By definition is taken that Cm
n = 0 if m < n, which is used in the paper.

Many books contain some results on the coefficients (see, for example, [10, 13, 15, 24, 25, 59]; books
[10] and [13], among other things, contain many basic relations which include the coefficients/numbers
and present basic methods for dealing with them, [15] presents many relations containing the coefficients
and methods for proving them, as well as many methods for calculating finite sums of various types, [24]
presents a list of numerous relations and combinatorial identities, [25] presents, among other things, some
advanced methods for dealing with combinatorial identities, while [59] contains various combinatorial
applications).

The notation seems a bit deceiving because it does not reveal the real character of recurrent relation (2).
However, if it is written in the following way

cm,n = cm−1,n + cm−1,n−1, (3)

it becomes clear that (2) is a difference equation with two independent variables, that is, a partial difference
equation, while (1) are some conditions given on the discrete half-lines m = n and n = 0, m ∈ N, that is,
some boundary-value conditions on the following domain

C =
{
(m,n) ∈N2

0 : 0 ≤ n ≤ m
}
\ {(0, 0)},

which, we call the combinatorial domain (point (0, 0) is excluded since the value c0,0 is essentially not used in
calculating the other values of the sequence cm,n).

One of the basic problems for any kind of difference equations, as well as for other types of equations,
is their solvability. Some old results on partial difference equations, devoted mostly to the problem of their
solvability, can be found, for example, in [9, Chapter 12] and [11, Chapter 8]. For some results in the area
up to 2003, see the monograph [3]. See, also [16]. The solvability of difference equations and systems with
one independent variable is an ancient topic (see, for example, [2, 6, 9–12, 14, 15]). Some recent attention
on the solvability of difference equations has been, among other things, attracted by S. Stević’s note [27],
which explained the solvability of the following nonlinear second-order difference equation

xn+1 =
xn−1

a + bxnxn−1
, n ∈N0, (4)

by transforming the equation to a solvable one by using a suitable change of variables (for more details, as
well as more general results see [22, 29, 30, 50] and the references therein). It has turned out that closely
related methods and ideas can be applied to some other classes of difference equations (see [38, 51, 53]
and the references therein), as well as to some related systems of difference equations (see, for example,
[1, 28, 31–33, 47–49, 52, 54, 55]; [28] solves a two-dimensional close-to-symmetric relative of (4), while
[48] studies a three-dimensional relative of (4) of the type). For some other methods for solving difference
equations and systems, and related topics, see also [5, 8, 34, 38, 44]. The main feature of papers [1, 22, 33, 48–
51, 53], as well as of many quoted in their lists of references, is that decisive role in their solvability plays
the following difference equation

xn = anxn−1 + bn, n ∈N, (5)

which is solvable one (see, for example, [2, 15], where three methods for solving the equation, which
essentially correspond to the three methods for solving the linear first-order differential one, are presented).
We would like to mention that even behind the solvability of some product-type difference equations and
systems is the solvability of equation (5) (see, for example, [35, 37, 46, 56–58] and the references therein).
Moreover, in some cases, the solvability of the product-type systems is shown by using the solvability of
some special cases of the corresponding product-type equation, that is, of the following equation

zn = bnzan
n−1, n ∈N.
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For some recent results on equation (5), see [40] and [42], which are partly motivated by a well-known
problem in [4] (see, also recent paper [41]). All these facts show that equation (5) occupies one of the central
roles in the area of solvability of difference equations and systems.

During the investigation of solvable difference equations and systems Stević has noticed the fact that
for the binomial coefficients there is a closed-form formula. Namely, it is well-known that

Cm
n =

m!
n!(m − n)!

, 0 ≤ n ≤ m.

The formula presents a solution to equation (3), which suggests potential solvability of equation (3) on
the combinatorial domain. That equation (3) can be “solved” is a well-known fact (see, for example, [11,
p.239]), but the general solution presented therein is not suitable for solving boundary-value problems on
the combinatorial domain. These facts lead us to the natural problem of trying to find closed-form formula
for solutions to equation (3) on the domain in terms of its boundary values c0, j, c j, j, j ∈ N. The problem
was solved in [36], and by using the methods and ideas appearing therein, including some ideas related to
solving equation (5), some related results were later obtained in [39], [43] and [45].

On the other hand, during the 90’s Papaschinopoulos and Schinas have started studying concrete
symmetric and related systems of difference equations ([17]-[19]), which have motivated experts to do
research in the direction (see [1, 7, 20, 21, 26, 28, 31–35, 37, 46, 48, 49, 52, 54–58] and the numerous references
therein). Note also that some of these papers, such as [18]-[21], study, among other things, the invariants
of some systems of difference equations, which in a wider sense also belong to the area of solvability
(invariants of equations and systems are not their solutions, but can help in getting some results on their
long-term behavior).

These two directions in the investigation of difference equations and systems of one independent variable
inspired us to study the solvability of symmetric, close to symmetric and other related classes of partial
difference equations.

In this paper we start with the investigation by showing that the following system of partial difference
equations

cm,n = dm−1,n + cm−1,n−1,

dm,n = cm−1,n + dm−1,n−1,
(6)

which is a natural two-dimensional extension to equation (3), is solvable on C. To do this we will use the
method of half-lines described in [36], a half-constructive method which essentially uses the solvability of
some special cases of equation (5) on the intersection of domain C and the lines y = t + k, t ∈ Z, when k ∈N,
along with an inductive argument with respect to k. More precisely, in the case of system (6) will be used
the case of equation (5) when an = 1 for every n, as it was the case in [36]. The case essentially reduces
application of equation (5) to telescoping summations along with iterated summations. Nevertheless the
solvability of equation (5) in the special case is crucial. It should be also mentioned that the behavior of
the solutions to the equation (5) in the case can be quite complex (see [14, 23]), but this problem is not
considered here. The solvability of a closely related tree-dimensional cyclic system of partial difference
equations is also studied. As far as we know, these are the first results of this type in the literature and
this paper initiates the study of the solvability of symmetric, close-to-symmetric, cyclic, close-to-cyclic and
other related systems of partial difference equations. We use the standard convention

∑l
j=k a j = 0, when

k, l ∈ Z and l < k.

2. Main results

In this section we formulate and prove the main results in this paper.
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2.1. System (6) on the combinatorial domain
The method of half-lines requests ”solving” system (6) on the half lines which are obtained as intersec-

tions of domain C and the lines
y = t + k, t ∈ Z,

when k ∈N, for first several k-s and then based on the obtained ”solutions” should be guessed what is the
general solution to the system on C. We will find solutions to the corresponding equations for k = 1, 2, 3,
and then guess a formula for the general solution to the system (from the mathematical point of view
the case k = 3 need not be presented, but we include it for a clearer presentation and the benefit of the
reader). Before this we formulate a known lemma which will be frequently used in this paper. Beside the
formulation in the terms of the binomial coefficients ([10, 15, 24]), it can be also formulated as a sum of a
rational sequence and can be found in many problem books and books on finite differences ([2, 4, 15]).

Lemma 1. Assume that k, r ∈N0. Then
n∑

j=0

Ck+ j
r = Cn+k+1

r+1 − Ck
r+1,

for every n ∈N0.

Let m = n + 1, then
cn+1,n = cn,n−1 + dn,n, dn+1,n = dn,n−1 + cn,n,

for n ∈N, from which it follows that

cn+1,n = c1,0 +

n∑
j=1

d j, j, dn+1,n = d1,0 +
∑n

j=1 c j, j, (7)

for n ∈N0.
Let m = n + 2, then

cn+2,n = cn+1,n−1 + dn+1,n, dn+2,n = dn+1,n−1 + cn+1,n,

for n ∈N, and consequently

cn+2,n = c2,0 +

n∑
j=1

d j+1, j,

dn+2,n = d2,0 +

n∑
j=1

c j+1, j,

(8)

for n ∈N0.
From (7), (8) and some calculation, it follows that

cn+2,n = c2,0 +

n∑
j=1

(
d1,0 +

j∑
i=1

ci,i

)
= c2,0 + nd1,0 +

n∑
i=1

(n − i + 1)ci,i, (9)

dn+2,n = d2,0 +

n∑
j=1

(
c1,0 +

j∑
i=1

di,i

)
= d2,0 + nc1,0 +

n∑
i=1

(n − i + 1)di,i, (10)
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for n ∈N0.
Let m = n + 3, then

cn+3,n = cn+2,n−1 + dn+2,n,

dn+3,n = dn+2,n−1 + cn+2,n,

for n ∈N, from which it follows that

cn+3,n = c3,0 +

n∑
j=1

d j+2, j,

dn+3,n = d3,0 +

n∑
j=1

c j+2, j,

(11)

for n ∈N0.

From (9)-(11) and some calculation, it follows that

cn+3,n = c3,0 +

n∑
j=1

(
d2,0 + jc1,0 +

j∑
i=1

( j − i + 1)di,i

)
= c3,0 + nd2,0 +

n(n + 1)
2

c1,0 +

n∑
i=1

di,i

n∑
j=i

( j − i + 1)

= c3,0 + nd2,0 +
n(n + 1)

2
c1,0 +

n∑
i=1

di,i
(n − i + 1)(n − i + 2)

2

and

dn+3,n = d3,0 +

n∑
j=1

(
c2,0 + jd1,0 +

j∑
i=1

( j − i + 1)ci,i

)
= d3,0 + nc2,0 +

n(n + 1)
2

d1,0 +

n∑
i=1

ci,i
(n − i + 1)(n − i + 2)

2

for n ∈N0.
One of the crucial points in this analysis is to note that the last two formulas can be written in the

following, combinatorial, from (forms which include some binomial coefficients):

cn+3,n = Cn−1
0 c3,0 + Cn

1d2,0 + Cn+1
2 c1,0 +

n∑
i=1

Cn−i+2
2 di,i, (12)

and

dn+3,n = Cn−1
0 d3,0 + Cn

1c2,0 + Cn+1
2 d1,0 +

n∑
i=1

Cn−i+2
2 ci,i, (13)

for n ∈N0.
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Equalities (7), (9), (10), (12), (13), suggest that the following formulas hold

cn+2l−1,n =

l∑
j=1

Cn+2l−2 j−1
2l−2 j c2 j−1,0 +

l−1∑
j=1

Cn+2l−2 j−2
2l−2 j−1 d2 j,0 +

n∑
i=1

Cn−i+2l−2
2l−2 di,i, (14)

cn+2l,n =

l∑
j=1

Cn+2l−2 j−1
2l−2 j c2 j,0 +

l∑
j=1

Cn+2l−2 j
2l−2 j+1d2 j−1,0 +

n∑
i=1

Cn−i+2l−1
2l−1 ci,i, (15)

dn+2l−1,n =

l∑
j=1

Cn+2l−2 j−1
2l−2 j d2 j−1,0 +

l−1∑
j=1

Cn+2l−2 j−2
2l−2 j−1 c2 j,0 +

n∑
i=1

Cn−i+2l−2
2l−2 ci,i, (16)

dn+2l,n =

l∑
j=1

Cn+2l−2 j−1
2l−2 j d2 j,0 +

l∑
j=1

Cn+2l−2 j
2l−2 j+1c2 j−1,0 +

n∑
i=1

Cn−i+2l−1
2l−1 di,i, (17)

for n ∈N0 and l ∈N.
Let m = n + 2l + 1, then

cn+2l+1,n = cn+2l,n−1 + dn+2l,n,

dn+2l+1,n = dn+2l,n−1 + cn+2l,n,
(18)

for n ∈N.
From (18), it follows that

cn+2l+1,n = c2l+1,0 +

n∑
s=1

ds+2l,s,

dn+2l+1,n = d2l+1,0 +

n∑
j=s

cs+2l,s,

(19)

for n ∈N0.
Using the hypotheses (15) and (17) in (19), it follows that

cn+2l+1,n = c2l+1,0 +

n∑
s=1

( l∑
j=1

Cs+2l−2 j−1
2l−2 j d2 j,0 +

l∑
j=1

Cs+2l−2 j
2l−2 j+1c2 j−1,0 +

s∑
i=1

Cs−i+2l−1
2l−1 di,i

)
= c2l+1,0 +

l∑
j=1

d2 j,0

n∑
s=1

Cs+2l−2 j−1
2l−2 j +

l∑
j=1

c2 j−1,0

n∑
s=1

Cs+2l−2 j
2l−2 j+1 +

n∑
i=1

di,i

n∑
s=i

Cs−i+2l−1
2l−1 , (20)

and

dn+2l+1,n = d2l+1,0 +

n∑
s=1

( l∑
j=1

Cs+2l−2 j−1
2l−2 j c2 j,0 +

l∑
j=1

Cs+2l−2 j
2l−2 j+1d2 j−1,0 +

s∑
i=1

Cs−i+2l−1
2l−1 ci,i

)
= d2l+1,0 +

l∑
j=1

c2 j,0

n∑
s=1

Cs+2l−2 j−1
2l−2 j +

l∑
j=1

d2 j−1,0

n∑
s=1

Cs+2l−2 j
2l−2 j+1 +

n∑
i=1

ci,i

n∑
s=i

Cs−i+2l−1
2l−1 , (21)

for every n ∈N0.
By Lemma 1, we have

n∑
s=1

Cs+2l−2 j−1+t
2l−2 j+t = Cn+2l−2 j+t

2l−2 j+1+t − C2l−2 j+t
2l−2 j+1+t = Cn+2l−2 j+t

2l−2 j+1+t , (22)
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for every 1 ≤ j ≤ l and t ∈N0, and

n∑
s=i

Cs−i+2l−1+t
2l−1+t = Cn−i+2l+t

2l+t − C2l−1+t
2l+t = Cn−i+2l+t

2l+t , (23)

for every 1 ≤ i ≤ n and t ∈N0.
Using (22) and (23) in (20) and (21), we get

cn+2l+1,n = c2l+1,0 +

l∑
j=1

d2 j,0Cn+2l−2 j
2l−2 j+1 +

l∑
j=1

c2 j−1,0Cn+2l−2 j+1
2l−2 j+2 +

n∑
i=1

di,iCn−i+2l
2l ,

=

l+1∑
j=1

c2 j−1,0Cn+2l−2 j+1
2l−2 j+2 +

l∑
j=1

d2 j,0Cn+2l−2 j
2l−2 j+1 +

n∑
i=1

di,iCn−i+2l
2l , (24)

and

dn+2l+1,n = d2l+1,0 +

l∑
j=1

c2 j,0Cn+2l−2 j
2l−2 j+1 +

l∑
j=1

d2 j−1,0Cn+2l−2 j+1
2l−2 j+2 +

n∑
i=1

ci,iCn−i+2l
2l ,

=

l+1∑
j=1

d2 j−1,0Cn+2l−2 j+1
2l−2 j+2 +

l∑
j=1

c2 j,0Cn+2l−2 j
2l−2 j+1 +

n∑
i=1

ci,iCn−i+2l
2l , (25)

for every n ∈N0.
Let m = n + 2l + 2, then

cn+2l+2,n = cn+2l+1,n−1 + dn+2l+1,n, dn+2l+2,n = dn+2l+1,n−1 + cn+2l+1,n, (26)

for n ∈N.
From (26), it follows that

cn+2l+2,n = c2l+2,0 +

n∑
s=1

ds+2l+1,s, dn+2l+2,n = d2l+2,0 +

n∑
s=1

cs+2l+1,s, (27)

for n ∈N0.
Using (24) and (25), as well as (22) and (23) in (27), it follows that

cn+2l+2,n = c2l+2,0 +

n∑
s=1

( l+1∑
j=1

d2 j−1,0Cs+2l−2 j+1
2l−2 j+2 +

l∑
j=1

c2 j,0Cs+2l−2 j
2l−2 j+1 +

s∑
i=1

ci,iCs−i+2l
2l

)
= c2l+2,0 +

l+1∑
j=1

d2 j−1,0

n∑
s=1

Cs+2l−2 j+1
2l−2 j+2 +

l∑
j=1

c2 j,0

n∑
s=1

Cs+2l−2 j
2l−2 j+1 +

n∑
i=1

ci,i

n∑
s=i

Cs−i+2l
2l

= c2l+2,0 +

l+1∑
j=1

d2 j−1,0Cn+2l−2 j+2
2l−2 j+3 +

l∑
j=1

c2 j,0Cn+2l−2 j+1
2l−2 j+2 +

n∑
i=1

ci,iCn−i+2l+1
2l+1

=

l+1∑
j=1

c2 j,0Cn+2l−2 j+1
2l−2 j+2 +

l+1∑
j=1

d2 j−1,0Cn+2l−2 j+2
2l−2 j+3 +

n∑
i=1

ci,iCn−i+2l+1
2l+1 , (28)



S. Stević et al. / Filomat 32:6 (2018), 2043–2065 2050

and

dn+2l+2,n = d2l+2,0 +

n∑
s=1

( l+1∑
j=1

c2 j−1,0Cs+2l−2 j+1
2l−2 j+2 +

l∑
j=1

d2 j,0Cs+2l−2 j
2l−2 j+1 +

s∑
i=1

di,iCs−i+2l
2l

)
= d2l+2,0 +

l+1∑
j=1

c2 j−1,0

n∑
s=1

Cs+2l−2 j+1
2l−2 j+2 +

l∑
j=1

d2 j,0

n∑
s=1

Cs+2l−2 j
2l−2 j+1 +

n∑
i=1

di,i

n∑
s=i

Cs−i+2l
2l

= d2l+2,0 +

l+1∑
j=1

c2 j−1,0Cn+2l−2 j+2
2l−2 j+3 +

l∑
j=1

d2 j,0Cn+2l−2 j+1
2l−2 j+2 +

n∑
i=1

di,iCn−i+2l+1
2l+1

=

l+1∑
j=1

d2 j,0Cn+2l−2 j+1
2l−2 j+2 +

l+1∑
j=1

c2 j−1,0Cn+2l−2 j+2
2l−2 j+3 +

n∑
i=1

di,iCn−i+2l+1
2l+1 , (29)

for every n ∈N0.
From (7), (9), (10), (24), (25), (28), (29) and the induction we get that (14)-(17) hold for all n, l ∈N0.

Now we are in a position to formulate and prove our first main result in this paper.

Theorem 1. Assume that (αk)k∈N, (βk)k∈N, (γk)k∈N and (δk)k∈N are given sequences of complex numbers. Then the
solution to system (6) with the following boundary-value conditions

ck,0 = αk, ck,k = βk, dk,0 = γk, dk,k = δk, k ∈N, (30)

is given by

cm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jα2 j−1 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jγ2 j +

n∑
i=1

Cm−i−1
m−n−1δi, (31)

dm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jγ2 j−1 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jα2 j +

n∑
i=1

Cm−i−1
m−n−1βi, (32)

when m − n ≡ 1 ( mod 2)

cm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jα2 j +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1γ2 j−1 +

n∑
i=1

Cm−i−1
m−n−1βi, (33)

dm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jγ2 j +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1α2 j−1 +

n∑
i=1

Cm−i−1
m−n−1δi, (34)

when m − n ≡ 0 ( mod 2), for every m,n ∈N such that m > n.

Proof. If we put 2l = m − n + 1, when m − n ≡ 1( mod 2) in (14) and (16), that is, 2l = m − n, when
m − n ≡ 0( mod 2), in (15) and (17) and employ in such obtained formulas the boundary-value conditions
in (30), formulas (31)-(34) are easily obtained. �
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Remark 1. From Theorem 1 we see that the general solution to system (6) on C is given by

cm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jc2 j−1,0 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jd2 j,0 +

n∑
i=1

Cm−i−1
m−n−1di,i,

dm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jd2 j−1,0 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jc2 j,0 +

n∑
i=1

Cm−i−1
m−n−1ci,i,

when m − n ≡ 1 ( mod 2)

cm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jc2 j,0 +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1d2 j−1,0 +

n∑
i=1

Cm−i−1
m−n−1ci,i,

dm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jd2 j,0 +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1c2 j−1,0 +

n∑
i=1

Cm−i−1
m−n−1di,i,

when m − n ≡ 0 ( mod 2), for m,n ∈N such that m > n.

Remark 2. If
αk = γk and βk = δk, k ∈N,

then from Theorem 1 we see that
cm,n = dm,n,

for every (m,n) ∈ C. Moreover, after some calculation from (31) and (33), we obtain

cm,n =

m−n∑
j=1

Cm−1− j
m−n− jα j +

n∑
i=1

Cm−i−1
m−n−1βi,

which is the formula for general solution to equation (3) on domain C obtained in [36]. �

From formulas (31)-(34) we see that to get closed-form formulas for solutions to equation (6) we should
know some closed-form formulas for the sums of the following forms:

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jc j,

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jc j,

n∑
i=1

Cm−i−1
m−n−1ci,

when m − n ≡ 1 ( mod 2), that is, of the following ones:

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jc j,

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1c j,

n∑
i=1

Cm−i−1
m−n−1ci,

when m − n ≡ 0 ( mod 2), for every m,n ∈N such that m > n.

One of the cases where we can give some more compact formulas for the solution to system (6) is
presented in the following corollary.
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Corollary 1. Assume that β, δ ∈ C, and (αk)k∈N and (γk)k∈N are given sequences of complex numbers. Then the
solution to system (6) with the following boundary value conditions

ck,0 = αk, ck,k = β, dk,0 = γk, dk,k = δ, k ∈N, (35)

is given by

cm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jα2 j−1 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jγ2 j + δCm−1

m−n, (36)

dm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jγ2 j−1 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jα2 j + βCm−1

m−n, (37)

when m − n ≡ 1 ( mod 2)

cm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jα2 j +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1γ2 j−1 + βCm−1

m−n, (38)

dm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jγ2 j +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1α2 j−1 + δCm−1

m−n, (39)

when m − n ≡ 0 ( mod 2), for every m,n ∈N such that m > n.

Proof. If we put boundary-value conditions (35) in (31)-(34), we get

cm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jα2 j−1 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jγ2 j + δ

n∑
i=1

Cm−i−1
m−n−1, (40)

dm,n =

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 jγ2 j−1 +

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 jα2 j + β

n∑
i=1

Cm−i−1
m−n−1, (41)

when m − n ≡ 1 ( mod 2)

cm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jα2 j +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1γ2 j−1 + β

n∑
i=1

Cm−i−1
m−n−1, (42)

dm,n =

m−n
2∑

j=1

Cm−2 j−1
m−n−2 jγ2 j +

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1α2 j−1 + δ

n∑
i=1

Cm−i−1
m−n−1, (43)

On the other hand, by Lemma 1, we have

n∑
i=1

Cm−i−1
m−n−1 = Cm−1

m−n − Cm−n−1
m−n = Cm−1

m−n. (44)

By using equality (44) into (40)-(43), the formulas in (36)-(39) follow, finishing the proof. �
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Remark 3. Note that in the special case, when

αk = γk = 0, k ∈N,

from (36)-(39) it follows that
cm,n = δCm−1

m−n, dm,n = βCm−1
m−n,

when m − n ≡ 1 ( mod 2), while
cm,n = βCm−1

m−n, dm,n = δCm−1
m−n,

when m − n ≡ 0 ( mod 2), for every m,n ∈N such that m > n.

The case when the sequences (α2 j−1) j∈N, (α2 j) j∈N, (γ2 j−1) j∈N and (γ2 j) j∈N, are constant is one of the
interesting ones. From (36)-(39) we see that to find closed-form formulas for the general solutions to system
(6) in the case, it is necessary to calculate the following sums:

m−n+1
2∑

j=1

Cm−2 j
m−n+1−2 j,

m−n−1
2∑

j=1

Cm−2 j−1
m−n−2 j,

when m − n ≡ 1 ( mod 2), and
m−n

2∑
j=1

Cm−2 j−1
m−n−2 j,

m−n
2∑

j=1

Cm−2 j
m−n−2 j+1,

when m − n ≡ 0 ( mod 2), for every m,n ∈ N such that m > n, which can be written in the following
somewhat neater forms:

am,n :=

m−n−1
2∑

j=0

Cn+2 j−1
2 j , bm,n :=

m−n−3
2∑

j=0

Cn+2 j
2 j+1 ,

when m − n ≡ 1 ( mod 2), and

âm,n :=

m−n−2
2∑

j=0

Cn+2 j−1
2 j , b̂m,n :=

m−n−2
2∑

j=0

Cn+2 j
2 j+1 ,

when m − n ≡ 0 ( mod 2), for every m,n ∈ N such that m > n, or to avoid using the modulo function as
follows:

an+2k+1,n :=
k∑

j=0

Cn+2 j−1
2 j , bn+2k+1,n :=

k−1∑
j=0

Cn+2 j
2 j+1 ,

ân+2k+2,n :=
k∑

j=0

Cn+2 j−1
2 j , b̂n+2k+2,n :=

k∑
j=0

Cn+2 j
2 j+1 ,

when k ∈N0.
Note that

an+2k+1,n + bn+2k+1,n =

2k∑
j=0

Cn+ j−1
j =

2k∑
j=0

(
Cn+ j

j − Cn+ j−1
j−1

)
= Cn+2k

2k , (45)

and

ân+2k+2,n + b̂n+2k+2,n =

2k+1∑
j=0

Cn+ j−1
j =

2k+1∑
j=0

(
Cn+ j

j − Cn+ j−1
j−1

)
= Cn+2k+1

2k+1 ,
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for k ∈N0.
However, we are not able to find closed-form formulas for an+2k+1,n, bn+2k+1,n, ân+2k+2,n and b̂n+2k+2,n, at the

moment. Namely, all the methods that we have used so far in trying to find the closed-form formulas only
transformed the sums which define the sequences to some other ones, for which we are not able to find
closed-form formulas, either. Nevertheless, we have obtained several interesting relations and facts which
could serve as a motivation for further investigation in the area. Now we will present some of them.

First, note that

an+2k+1,n =

k∑
j=0

Cn+2 j−1
2 j = 1 +

k∑
j=1

(
Cn+2 j−2

2 j−1 + Cn+2 j−2
2 j

)
=

k−1∑
j=0

Cn+2 j
2 j+1 +

k∑
j=0

Cn−1+2 j−1
2 j

= bn+2k+1,n + an+2k,n−1, (46)

for k ∈N0.
From (45) and (46), it follows that

an+2k+1,n =
an+2k,n−1

2
+

1
2

Cn+2k
2k , (47)

for k ∈N0.
Using the change of variables

xn := an+2k+1,n, n ∈N,

for a fixed k, equation (47) can be written in the form of the equation in (5) and by solving it, we obtain

an+2k+1,n =
a2k+1,0

2n +

n∑
j=1

1
2n− j+1

C2k+ j
2k , (48)

for k ∈N0.
From (46) and (48), we see that the problem of calculating the sums an+2k+1,n and bn+2k+1,n is equivalent

to the calculation of the sum

sn,k :=
n∑

j=1

2 jC2k+ j
2k , (49)

for k ∈N0.
Another method for calculating the sum an+2k+1,n is by using suitable polynomials such that the sum in

(49) is one of their coefficients (the method is used in [10, 15, 25]). One of the most natural polynomials is
the following one:

Pn+2k−1(x) =

k∑
j=0

(1 + x)n−1+2 j(x2)k− j,

whose coefficients at x2k is equal to an+2k+1,n.
By some calculation we have

Pn+2k−1(x) = (1 + x)n−1 (1 + x)2k+2
− x2k+2

(1 + x)2 − x2

= ((1 + x)n+2k+1
− (1 + x)n−1x2k+2)(1 + 2x)−1

= ((1 + x)n+2k+1
− (1 + x)n−1x2k+2)

∞∑
j=0

(−2) jx j,
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where, of course, the last equality holds for |x| < 1/2.
Comparing the coefficients at x2k in these two expansions of the polynomial is obtained

an+2k+1,n =

2k∑
j=0

(−2) jCn+2k+1
2k− j . (50)

However, the sum is also not so easy to calculate.

2.2. On a three-dimensional relative of system (6)

Having solved system (6) on C it is natural to ask if some of its three-dimensional cousins are also
solvable. One of the most natural ones is the following cyclic system:

bm,n = cm−1,n + bm−1,n−1,

cm,n = dm−1,n + cm−1,n−1,

dm,n = bm−1,n + dm−1,n−1,

(51)

where (m,n) ∈ C.
Let m = n + 1, then

bn+1,n = bn,n−1 + cn,n, cn+1,n = cn,n−1 + dn,n, dn+1,n = dn,n−1 + bn,n,

for n ∈N, and consequently

bn+1,n = b1,0 +

n∑
j=1

c j, j,

cn+1,n = c1,0 +

n∑
j=1

d j, j,

dn+1,n = d1,0 +

n∑
j=1

b j, j,

(52)

for n ∈N0.
Let m = n + 2, then

bn+2,n = bn+1,n−1 + cn+1,n, cn+2,n = cn+1,n−1 + dn+1,n, dn+2,n = dn+1,n−1 + bn+1,n,

for n ∈N, and consequently

bn+2,n = b2,0 +

n∑
j=1

c j+1, j,

cn+2,n = c2,0 +

n∑
j=1

d j+1, j,

dn+2,n = d2,0 +

n∑
j=1

b j+1, j,

(53)

for n ∈N0.
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From (52), (53) and some calculation, it follows that

bn+2,n = b2,0 +

n∑
j=1

(
c1,0 +

j∑
i=1

di,i

)
= b2,0 + nc1,0 +

n∑
i=1

(n − i + 1)di,i, (54)

cn+2,n = c2,0 +

n∑
j=1

(
d1,0 +

j∑
i=1

bi,i

)
= c2,0 + nd1,0 +

n∑
i=1

(n − i + 1)bi,i, (55)

dn+2,n = d2,0 +

n∑
j=1

(
b1,0 +

j∑
i=1

ci,i

)
= d2,0 + nb1,0 +

n∑
i=1

(n − i + 1)ci,i, (56)

for n ∈N0.
Let m = n + 3, then

bn+3,n = bn+2,n−1 + cn+2,n, cn+3,n = cn+2,n−1 + dn+2,n, dn+3,n = dn+2,n−1 + bn+2,n,

for n ∈N, from which it follows that

bn+3,n = b3,0 +

n∑
j=1

c j+2, j,

cn+3,n = c3,0 +

n∑
j=1

d j+2, j,

dn+3,n = d3,0 +

n∑
j=1

b j+2, j,

(57)

for n ∈N0.
From (54)-(57) and some calculation, it follows that

bn+3,n = b3,0 +

n∑
j=1

(
c2,0 + jd1,0 +

j∑
i=1

( j − i + 1)bi,i

)
= b3,0 + nc2,0 +

n(n + 1)
2

d1,0 +

n∑
i=1

bi,i

n∑
j=i

( j − i + 1)

= Cn−1
0 b3,0 + Cn

1c2,0 + Cn+1
2 d1,0 +

n∑
i=1

Cn−i+2
2 bi,i, (58)

cn+3,n = c3,0 +

n∑
j=1

(
d2,0 + jb1,0 +

j∑
i=1

( j − i + 1)ci,i

)
= Cn−1

0 c3,0 + Cn
1d2,0 + Cn+1

2 b1,0 +

n∑
i=1

Cn−i+2
2 ci,i, (59)

and

dn+3,n = d3,0 +

n∑
j=1

(
b2,0 + jc1,0 +

j∑
i=1

( j − i + 1)di,i

)
= Cn−1

0 d3,0 + Cn
1b2,0 + Cn+1

2 c1,0 +

n∑
i=1

Cn−i+2
2 di,i, (60)
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for n ∈N0.
Let m = n + 4, then

bn+4,n = bn+3,n−1 + cn+3,n, cn+4,n = cn+3,n−1 + dn+3,n, dn+4,n = dn+3,n−1 + bn+3,n,

for n ∈N, from which it follows that

bn+4,n = b4,0 +

n∑
j=1

c j+3, j,

cn+4,n = c4,0 +

n∑
j=1

d j+3, j,

dn+4,n = d4,0 +

n∑
j=1

b j+3, j,

(61)

for n ∈N0.
From (58)-(61), some calculation and Lemma 1, it follows that

bn+4,n = b4,0 +

n∑
j=1

(
C j−1

0 c3,0 + C j
1d2,0 + C j+1

2 b1,0 +

j∑
i=1

C j−i+2
2 ci,i

)
= b4,0 + Cn

1c3,0 + Cn+1
2 d2,0 + Cn+2

3 b1,0 +

n∑
i=1

Cn−i+3
3 ci,i, (62)

cn+4,n = c4,0 +

n∑
j=1

(
C j−1

0 d3,0 + C j
1b2,0 + C j+1

2 c1,0 +

j∑
i=1

C j−i+2
2 di,i

)
= c4,0 + Cn

1d3,0 + Cn+1
2 b2,0 + Cn+2

3 c1,0 +

n∑
i=1

Cn−i+3
3 di,i, (63)

and

dn+4,n = d4,0 +

n∑
j=1

(
C j−1

0 b3,0 + C j
1c2,0 + C j+1

2 d1,0 +

j∑
i=1

C j−i+2
2 bi,i

)
= d4,0 + Cn

1b3,0 + Cn+1
2 c2,0 + Cn+2

3 d1,0 +

n∑
i=1

Cn−i+3
3 bi,i, (64)

for n ∈N0.
Let m = n + 5, then

bn+5,n = bn+4,n−1 + cn+4,n, cn+5,n = cn+4,n−1 + dn+4,n, dn+5,n = dn+4,n−1 + bn+4,n,

for n ∈N, from which it follows that

bn+5,n = b5,0 +

n∑
j=1

c j+4, j,

cn+5,n = c5,0 +

n∑
j=1

d j+4, j,

dn+5,n = d5,0 +

n∑
j=1

b j+4, j,

(65)
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for n ∈N0.
From (62)-(65), some calculation and Lemma 1, it follows that

bn+5,n = b5,0 +

n∑
j=1

(
c4,0 + C j

1d3,0 + C j+1
2 b2,0 + C j+2

3 c1,0 +

j∑
i=1

C j−i+3
3 di,i

)
= b5,0 + Cn

1c4,0 + Cn+1
2 d3,0 + Cn+2

3 b2,0 + Cn+3
4 c1,0 +

n∑
i=1

Cn−i+4
4 di,i, (66)

cn+5,n = c5,0 +

n∑
j=1

(
d4,0 + C j

1b3,0 + C j+1
2 c2,0 + C j+2

3 d1,0 +

j∑
i=1

C j−i+3
3 bi,i

)
= c5,0 + Cn

1d4,0 + Cn+1
2 b3,0 + Cn+2

3 c2,0 + Cn+3
4 d1,0 +

n∑
i=1

Cn−i+4
4 bi,i, (67)

and

dn+5,n = d5,0 +

n∑
j=1

(
b4,0 + C j

1c3,0 + C j+1
2 d2,0 + C j+2

3 b1,0 +

j∑
i=1

C j−i+3
3 ci,i

)
= d5,0 + Cn

1b4,0 + Cn+1
2 c3,0 + Cn+2

3 d2,0 + Cn+3
4 b1,0 +

n∑
i=1

Cn−i+4
4 ci,i, (68)

for n ∈N0.
Let m = n + 6, then

bn+6,n = bn+5,n−1 + cn+5,n, cn+6,n = cn+5,n−1 + dn+5,n, dn+6,n = dn+5,n−1 + bn+5,n,

for n ∈N0, from which it follows that

bn+6,n = b6,0 +

n∑
j=1

c j+5, j,

cn+6,n = c6,0 +

n∑
j=1

d j+5, j,

dn+6,n = d6,0 +

n∑
j=1

b j+5, j,

(69)

for n ∈N0.
From (66)-(69), some calculation and Lemma 1, it follows that

bn+6,n = b6,0 +

n∑
j=1

(
c5,0 + C j

1d4,0 + C j+1
2 b3,0 + C j+2

3 c2,0 + C j+3
4 d1,0 +

j∑
i=1

C j−i+4
4 bi,i

)
= b6,0 + Cn

1c5,0 + Cn+1
2 d4,0 + Cn+2

3 b3,0 + Cn+3
4 c2,0 + Cn+4

5 d1,0 +

n∑
i=1

Cn−i+5
5 bi,i, (70)

cn+6,n = c6,0 +

n∑
j=1

(
d5,0 + C j

1b4,0 + C j+1
2 c3,0 + C j+2

3 d2,0 + C j+3
4 b1,0 +

j∑
i=1

C j−i+4
4 ci,i

)
= c6,0 + Cn

1d5,0 + Cn+1
2 b4,0 + Cn+2

3 c3,0 + Cn+3
4 d2,0 + Cn+4

5 b1,0 +

n∑
i=1

Cn−i+5
5 ci,i, (71)
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and

dn+6,n = d6,0 +

n∑
j=1

(
b5,0 + C j

1c4,0 + C j+1
2 d3,0 + C j+2

3 b2,0 + C j+3
4 c1,0 +

j∑
i=1

C j−i+4
4 di,i

)
= d6,0 + Cn

1b5,0 + Cn+1
2 c4,0 + Cn+2

3 d3,0 + Cn+3
4 b2,0 + Cn+4

5 c1,0 +

n∑
i=1

Cn−i+5
5 di,i, (72)

for n ∈N0.
Equalities (52), (54)-(56), (58)-(60), (62)-(64), (66)-(68), (70)-(72), suggest that the following formulas hold:

bn+3l−2,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j b3 j−2,0 +

l−1∑
j=1

Cn+3l−3 j−3
3l−3 j−2 c3 j,0 +

l−1∑
j=1

Cn+3l−3 j−2
3l−3 j−1 d3 j−1,0 +

n∑
i=1

Cn−i+3l−3
3l−3 ci,i, (73)

bn+3l−1,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j b3 j−1,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1c3 j−2,0 +

l−1∑
j=1

Cn+3l−3 j−2
3l−3 j−1 d3 j,0 +

n∑
i=1

Cn−i+3l−2
3l−2 di,i, (74)

bn+3l,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j b3 j,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1c3 j−1,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 d3 j−2,0 +

n∑
i=1

Cn−i+3l−1
3l−1 bi,i, (75)

cn+3l−2,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j c3 j−2,0 +

l−1∑
j=1

Cn+3l−3 j−3
3l−3 j−2 d3 j,0 +

l−1∑
j=1

Cn+3l−3 j−2
3l−3 j−1 b3 j−1,0 +

n∑
i=1

Cn−i+3l−3
3l−3 di,i, (76)

cn+3l−1,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j c3 j−1,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1d3 j−2,0 +

l−1∑
j=1

Cn+3l−3 j−2
3l−3 j−1 b3 j,0 +

n∑
i=1

Cn−i+3l−2
3l−2 bi,i, (77)

cn+3l,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j c3 j,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1d3 j−1,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 b3 j−2,0 +

n∑
i=1

Cn−i+3l−1
3l−1 ci,i, (78)

dn+3l−2,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j d3 j−2,0 +

l−1∑
j=1

Cn+3l−3 j−3
3l−3 j−2 b3 j,0 +

l−1∑
j=1

Cn+3l−3 j−2
3l−3 j−1 c3 j−1,0 +

n∑
i=1

Cn−i+3l−3
3l−3 bi,i, (79)

dn+3l−1,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j d3 j−1,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1b3 j−2,0 +

l−1∑
j=1

Cn+3l−3 j−2
3l−3 j−1 c3 j,0 +

n∑
i=1

Cn−i+3l−2
3l−2 ci,i, (80)

dn+3l,n =

l∑
j=1

Cn+3l−3 j−1
3l−3 j d3 j,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1b3 j−1,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 c3 j−2,0 +

n∑
i=1

Cn−i+3l−1
3l−1 di,i, (81)

for every n ∈N0 and l ∈N.
Let m = n + 3l + 1, then

bn+3l+1,n = bn+3l,n−1 + cn+3l,n,

cn+3l+1,n = cn+3l,n−1 + dn+3l,n,

dn+3l+1,n = dn+3l,n−1 + bn+3l,n,

(82)

for n ∈N.
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From (82), it follows that

bn+3l+1,n = b3l+1,0 +

n∑
j=1

c j+3l, j,

cn+3l+1,n = c3l+1,0 +

n∑
j=1

d j+3l, j,

dn+3l+1,n = d3l+1,0 +

n∑
j=1

b j+3l, j,

(83)

for n ∈N0.
Using the hypotheses (75), (78) and (81) in (83), and employing Lemma 1, it follows that

bn+3l+1,n = b3l+1,0 +

n∑
s=1

( l∑
j=1

Cs+3l−3 j−1
3l−3 j c3 j,0 +

l∑
j=1

Cs+3l−3 j
3l−3 j+1d3 j−1,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 b3 j−2,0 +

s∑
i=1

Cs−i+3l−1
3l−1 ci,i

)

=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 b3 j−2,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1c3 j,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 d3 j−1,0 +

n∑
i=1

Cn−i+3l
3l ci,i, (84)

cn+3l+1,n = c3l+1,0 +

n∑
s=1

( l∑
j=1

Cs+3l−3 j−1
3l−3 j d3 j,0 +

l∑
j=1

Cs+3l−3 j
3l−3 j+1b3 j−1,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 c3 j−2,0 +

s∑
i=1

Cs−i+3l−1
3l−1 di,i

)
=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 c3 j−2,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1d3 j,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 b3 j−1,0 +

n∑
i=1

Cn−i+3l
3l di,i, (85)

and

dn+3l+1,n = d3l+1,0 +

n∑
s=1

( l∑
j=1

Cs+3l−3 j−1
3l−3 j b3 j,0 +

l∑
j=1

Cs+3l−3 j
3l−3 j+1c3 j−1,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 d3 j−2,0 +

s∑
i=1

Cs−i+3l−1
3l−1 bi,i

)
=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 d3 j−2,0 +

l∑
j=1

Cn+3l−3 j
3l−3 j+1b3 j,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 c3 j−1,0 +

n∑
i=1

Cn−i+3l
3l bi,i, (86)

for every n ∈N0.
Let m = n + 3l + 2, then

bn+3l+2,n = bn+3l+1,n−1 + cn+3l+1,n,

cn+3l+2,n = cn+3l+1,n−1 + dn+3l+1,n,

dn+3l+2,n = dn+3l+1,n−1 + bn+3l+1,n,

(87)

for n ∈N.
From (87), it follows that

bn+3l+2,n = b3l+2,0 +

n∑
j=1

c j+3l+1, j,

cn+3l+2,n = c3l+2,0 +

n∑
j=1

d j+3l+1, j,

dn+3l+2,n = d3l+2,0 +

n∑
j=1

b j+3l+1, j,

(88)
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for n ∈N0.
Using (84)-(86) in (88), and employing Lemma 1, it follows that

bn+3l+2,n = b3l+2,0 +

n∑
s=1

( l+1∑
j=1

Cs+3l−3 j+2
3l−3 j+3 c3 j−2,0 +

l∑
j=1

Cs+3l−3 j
3l−3 j+1d3 j,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 b3 j−1,0 +

s∑
i=1

Cs−i+3l
3l di,i

)

=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 b3 j−1,0 +

l+1∑
j=1

Cn+3l−3 j+3
3l−3 j+4 c3 j−2,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 d3 j,0 +

n∑
i=1

Cn−i+3l+1
3l+1 di,i (89)

cn+3l+2,n = c3l+2,0 +

n∑
s=1

( l+1∑
j=1

Cs+3l−3 j+2
3l−3 j+3 d3 j−2,0 +

l∑
j=1

Cs+3l−3 j
3l−3 j+1b3 j,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 c3 j−1,0 +

s∑
i=1

Cs−i+3l
3l bi,i

)
=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 c3 j−1,0 +

l+1∑
j=1

Cn+3l−3 j+3
3l−3 j+4 d3 j−2,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 b3 j,0 +

n∑
i=1

Cn−i+3l+1
3l+1 bi,i (90)

and

dn+3l+2,n = d3l+2,0 +

n∑
s=1

( l+1∑
j=1

Cs+3l−3 j+2
3l−3 j+3 b3 j−2,0 +

l∑
j=1

Cs+3l−3 j
3l−3 j+1c3 j,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 d3 j−1,0 +

s∑
i=1

Cs−i+3l
3l ci,i

)
=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 d3 j−1,0 +

l+1∑
j=1

Cn+3l−3 j+3
3l−3 j+4 b3 j−2,0 +

l∑
j=1

Cn+3l−3 j+1
3l−3 j+2 c3 j,0 +

n∑
i=1

Cn−i+3l+1
3l+1 ci,i, (91)

for every n ∈N0.
Let m = n + 3l + 3, then

bn+3l+3,n = bn+3l+2,n−1 + cn+3l+2,n,

cn+3l+3,n = cn+3l+2,n−1 + dn+3l+2,n,

dn+3l+3,n = dn+3l+2,n−1 + bn+3l+2,n,

(92)

for n ∈N.
From (92), it follows that for n ∈N0

bn+3l+3,n = b3l+3,0 +

n∑
j=1

c j+3l+2, j,

cn+3l+3,n = c3l+3,0 +

n∑
j=1

d j+3l+2, j,

dn+3l+3,n = d3l+3,0 +

n∑
j=1

b j+3l+2, j.

(93)

Using (89)-(91) in (93), and employing Lemma 1, it follows that

bn+3l+3,n = b3l+3,0 +

n∑
s=1

( l+1∑
j=1

Cs+3l−3 j+2
3l−3 j+3 c3 j−1,0 +

l+1∑
j=1

Cs+3l−3 j+3
3l−3 j+4 d3 j−2,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 b3 j,0 +

s∑
i=1

Cs−i+3l+1
3l+1 bi,i

)

=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 b3 j,0 +

l+1∑
j=1

Cn+3l−3 j+3
3l−3 j+4 c3 j−1,0 +

l+1∑
j=1

Cn+3l−3 j+4
3l−3 j+5 d3 j−2,0 +

n∑
i=1

Cn−i+3l+2
3l+2 bi,i, (94)
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cn+3l+3,n = c3l+3,0 +

n∑
s=1

( l+1∑
j=1

Cs+3l−3 j+2
3l−3 j+3 d3 j−1,0 +

l+1∑
j=1

Cs+3l−3 j+3
3l−3 j+4 b3 j−2,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 c3 j,0 +

s∑
i=1

Cs−i+3l+1
3l+1 ci,i

)
=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 c3 j,0 +

l+1∑
j=1

Cn+3l−3 j+3
3l−3 j+4 d3 j−1,0 +

l+1∑
j=1

Cn+3l−3 j+4
3l−3 j+5 b3 j−2,0 +

n∑
i=1

Cn−i+3l+2
3l+2 ci,i, (95)

dn+3l+3,n = d3l+3,0 +

n∑
s=1

( l+1∑
j=1

Cs+3l−3 j+2
3l−3 j+3 b3 j−1,0 +

l+1∑
j=1

Cs+3l−3 j+3
3l−3 j+4 c3 j−2,0 +

l∑
j=1

Cs+3l−3 j+1
3l−3 j+2 d3 j,0 +

s∑
i=1

Cs−i+3l+1
3l+1 di,i

)
=

l+1∑
j=1

Cn+3l−3 j+2
3l−3 j+3 d3 j,0 +

l+1∑
j=1

Cn+3l−3 j+3
3l−3 j+4 b3 j−1,0 +

l+1∑
j=1

Cn+3l−3 j+4
3l−3 j+5 c3 j−2,0 +

n∑
i=1

Cn−i+3l+2
3l+2 di,i, (96)

for every n ∈N0.
From this and by induction we see that formulas (73)-(81) hold for every n ∈N0 and l ∈N.

Now we formulate and prove the main result regarding the three-dimensional system (51).

Theorem 2. Assume that (βk)k∈N, (β̂k)k∈N, (γk)k∈N, (γ̂k)k∈N, (δk)k∈N and (δ̂k)k∈N are given sequences of complex
numbers. Then the solution to system (51) with the following boundary value conditions

bk,0 = βk, bk,k = β̂k, ck,0 = γk, ck,k = γ̂k, dk,0 = δk, dk,k = δ̂k, (97)

k ∈N, is given by

bm,n =

m−n+1
3∑

j=1

Cm−3 j
m−n+1−3 jβ3 j−1 +

m−n+1
3∑

j=1

Cm−3 j+1
m−n−3 j+2γ3 j−2 +

m−n−2
3∑

j=1

Cm−3 j−1
m−n−3 jδ3 j +

n∑
i=1

Cm−i−1
m−n−1δ̂i, (98)

cm,n =

m−n+1
3∑

j=1

Cm−3 j
m−n−3 j+1γ3 j−1 +

m−n+1
3∑

j=1

Cm−3 j+1
m−n−3 j+2δ3 j−2 +

m−n−2
3∑

j=1

Cm−3 j−1
m−n−3 jβ3 j +

n∑
i=1

Cm−i−1
m−n−1β̂i, (99)

dm,n =

m−n+1
3∑

j=1

Cm−3 j
m−n−3 j+1δ3 j−1 +

m−n+1
3∑

j=1

Cm−3 j+1
m−n−3 j+2β3 j−2 +

m−n−2
3∑

j=1

Cm−3 j−1
m−n−3 jγ3 j +

n∑
i=1

Cm−i−1
m−n−1γ̂i, (100)

when m − n ≡ 2 ( mod 3), by

bm,n =

m−n+2
3∑

j=1

Cm−3 j+1
m−n−3 j+2β3 j−2 +

m−n−1
3∑

j=1

Cm−3 j−1
m−n−3 jγ3 j +

m−n−1
3∑

j=1

Cm−3 j
m−n−3 j+1δ3 j−1 +

n∑
i=1

Cm−i−1
m−n−1γ̂i, (101)

cm,n =

m−n+2
3∑

j=1

Cm−3 j+1
m−n−3 j+2γ3 j−2 +

m−n−1
3∑

j=1

Cm−3 j−1
m−n−3 jδ3 j +

m−n−1
3∑

j=1

Cm−3 j
m−n−3 j+1β3 j−1 +

n∑
i=1

Cm−i−1
m−n−1δ̂i, (102)

dm,n =

m−n+2
3∑

j=1

Cm−3 j+1
m−n−3 j+2δ3 j−2 +

m−n−1
3∑

j=1

Cm−3 j−1
m−n−3 jβ3 j +

m−n−1
3∑

j=1

Cm−3 j
m−n−3 j+1γ3 j−1 +

n∑
i=1

Cm−i−1
m−n−1β̂i, (103)
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when m − n ≡ 1 ( mod 3), by

bm,n =

m−n
3∑

j=1

Cm−3 j−1
m−n−3 jβ3 j +

m−n
3∑

j=1

Cm−3 j
m−n−3 j+1γ3 j−1 +

m−n
3∑

j=1

Cm−3 j+1
m−n−3 j+2δ3 j−2 +

n∑
i=1

Cm−i−1
m−n−1β̂i, (104)

cm,n =

m−n
3∑

j=1

Cm−3 j−1
m−n−3 jγ3 j +

m−n
3∑

j=1

Cm−3 j
m−n−3 j+1δ3 j−1 +

m−n
3∑

j=1

Cm−3 j+1
m−n−3 j+2β3 j−2 +

n∑
i=1

Cm−i−1
m−n−1γ̂i, (105)

dm,n =

m−n
3∑

j=1

Cm−3 j−1
m−n−3 jδ3 j +

m−n
3∑

j=1

Cm−3 j
m−n−3 j+1β3 j−1 +

m−n
3∑

j=1

Cm−3 j+1
m−n−3 j+2γ3 j−2 +

n∑
i=1

Cm−i−1
m−n−1δ̂i, (106)

when m − n ≡ 0 ( mod 3), for every m,n ∈N0 such that m ≥ n.

Proof. If we put m = n + 3l − 1, when m − n ≡ 2( mod 3) in (74), (77) and (80), put m = n + 3l − 2, when
m − n ≡ 1( mod 3) in (73), (76) and (79), and put 3l = m − n, when m − n ≡ 0( mod 3) in (75), (78) and (81),
we get

bm,n =

m−n+1
3∑

j=1

Cm−3 j
m−n+1−3 jb3 j−1,0 +

m−n+1
3∑

j=1

Cm+1−3 j
m−n−3 j+2c3 j−2,0 +

m−n−2
3∑

j=1

Cm−3 j−1
m−n−3 jd3 j,0 +

n∑
i=1

Cm−i−1
m−n−1di,i, (107)

cm,n =

m−n+1
3∑

j=1

Cm−3 j
m−n−3 j+1c3 j−1,0 +

m−n+1
3∑

j=1

Cm−3 j+1
m−n−3 j+2d3 j−2,0 +

m−n−2
3∑

j=1

Cm−3 j−1
m−n−3 jb3 j,0 +

n∑
i=1

Cm−i−1
m−n−1bi,i, (108)

dm,n =

m−n+1
3∑

j=1

Cm−3 j
m−n−3 j+1d3 j−1,0 +

m−n+1
3∑

j=1

Cm−3 j+1
m−n−3 j+2b3 j−2,0 +

m−n−2
3∑

j=1

Cm−3 j−1
m−n−3 jc3 j,0 +

n∑
i=1

Cm−i−1
m−n−1ci,i, (109)

when m − n ≡ 2 ( mod 3), by

bm,n =

m−n+2
3∑

j=1

Cm−3 j+1
m−n−3 j+2b3 j−2,0 +

m−n−1
3∑

j=1

Cm−3 j−1
m−n−3 jc3 j,0 +

m−n−1
3∑

j=1

Cm−3 j
m−n−3 j+1d3 j−1,0 +

n∑
i=1

Cm−i−1
m−n−1ci,i, (110)

cm,n =

m−n+2
3∑

j=1

Cm−3 j+1
m−n−3 j+2c3 j−2,0 +

m−n−1
3∑

j=1

Cm−3 j−1
m−n−3 jd3 j,0 +

m−n−1
3∑

j=1

Cm−3 j
m−n−3 j+1b3 j−1,0 +

n∑
i=1

Cm−i−1
m−n−1di,i, (111)

dm,n =

m−n+2
3∑

j=1

Cm−3 j+1
m−n−3 j+2d3 j−2,0 +

m−n−1
3∑

j=1

Cm−3 j−1
m−n−3 jb3 j,0 +

m−n−1
3∑

j=1

Cm−3 j
m−n−3 j+1c3 j−1,0 +

n∑
i=1

Cm−i−1
m−n−1bi,i, (112)

when m − n ≡ 1 ( mod 3), by

bm,n =

m−n
3∑

j=1

Cm−3 j−1
m−n−3 jb3 j,0 +

m−n
3∑

j=1

Cm−3 j
m−n−3 j+1c3 j−1,0 +

m−n
3∑

j=1

Cm−3 j+1
m−n−3 j+2d3 j−2,0 +

n∑
i=1

Cm−i−1
m−n−1bi,i, (113)

cm,n =

m−n
3∑

j=1

Cm−3 j−1
m−n−3 jc3 j,0 +

m−n
3∑

j=1

Cm−3 j
m−n−3 j+1d3 j−1,0 +

m−n
3∑

j=1

Cm−3 j+1
m−n−3 j+2b3 j−2,0 +

n∑
i=1

Cm−i−1
m−n−1ci,i, (114)

dm,n =

m−n
3∑

j=1

Cm−3 j−1
m−n−3 jd3 j,0 +

m−n
3∑

j=1

Cm−3 j
m−n−3 j+1b3 j−1,0 +

m−n
3∑

j=1

Cm−3 j+1
m−n−3 j+2c3 j−2,0 +

n∑
i=1

Cm−i−1
m−n−1di,i, (115)
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Employing (97) in (107)-(115), are easily obtained formulas (98)-(106). �

Remark 4. Theorems 1 and 2 can be extended for the case of their natural k-dimensional extension. We
leave the formulation and the proof of the result to the interested reader as an exercise.
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