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Available at: http://www.pmf.ni.ac.rs/filomat

On a System of Fuzzy Differential Inclusions

Chao Mina,b, Zhi-bin Liua, Lie-hui Zhanga, Nan-jing Huangb

aState Key Laboratory of Oil and Gas Reservoir Geology and Exploitation,
Southwest Petroleum University, Chengdu, Sichuan 610500, P.R. China

bDepartment of Mathematics, Sichuan University, Chengdu, Sichuan 610064, P.R. China

Abstract. In this paper, two kinds of system of fuzzy differential inclusions are introduced and studied.
An existence of the solutions for one system of fuzzy differential inclusions is proved by using continuous
selection theorem. An existence of the solutions for another system of fuzzy differential inclusions is also
proved by employing the fixed point theorem in the generalized metric space. The results presented in
this paper improve and extend some known results concerned with the multivalued Cauchy problem and
fuzzy differential inclusions.

1. Introduction

Since Zadeh [47] introduced the concept of fuzzy sets in 1965, the theory and application of fuzzy systems
has been developed a lot in various aspects, especially in the theory of fuzzy control systems. For a fuzzy
logic system, we usually apply fuzzy differential equations (FDEs) to analyze the performance of the system.
With this method, the IF-THEN rules of the system could be embeded into FDEs. Therefore it is important to
discuss the solution of fuzzy differential equations[5, 6]. Fuzzy-valued map were firstly developed by Puri
and Ralescu [41]. They generalized and extended the concept of Hukuhara differentialbility (H-derivative)
for a set-valued maps to fuzzy maps. After that, Kaleva [27] and Seikkala [43] started to develop a theory
for fuzzy differential equtions(FDE) based on this idea. However, as the quite different properties between
the solutions of fuzzy differential equations and crisp cases, this approach has some disadvantages that
the diameter of the solution x(t) is unbounded as the time t increases [18]. Hüllermeier [23] overcame this
problem by replacing the FDE by a family of differential inclusions{

x′β ∈ Fβ(t, xβ(t)), 0 ≤ β ≤ 1
xβ(t0) ∈ [X0]β

This approach was exploited by Diamond in [15–18]. Above all, we can see that the study of FDEs has
received much attention, and with the references there are many works being done for the solution of the
FDEs in different cases [7, 9, 11, 12, 28–33, 48].
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In 2011, Choudary [13] pointed out that the proof of the celebrated theorem of Nieto [36] is not true,
which makes it still an open question that under what righthand side conditions a FDE has a solution.
As we know, the solution of a differential equation with discontinuous righthand side could be obtained
in the sense of differential inclusions [20], which makes it interesting to discuss the FDEs through Fuzzy
differential inclusions (FDIs).

Moreover, it is necessary to treat the qualitative properties for a complex system. For FDEs, most of the
discussions on qualitative problems are based on the idea of Hüllermeier [21]. Therefore, it is important to
discuss the solutions of fuzzy differential inclusions for the qualitative theory of FDEs.

Fuzzy differential inclusions were first presented by Baidosov [8]. Aubin [3] and Dordan [19] discussed
the viability theory of the FDIs with toll sets. Lakshmikantham [31] presented a theorem to show that under
what conditions the attainable sets of FDIs are the level sets of a fuzzy map. In 2000, Zhu and Rao [49]
introduced a class of differential inclusions for fuzzy maps as follows

F(t,x(t))(x′(t)) > (or ≥)α(x(t)),
i.e. x′(t) ∈ (F(t,x(t)))α(x(t))(or [F(t,x(t))]α(x(t))),
x(t0) = x0

for some function α : E→ [0, 1], where E is a Banach space.
The FDIs in [15, 23, 31] are actually a class of parameterized differential inclusions. The FDIs in Zhu’s

work [49] make it possible to discuss the system in time-varying cases, that is, the dependence of the velocity
of state on the system is time-varying. We should notice that the idea of Zhu is equivalent to Dordan’s
method in the sense of toll sets, thus the tools and results of differential inclusions and viability theories
could be employed in FDIs. Moreover, for a fuzzy control system{

x′(t) = f (x(t),u(t)),
y = 1(x(t),u(t)), u(t) ∈ U(t)

the state x, the output y, and even the description of the system f are all probably fuzzy because of the
uncertainty of the system, but the system control u has to be crisp for the sake of realizability. One can
easily see that it is more feasible to get crisp control u of the system by selection theorems in sense of FDIs.

In this paper, we introduce and study two types of systems of fuzzy differential inclusions. We show
an existence of the solutions for one of the systems of FDIs by using continuous selection theorem. We
also show an existence of the solutions for the other system of FDIs by employing the fixed point theorem
in the generalized metric spaces. The results presented in this paper improve and extend some known
results concerned with the fuzzy initial value problem studied by Hüllermeier [23], the fuzzy differential
inclusions discussed by Zhu and Rao [49] and the multivalued Cauchy problem considered by Petrusel
[40].

2. Preliminaries

In this section, we will present some definitions and results which might be utilized in this paper.

Definition 2.1. A fuzzy subset A of Rn is defined with its membership function, µA : Rn
→ [0, 1]. Then the fuzzy

set A could be rewritten as {(x, µA)| x ∈ Rn
}. The α-open level set of A is denoted by

(A)α = {x|µA(x) > α}

and the α-closed level set of A is denoted by

[A]α = {x|µA(x) ≥ α}

for α ∈ [0, 1) and α ∈ [0, 1], respectively.
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Sometimes, we do not distinguish a fuzzy set A and its membership function µA, that is, the membership
of x ∈ Rn could be simply written as A(x).

Denote En = {u : Rn
→ [0, 1]| u satisfies 1)- 4) below}, where

1) u is normal, that is, there exists an x ∈ Rn such that u(x0) = 1;

2) u is fuzzy convex, that is, for any x, y ∈ Rn and λ ∈ [0, 1], u(λx + (1 − λ)y) ≥ min{u(x),u(y)}, which is
equivalent with that for any α ∈ [0, 1], [u]α = {x| u(x) ≥ α} is a convex set[47];

3) u is upper semicontinuous, that is for any α, [u]α is a closed set;

4) [u]0 = {x ∈ Rn| u(x) ≥ 0} is compact.

It is obviously that, for each u ∈ En, the α-closed level sets [u]α are elements in Pk(Rn), the family of the
compact and convex subsets of Rn. Then each u in En corresponds a family of subsets {[u]α}1α=0, in Pk(Rn),
and we have a representation theorem below for this corresponding relation. The discussion in this paper
about fuzzy sets are all based on En.

Lemma 2.2. [37] If u ∈ En, then

(i) [u]α ∈ Pk(Rn) for all 0 ≤ α ≤ 1;

(ii) [u]α2 ⊂ [u]α1 for all 0 ≤ α1 ≤ α2 ≤ 1;

(iii) If {αk} is a non-decreasing sequence converging to α > 0, then [u]α =
⋂

k≥1[u]αk ;

Conversely, if {Aα| 0 ≤ α ≤ 1} is a family of subsets of Rn satisfying i)- iii) mentioned above, then there exists a
u ∈ En such that [u]α = Aα and [u]0 =

⋃
0≤α≤1 Aα ⊂ A0.

Let (X, d) be a metric space, Y ⊂ X, x ∈ X and ε > 0, and we have the notations below.

D(Y, x) = D(x,Y) = inf{d(x, y)| y ∈ Y},
BX(x, ε) = {y ∈ Y| d(x, y) < ε},
V(Y, ε) = {x ∈ X| D(Y, x) ≤ ε},
Pcl(X) = {Y ⊂ X|Y is nonempty closed in X}.

If X is a linear normed space, ‖ · ‖ is the norm, let

Pk(X) = {Y ⊂ X|Y is nonempty compact and convex in X}.

For any A,B ∈ Pk(X), we define the metric on Pk(X) as follows:

H(A,B) = inf{ε > 0|A ⊂ V(B, ε),B ⊂ V(A, ε)}.

It is easy to see that the pair (Pk(X),H) is a complete metric space and H is the Hausdorff distance induced
by d. Based on the metric defined above, the metric on En could be defined with the same notation. For
any u, v ∈ En, let

H(u, v) = sup
α∈[0,1]

H([u]α, [v]α).

Then we know that (En,H) is a complete metric space [42]. Therefore, the continuity of fuzzy functions and
the convergence of fuzzy sets can be discussed based on the metric H here.

Definition 2.3. Let (X, d) be a a metric space and T : X → 2X be a multivalued map. Then x∗ ∈ X is called a fixed
point for T if x∗ ∈ T(x∗). The set of all fixed points will be denoted by FixT.
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Definition 2.4. [25] LetA,B be two metric spaces. A multivalued map T : A→ 2B is called upper semicontinuous
at x0 ∈ A if and only if for any neighborhood U of T(x0), there exists a neighborhood V of x0 such that for each x ∈ V
we have T(x) ⊂ U. T is said to be upper semicontinuous (u.s.c.) onA if it is u.s.c. at any point x0 ∈ A.

Remark 2.5. A fuzzy valued map F : X → En can generate a real valued function F̃ : X × Rn
→ [0, 1], where for

any x ∈ X, y ∈ Rn, F̃(x, y) = F(x)(y). In the following discussion we do not distinguish F and F̃ for the convenience,
and denote F(x) by F(x).

In this paper we denote an open subset in R×Rn
×Rm by Ω with (t0, x0, y0) ∈ Ω. A fuzzy map F : Ω→ En

is called convex if for every (t, x, y) ∈ Ω, a, b ∈ Rn and λ ∈ [0, 1], we have

F(t,x,y)(λa + (1 − λ)b) ≥ min{F(t,x,y)(a),F(t,x,y)(b)}.

Let α : Rn
× Rm

→ [0, 1) and β : Rn
× Rm

→ [0, 1) (or [0, 1]) be two functions and I an closed interval in
R. We consider the following fuzzy differential inclusions: for fuzzy map F : Ω→ En and G : Ω→ Fb(Rm),
finding x ∈ C(I,Rn) and y ∈ C(I,Rm) such that

F(t,x(t),y(t))(x′(t)) > α(x(t), y(t)),
G(t,x(t),y(t))(y′(t)) > β(x(t), y(t)),
x(t0) = x0, y(t0) = y0

(1)

and 
F(t,x(t),y(t))(x′(t)) ≥ α(x(t), y(t)),
G(t,x(t),y(t))(y′(t)) ≥ β(x(t), y(t)),
x(t0) = x0, y(t0) = y0,

(2)

It is easy to see that problems (1) and (2) are equivalent to the following problems
x′(t) ∈ (F(t,x(t),y(t)))α(x(t),y(t)),
y′(t) ∈ (G(t,x(t),y(t)))β(x(t),y(t)),
x(t0) = x0, y(t0) = y0

and 
x′(t) ∈ [F(t,x(t),y(t))]α(x(t),y(t)),
y′(t) ∈ [G(t,x(t),y(t))]β(x(t),y(t)),
x(t0) = x0, y(t0) = y0,

respectively.

3. Solutions of Fuzzy Differential Inclusion (1)

Lemma 3.1. (Yannelis-Prabhaker) [46] Let D be a paracompact Hausdorff topological space, Y be a topological vector
space and F : D → 2Y be a multifunction with nonempty convex values. If F has open lower sections, that is, for
any y ∈ Y, F−1(y) = {x ∈ D| y ∈ F(x)} is open in D, then there exists a continuous function f : D → Y such that
f (x) ∈ F(x) for any x ∈ D.

Definition 3.2. [49] Let F : Ω → En be a fuzzy map. The map F is called lower open if F(t,x,y)(z) is lower
semicontinuous in (t, x, y) ∈ Ω.

Theorem 3.3. Let Ω be an open subset in R × Rn
× Rm with (t0, x0, y0) ∈ Ω. Suppose that F : Ω → En and

G : Ω → Fb(Rm) are convex and lower open fuzzy maps and that α : Rn
× Rm

→ [0, 1) and β : Rn
× Rm

→ [0, 1)
are upper semicontinuous functions. Moreover, if F and G satisfy the condition below for some L > 0,

sup
a1∈[F(t,x,y)]0,b1∈[G(t,x,y)]0

sup
a2∈[F(t,u,v)]0,b2∈[G(t,u,v)]0

‖(a1, b1) − (a2, b2)‖Rn+m ≤ L‖(x, y) − (u, v)‖Rn+m

on some neighborhood I = (ω−, ω+) for any x, y, u and v, then there exists two continuous differentiable functions
x : I→ Rn and y : I→ Rm, which are the solution of problem (1).
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Proof. We define a multifunction F̃ : Ω→ 2Rn
by

F̃(t, x, y) = (F(t,x,y))α(x,y), (t, x, y) ∈ Ω.

As the values of fuzzy map F belongs to En, F̃(t, x, y) is always nonempty. For any a, b ∈ F̃(t, x, y) and
λ ∈ [0, 1], by the convexity of F, we have

F(t,x,y)(λa + (1 − λ)b) ≥ min{F(t,x,y)(a),F(t,x,y)(b)} > α(x, y)

and so

λa + (1 − λ)b ∈ F̃(t, x, y),

which means that F̃(t, x, y) is convex for each (t, x, y) ∈ Ω. To utilize Lemma 3.1, we need only to prove that
F̃ has open lower sections. For any z ∈ Rn,

F̃−1(z) = {(t, x, y) ∈ Ω| z ∈ F̃(t, x, y)} = {(t, x, y) ∈ Ω| F(t,x,y)(z) > α(x, y)}.

Denote the complement set of F̃−1(z) by

N , {(t, x, y) ∈ Ω| F(t,x,y)(z) ≤ α(x, y)}.

Then it is sufficient to show that N is a closed set. In fact, for any given a sequence {(tn, xn, yn)} ⊂ N with
(tn, xn, yn)→ (t, x, y), we have

F(tn,xn,yn)(z) ≤ α(xn, yn).

By the lower open property of F and the upper semicontinuity of α, we obtain

F(t,x,y)(z) ≤ lim inf
n→∞

(z) ≤ lim sup
n→∞

α(xn, yn) ≤ α(x, y),

which means (t, x, y) ∈ N and N is a closed set. From Lemma 3.1, there exists a continuous function
f : Ω→ Rn such that f (t, x, y) ∈ F̃(t, x, y) for each (t, x, y) ∈ Ω.

Similarly, we can also define the other multifunction G̃(t, x, y) = (G(t,x,y))β(x,y), and get the continuous
selection 1(t, x, y) ∈ G̃(t, x, y) for each (t, x, y) ∈ Ω with the same method. Thus, the existence of the solution
of Cauchy problem

x′(t) = f (t, x(t), y(t)),
y′(t) = 1(t, x(t), y(t)),
x(t0) = x0, y(t0) = y0

under the Lipschitz condition

‖( f (t, x, y), 1(t, x, y)) − ( f (t,u, v), 1(t,u, v))‖Rn+m

≤ sup
a1∈[F(t,x,y)]α,b1∈[G(t,x,y)]β

sup
a2∈[F(t,u,v)]α,b2∈[G(t,u,v)]β

‖(a1, b1) − (a2, b2)‖Rn+m

≤ sup
a1∈[F(t,x,y)]0,b1∈[G(t,x,y)]0

sup
a2∈[F(t,u,v)]0,b2∈[G(t,u,v)]0

‖(a1, b1) − (a2, b2)‖Rn+m

≤ L‖(x, y) − (u, v)‖Rn+m

on some interval I = [ω−, ω+] is a classical result. Therefore, there exists two continuous differentiable
functions x : I→ Rn and y : I→ Rm, which are the solution of problem (1). This completes the proof. �

Remark 3.4. Theorem 3.3 extends Theorem 1 of Zhu and Rao [49] from a differential inclusion to the system of fuzzy
differential inclusions.
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4. Solutions of Fuzzy Differential Inclusion (2)

In this section, to get the solution of problem (2), we need some more definitions and lemmas. We
should notice that the metric defined in the proof of the following Theorem 4.8 is not the normal case,
which makes us have to employ the concept and properties of the generalized metric space. The concept
of the generalized metric space was introduced by Luxemburg [38] and Jung [24] as follows:

Definition 4.1. The pair (X, d) will be called a generalized metric space if X is an arbitrary nonempty set and d is a
function d : X × X→ [0,+∞] which fulfills all the standard conditions for a metric.

A generalized metric space is complete if all the Cauchy sequences in this space converge.

Definition 4.2. Let (X, d) be a generalized metric space and T : X → Pcl(X) be a multivalued operator. A sequence
(xn)n∈N ⊂ X is called the sequence of successive approximations of T if and only if x0 ∈ X and (xn) ∈ T(xn−1) for all
n ∈ N ∪ {0}.

Lemma 4.3. [2] Let Ω ⊂ R × Rn
× Rm be an open set, (t0, x0, y0) ∈ Ω and F : Ω → Pk(Rn

× Rm) an upper
semicontinuous multivalued operator. Then there exist I = [t0 − a, t0 + a] ⊂ R (where a > 0) and M > 0 such that

(i) I × BRn×Rm ((x0, y0), aM) ⊂ Ω;

(ii) ‖F(t, x, y)‖ ≤M on I × BRn×Rm ((x0, y0), aM).

Lemma 4.4. [10] Let X be a Banach space and V,U : I → P(X) be two multivalued measurable operators with
compact values. If v(t) ∈ V(t) is a measurable selection, then there is a measurable selection u(s) ∈ U(t) such that

‖u(t) − v(t)‖ ≤ H(U(t),V(t)), ∀t ∈ I.

Lemma 4.5. [39] Let (Z, d) be a complete generalized metric space and T : Z→ Pcl(Z) be a multivaluedα-contraction.
Suppose that there is a sequence (zn)n∈N ⊂ Z of successive approximations of T such that there exists an index N0 ∈ N
with the following property: d(zN0 , zN0+l) < ∞, for all l ∈ N ∪ {0}. Then FixT , ∅.

Definition 4.6. Let (S,A, µ) be a complete σ−finite measure space and (X, ‖ · ‖) be a separable Banach space. A
multivalued operator T : S→ Pcl(X) is said to be integrably bounded if and only if there is a function r ∈ L1(S) such
that for all v ∈ T(s) we have ‖v‖ ≤ r(s) a.e.

For 1 ≤ p ≤ ∞, we define the set

Sp
T = { f ∈ Lp(Ω,X)| f (s) ∈ T(s), a.e.},

i.e., Sp
T contains all selections of T that belong to Lebesgue-Bochner space Lp(Ω,X). It is obvious that S1

T is a
closed subset of L1(Ω,X) and it is nonempty if and only if T is integrably bounded [2, 4, 22].

A fuzzy map F : I→ En is called fuzzy integrably bounded if F0(t) = [F(t)]0 is integrably bounded.

Definition 4.7. A fuzzy map F : Ω→ En is called α-level uniformly continuous, if given a positive number ε, there
exists a δ such that for any (t, x, y) ∈ Ω, as long as α, β ∈ [0, 1] meet the condition |β − α| < δ, we have

H([F(t, x, y)]α, [F(t, x, y)]β) < ε.

In this section, we discuss the solution of problem (2) and the main result is the following existence
theorem. For simplicity, we assume that Ω ⊂ R × Rn

× Rm has the form

Ω = [t0 − a, t0 + a] × BRn (x0, b1) × BRm (y0, b2)

with a, b1, b2 > 0.
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Theorem 4.8. Suppose that

(i) fuzzy maps F : Ω→ En and G : Ω→ Em are both α-level uniformly continuous and fuzzy integrably bounded,
α : Rn

× Rm
→ [0, 1] and β : Rn

× Rm
→ [0, 1] are uniformly continuous;

(ii) for any (t,u, x), (t, v, y) ∈ Ω,

|t − t0|H(F(t,u, x),F(t, v, y)) ≤ k1‖u − v‖ + k2‖x − y‖

and

|t − t0|H(G(t,u, x),G(t, v, y)) ≤ k3‖u − v‖ + k4‖x − y‖;

(iii) for any (t,u, x), (t, v, y) ∈ Ω,

|t − t0|
β̃H(F(t,u, x),F(t, v, y)) ≤ A1‖u − v‖α̃ + A2‖x − y|α̃

and

|t − t0|
β̃H(G(t,u, x),G(t, v, y)) ≤ A3‖u − v‖α̃ + A4‖x − y‖α̃;

(iv) β̃,Ai, ki > 0 for i = 1, 2, 3, 4, 0 < α̃ < 1, β̃ < α̃, and k(1 − α̃) < (1 − β̃), where

k = max{k1, k2} + max{k3, k4}.

Then there exists at least one solution for problem (2).

Proof. Consider the multivalued map F̃(t, x, y) = [F(t, x, y)]α(x,y) and G̃(t, x, y) = [G(t, x, y)]β(x,y). We claim
that F̃ and G̃ are both upper semicontinuous. To get this, we need only to discuss the situation of F̃, as G̃ is
similar. Given a point (t0, x0, y0) ∈ Ω, the neighborhood of F̃(t0, x0, y0) could be written as

B(F̃(t0, x0, y0), r) = {v ∈ Rn
| d(v, F̃(t0, x0, y0)) ≤ r}.

For any (t, x, y) ∈ Ω and u ∈ F̃(t, x, y), we have

d(u, F̃(t0, x0, y0)) ≤ H(F̃(t, x, y), F̃(t0, x0, y0))
= H([F(t0, x0, y0)]α(x0,y0), [F(t, x, y)]α(x,y))
≤ H([F(t0, x0, y0)]α(x0,y0), [F(t, x, y)]α(x0,y0))

+ H([F(t, x, y)]α(x0,y0), [F(t, x, y)]α(x,y))
≤ H(F(t0, x0, y0),F(t, x, y))

+ H([F(t, x, y)]α(x0,y0), [F(t, x, y)]α(x,y)). (3)

From the righthand side of the above inequality (3), we can imply the upper semicontinuity of F̃(t, x, y).
First, by the condition (ii) and condition (i), F is α-level uniformly continuous and that α(x, y) is uniformly
continuous. Then, one can easily find a small enough neighborhood of (t0, x0, y0), U ⊂ Ω, such that for any
(t, x, y) ∈ U, u ∈ F̃(t, x, y)

d(u, F̃(t0, x0, y0)) ≤ r,

that is, F̃(U) ⊂ F̃(t0, x0, y0). Thus, F̃(t, x, y) is upper semicontinuous.
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It follows from Lemma 4.3 that there exists a real constant M > 0 such that

max{‖F̃(t, x, y)‖, ‖G̃(t, x, y)‖} ≤M

on Ω. We denote the interval I = [t0 − h, t0 + h], where h = min{a, b1
M ,

b2
M }. We shall prove the existence of a

solution of problem (2) on this interval I by an application of Lemma 4.5.
Let (X, dX) and (Y, dY) be two metric spaces defined as follows:

X = {x ∈ C(I,Rn) | ‖x(t) − x0‖ ≤ b1,∀t ∈ I, x(t0) = x0}

with

dX : X × X→ R+
∪ {+∞}, dX(x1, x2) := sup

t∈I

{
‖x1(t) − x2(t)‖
|t − t0|

pk

}
,

and

Y = {y ∈ C(I,Rm) | ‖y(t) − y0‖ ≤ b2,∀t ∈ I, y(t0) = y0}

with

dY : Y × Y→ R+
∪ {+∞}, dY(y1, y2) := sup

t∈I

{
‖y1(t) − y2(t)‖
|t − t0|

pk

}
,

where

p > 1, pk(1 − α̃) < (1 − β̃).

Then we know that (X, dX) and (Y, dY) are two complete generalized metric spaces from [38].
Let

X × Y = {(x, y) ∈ C(I,Rn) × C(I,Rm) | ‖(x(t) − x0‖ ≤ b1, ‖y(t) − y0‖ ≤ b2,∀t ∈ I,
x(t0) = x0, y(t0) = y0},

and dX×Y : (X × Y) × (X × Y)→ R+
∪ {+∞} be defined by

dX×Y((x1, y1), (x2, y2))
= dX(x1, x2) + dY(y1, y2)

= sup
t∈I

{
‖x1(t) − x2(t)‖
|t − t0|

pk

}
+ sup

t∈I

{
‖y1(t) − y2(t)‖
|t − t0|

pk

}
.

Then it is easy to see that (X × Y, dX×Y) is also a complete generalized metric space.
We define the multivalued operator T : X × Y→ X × Y as follows:

T(x, y) =

{
(x̄, ȳ)

∣∣∣∣∣∣x̄(t) ∈ x0 +

∫ t

t0

[F(s, x(s), y(s))]α(x(s),y(s))ds a.e. I,

ȳ(t) ∈ y0 +

∫ t

t0

[G(s, x(s), y(s))]β(x(s),y(s))ds a.e. I
}
,

where
∫ t

t0
[F(s, x(s), y(s))]α(x(s),y(s))ds and

∫ t

t0
[G(s, x(s), y(s))]β(x(s),y(s))ds are multivalued integrals of Aumann [4].

It is obvious that a pair (x∗(t), y∗(t)) is a fixed point of T if and only if (x∗(t), y∗(t)) is a solution of problem
(2).

Now we will prove that T satisfies all the hypotheses of Lemma 4.5.
(i) T(x, y) , ∅ for each (x, y) ∈ X × Y.
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Consider the multivalued operator F̃(x,y)(t) = F̃(t, x(t), y(t)) = [F(t, x(t), y(t))]α(x(t),y(t)), which is also up-
per semicontinuous with compact values. By the Kuratowski-Ryll-Nardzewski selection theorem [26],
F̃(x,y)(t) has a measurable selection f(x,y)(t) ∈ F̃(x,y)(t) for all t ∈ I. From condition (i), it is obviously that

f(x,y)(t) ∈ F̃(x,y)(t) integrable on I in the sense of Lebesgue-Bochner integral [2, 4, 22]. Let u(t) = x0+
∫ t

t0
f(x,y)(s)ds.

Similarly, we can also find a measurable selection 1(x,y)(t) ∈ G̃(x,y)(t) = [G(t, x(t), y(t))]β(x(t),y(t)) for all t ∈ I. Let

v(t) = x0 +
∫ t

t0
1(x,y)(s)ds. Then we obtain (u(t), v(t)) ∈ T(x, y) and so T(x, y) , ∅.

(ii) T(x, y) is closed for each (x, y) ∈ X ×Y. Suppose that (xn, yn) is a sequence in T(x, y) which converges
to (x∗, y∗) ∈ X × Y. Then we know that

xn(t) ∈ x0 +

∫ t

t0

F̃(x,y)(s)ds a.e

and

yn(t) ∈ y0 +

∫ t

t0

G̃(x,y)(s)ds a.e.

Since x0 +
∫ t

t0
F̃(x,y)(s)ds and y0 +

∫ t

t0
G̃(x,y)(s)ds are closed [25], it follows that (x∗, y∗) ∈ T(x, y).

(iii) T(x, y) is a multivalued contraction.
We shall prove that there exists L ∈ (0, 1) such that, for each (x1, y1), (x2, y2) ∈ X×Y with dX×Y((x1, y1), (x2, y2)) <

∞,

H(T(x1, y1),T(x2, y2)) ≤ LdX×Y((x1, y1), (x2, y2)).

To get this, let (x1, y1), (x2, y2) ∈ X × Y. For each pair (u1, v1) ∈ T(x1, y1), which means there exist
f(x1,y1)(s) ∈ F̃(x1,y1)(s) and 1(x1,y1)(s) ∈ G̃(x1,y1)(s) such that u1(t) = x0 +

∫ t

t0
f(x1,y1)(s)ds,

v1(t) = y0 +
∫ t

t0
1(x1,y1)(s)ds.

From Lemma 4.4, there exists a measurable selection f(x2,y2)(s) ∈ F̃(x2,y2)(s) which satisfies

‖ f(x2,y2)(s) − f(x1,y1)(s)‖ ≤ H(F̃(x1,y1)(s), F̃(x2,y2)(s))
= H([F(s, x1(s), y1(s))]α(x1(s),y1(s)), [F(s, x2(s), y2(s))]α(x2(s),y2(s)))
≤ H(F(s, x1(s), y1(s)),F(s, x2(s), y2(s))).

Similarly, we can find a measurable selection 1(x2,y2)(s) ∈ G̃(x2,y2)(s) such that

‖1(x2,y2)(t) − 1(x1,y1)(s)‖ ≤ H(G(s, x1(s), y1(s)),G(s, x2(s), y2(s))).

Let  u2(t) = x0 +
∫ t

t0
f(x2,y2)(s)ds,

v2(t) = y0 +
∫ t

t0
1(x2,y2)(s)ds.
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Then (u2, v2) ∈ T(x2, y2). It follows that

‖u2(t) − u1(t)‖ =

∥∥∥∥∥∥x0 +

∫ t

t0

f(x2,y2)(s)ds − x0 −

∫ t

t0

f(x1,y1)(s)ds

∥∥∥∥∥∥
≤

∫ t

t0

‖ f(x2,y2)(s) − f(x1,y1)(s)‖ds

≤

∫ t

t0

H(F(s, x2(s), y2(s)),F(s, x1(s), y1(s)))ds

=

∫ t

t0

k1‖x2(s) − x1(s)‖ + k2‖y2(s) − y1(s)‖
|s − t0|

ds

≤ max{k1, k2}

∫ t

t0

‖x2(s) − x1(s)‖ + ‖y2(s) − y1(s)‖
|s − t0|

pk
|s − t0|

pk−1ds

≤ max{k1, k2}dX×Y((x1, y1), (x2, y2))
|t − t0|

pk

pk

Thus,

‖u2(t) − u1(t)‖
|t − t0|

pk
≤ max{k1, k2}

1
pk

dX×Y((x1, y1), (x2, y2))

and so

dX(u1,u2) ≤ max{k1, k2}
1
pk

dX×Y((x1, y1), (x2, y2)).

Similarly, we have

dY(v1, v2) ≤ max{k3, k4}
1
pk

dX×Y((x1, y1), (x2, y2)).

It follows that

dX×Y(u1, v1), (u2, v2)) ≤
1
p

dX×Y((x1, y1), (x2, y2)).

Interchanging the roles of (x1, y1) and (x2, y2), we can get a similar inequality and that

H(T(x1, y1),T(x2, y2)) ≤
1
p

dX×Y((x1, y1), (x2, y2)), ∀(x1, y1), (x2, y2) ∈ X × Y.

(iv) T admits a sequence of successive approximations , ϕn = (xn, yn)n∈N with the property that there
exists an index N ∈ N such that dX×Y(ϕN, ϕN+l) < ∞ for all l ∈ N ∪ {0}.

To get this, let ϕn = (xn, yn)n∈N a successive approximations for T(where ϕ0 is arbitrary). Let ϕ1 ∈ T(ϕ0).
It means that there exist f(x0,y0)(s) ∈ F̃(x0,y0)(s) and 1(x0,y0)(s) ∈ G̃(x0,y0)(s) such that x1(t) = x0 +

∫ t

t0
f(x0,y0)(s)ds,

y1(t) = y0 +
∫ t

t0
1(x0,y0)(s)ds.

Letting ϕ2 ∈ T(ϕ1), by the definition of T, we obtain again that there exist a f(x1,y1)(s) ∈ F̃(x1,y1)(s) and a
1(x1,y1)(s) ∈ G̃(x1,y1)(s) such that x2(t) = x0 +

∫ t

t0
f(x1,y1)(s)ds,

y2(t) = y0 +
∫ t

t0
1(x1,y1)(s)ds.
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By the boundedness of F̃ and G̃ we have

‖x2(t) − x1(t)‖ ≤

∥∥∥∥∥∥
∫ t

t0

f(x1,y1)(s)ds −
∫ t

t0

f(x0,y0)(s)ds

∥∥∥∥∥∥
≤

∫ t

t0

‖ f(x1,y1)(s) − f(x0,y0)(s)‖ds

≤ 2M|t − t0|

and

‖y2(t) − y1(t)‖ ≤

∥∥∥∥∥∥
∫ t

t0

1(x1,y1)(s)ds −
∫ t

t0

1(x0,y0)(s)ds

∥∥∥∥∥∥
≤

∫ t

t0

‖1(x1,y1)(s) − 1(x0,y0)(s)‖ds

≤ 2M|t − t0|.

According to Lemma 2.4 we can find a measurable pair ( f(x2,y2)(s), 1(x2,y2)(s)) with f(x2,y2)(s) ∈ F̃(x2,y2)(s) and
1(x2,y2)(s) ∈ G̃(x2,y2)(s) such that

‖ f(x2,y2)(s) − f(x1,y1)(s)‖ ≤ H(F(s, x1(s), y1(s)),F(s, x2(s), y2(s)))

and

‖1(x2,y2)(t) − 1(x1,y1)(s)‖ ≤ H(G(s, x1(s), y1(s)),G(s, x2(s), y2(s))).

Let  x3(t) = x0 +
∫ t

t0
f(x2,y2)(s)ds,

y3(t) = y0 +
∫ t

t0
1(x2,y2)(s)ds.

Then it is easy to see that (x3, y3) ∈ T(x2, y2). By the assumptions, we have

‖x3(t) − x2(t)‖ ≤
∫ t

t0

‖ f(x2,y2)(s) − f(x1,y1)(s)‖ds

≤

∫ t

t0

H(F(s, x2(s), y2(s)),F(s, x1(s), y1(s)))ds

≤

∫ t

t0

A1‖x2(s) − x1(s)‖α̃ + A2‖y2(s) − y1(s)‖α̃

|s − t0|
β̃

ds

≤ (A1 + A2)(2M)α̃
∫ t

t0

|s − t0|
α̃−β̃ds

≤ (A1 + A2)(2M)α̃
|t − t0|

1+α̃−β̃

1 + α̃ − β̃

≤ (A1 + A2)(2M)α̃|t − t0|
1+α̃−β̃.

Similarly,

‖y3(t) − y2(t)‖ ≤ (A3 + A4)(2M)α̃|t − t0|
1+α̃−β̃.

Thus, we have

‖ϕ3(t) − ϕ2(t)‖ = ‖x3(t) − x2(t)‖ + ‖y3(t) − y2(t)‖

≤ (A1 + A2)(2M)α̃|t − t0|
1+α̃−β̃ + (A3 + A4)(2M)α̃|t − t0|

1+α̃−β̃

≤ A(2M)α̃|t − t0|
1+α̃−β̃,
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where

A = max{A1 + A2,A3 + A4}.

Generally, we can get

‖ϕn+1(t) − ϕn(t)‖ = ‖xn+1(t) − xn(t)‖ + ‖yn+1(t) − yn(t)‖

≤ A1+α̃1+···+α̃n−2
(2M)α̃

n−1
|t − t0|

(1−β̃)(1+α̃+···+α̃n−2)+α̃n+1

< B|t − t0|
(1−β̃)(1+α̃1+···+α̃n−2)+α̃n−1

,

where

B = A
1

1−α̃ max{2M, 1}.

In view of pk(1 − α̃) < 1 − β̃ there exists an index N ∈ N such that

(1 − β̃)(1 + α̃1 + · · · + α̃n−2) + α̃n−1 > pk,

for each n ≥ N, and so

‖ϕn+1(t) − ϕn(t)‖
|t − t0|

pk
≤ B|t − t0|

ηn ,

for all n ≥ N, where

ηn = (1 − β̃)(1 + α̃1 + · · · + α̃n−2) + α̃n−1
− pk > 0.

Thus, for all n ≥ N,

dX×Y(ϕn+1, ϕn) < ∞.

This completes the proof. �

Remark 4.9. Theorem 4.8 extends Theorem 3.1 of Petrusel [40] from classical multivalued Cauchy problem to the
system of fuzzy differential inclusions.

Remark 4.10. Let α(x, y) and β(x, y) be a constant α, and let

F(t, x(t), y(t)) = G(t, x(t), y(t)) = F̃(t, x(t)).

By Theorem 4.8, we know that problem (2) has a solution set Xα(t) with α ∈ [0, 1]. Under the same conditions
of Theorem 6.2.3 in [31], it follows from Lemma 2.2 that the family {Xα(t)}α∈[0,1] is the family of α-level sets of the
solution for the following fuzzy initial value problem{

x′(t) ∈ F̃(t, x(t)),
x(t0) = X0.

Thus, Theorem 4.8 is actually an extension of Proposition 4 of Hüllermeier [23] from a fuzzy initial value problem to
the system of fuzzy differential inclusions.

Next we give the following example to show an application of Theorem 4.8.

Example 4.11. In [35], Liu et al. considered the following polytopic differential inclusion systems:
ẋ1(t) = x2(t),
ẋ2(t) = x3(t),
ẋ3(t) = [α(1 + x2

2(t)) + (1 − α)](u1(t) + sin t),
ẋ4(t) = αx2

1(t) + (1 − α)x2(t) + [α(1 + x2
2(t)) + (1 − α)]u2(t).
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This is a nonlinear control system with an uncertain parameter α ∈ [0, 1], which can be rewritten as{
˙̄x(t) = A11x̄(t) + A12 ȳ(t),
˙̄y(t) ∈ co{ fi(x̄, ȳ) + 1i(x̄, ȳ)B(u(t) + w(t)), i = 1, 2},

where

A11 =

(
0 1
0 0

)
, A12 =

(
0 0
1 0

)
, B =

(
1 0
0 1

)
,

x̄(t) = (x1(t), x2(t))T, ȳ(t) = (x3(t), x4(t))T are the system states,

f1(x̄, ȳ) =

(
0
x2

1

)
, f2(x̄, ȳ) =

(
0
x2

)
, 11(x̄, ȳ) = 1 + x2

2, 12(x̄, ȳ) = 1,

u(t) =

(
u1
u2

)
is the controlled variable, w(t) =

(
sin t

0

)
is the bounded disturbance and co{·} is convex hull of a set.

The authors of [35] discussed the solutions and the performance of this control problem in detail for different
α. Analogously, if the system parameters are linguistic or effected by the modeler’s subjective experience, it can be
transformed to a fuzzy differential inclusion system aforementioned in this paper. For simplicity, let the uncertain
parameter α in the above equations be 1, α(x, y) and β(x, y) in (2) be some constant α and β ∈ [0, 1], the controlled

variable u(t) =

(
1
1

)
. Thus, in the fuzzy differential inclusion system (2), we have

F(t, x̄, ȳ) = A11x̄ + A12 ȳ, G(t, x̄, ȳ) = f1(x̄, ȳ) + 11(x̄, ȳ)B(u(t) + w(t))

and so (2) turns to be
˙̄x(t) ∈ [F(t, x̄(t), ȳ(t))]α = [A11]αx̄ + [A12]αȳ,
˙̄y(t) ∈ [G(t, x̄(t), ȳ(t))]β = f1(x̄, ȳ) + 11(x̄, ȳ)[B]β(u(t) + w(t)),
x̄(t0) = x̄0, ȳ(t0) = ȳ0,

where A11, A12 and B are the matrices of fuzzy numbers, the arithmetic operations of which are generalized by
Extension Principle [47]. By the boundedness of Ω and the construction of the system, it is easy to verify that for
any α, β ∈ [0, 1], [F]α and [G]β satisfy the Lipschitz condition, which means that for any (t,u, x), (t, v, y) ∈ Ω, there
exists some L1,L2,L3,L4 > 0 such that

H(F(t,u, x),F(t, v, y)) ≤ L1‖u − v‖ + L2‖x − y‖

and

H(G(t,u, x),G(t, v, y)) ≤ L3‖u − v‖ + L4‖x − y‖.

Thus the conditions of Theorem 4.8 are naturally satisfied.

Acknowledgements. The authors are grateful to the editor and the referees for their valuable comments
and suggestions.
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