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Abstract. In this paper, fixed point and variational inclusion problems are investigated based on a
proximal-type iterative algorithm. Strong convergence theorems are established in the framework of
Hilbert spaces.

1. Introduction

Variational inclusion problems are being used as mathematical programming models to study a large
number of optimization problems arising in finance, economics, network, transportation, and engineering
sciences; see [1-29] and the references therein. In the real word, many nonlinear problems arising in applied
areas are mathematically modeled as a nonlinear operator equation and this operator is decomposed as
the sum of two nonlinear operators. One of the most popular techniques for solving the inclusion problem
goes back to the work of Browder [30]. One of the basic ideas in the case of a Hilbert space H is reducing
the above inclusion problem to a fixed point problem of the operator RA defined by RA = (I + A)−1, which is
called the classical resolvent resolvent of A. If A has some monotonicity conditions, the classical resolvent
of A is with full domain and firmly nonexpnsive. The property of the resolvent ensures that the Picard
iterative algorithm xn+1 = RAxn converge weakly to a fixed point of RA, which is necessarily a zero point of
A. Rockafellar introduced this iteration method and call it the proximal point algorithm; for more detail,
see [31] and [32] and the references therein. Methods for finding zero points of monotone mappings in
the framework of Hilbert spaces are based on the good properties of the resolvent RA, but these properties
are not available in the framework of Banach spaces. It is known that the proximal point algorithm
only has weak convergence even for nonexpansive mappings. In many disciplines, including economics,
image recovery, and control theory, problems arises in infinite dimension spaces. In such problems, strong
convergence (norm convergence) is often much more desirable than weak convergence, for it translates the
physically tangible property that the energy ‖xn − x‖ of the error between the iterate xn and the solution x
eventually becomes arbitrarily small.

In this paper, we study fixed point and variational inclusion problems based on a proximal-type iterative
algorithm. Strong convergence theorems are established in the framework of Hilbert spaces.
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2. Preliminaries

In what follows, we always assume that H is a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖
and C is a nonempty, closed and convex subset of H. Let S : C → C be a mapping. F(S) is denoted by the
fixed point set of S. S is said to be contractive iff there exists a constant α ∈ (0, 1) such that

‖Sx − Sy‖ ≤ α‖x − y‖, ∀x, y ∈ C.

S is said to be nonexpansive iff
‖Sx − Sy‖ ≤ ‖x − y‖, ∀x, y ∈ C.

Let A : C → H be a mapping. Recall that the classical variational inequality problem is to find a point
x ∈ C such that

〈y − x,Ax〉 ≥ 0, ∀y ∈ C.

Such a point x ∈ C is called a solution of the variational inequality. In this paper, we use VI(C,A) to denote
the solution set of the variational inequality. Recall that A is said to be monotone iff

〈Ax − Ay, x − y〉 ≥ 0, ∀x, y ∈ C.

Recall that A is said to be inverse-strongly monotone iff there exists a constant κ > 0 such that

〈Ax − Ay, x − y〉 ≥ κ‖Ax − Ay‖2, ∀x, y ∈ C.

It is not hard to see that every inverse-strongly monotone mapping is monotone and continuous.
Recall that a set-valued mapping B : H ⇒ H is said to be monotone iff, for all x, y ∈ H, f ∈ Bx and

1 ∈ By imply 〈x − y, f − 1〉 ≥ 0. In this paper, we use B−1(0) to stand for the zero point of B. A monotone
mapping B : H ⇒ H is maximal iff the graph Graph(B) of B is not properly contained in the graph of any
other monotone mapping. It is known that a monotone mapping B is maximal if and only if, for any
(x, f ) ∈ H ×H, 〈x − y, f − 1〉 ≥ 0, for all (y, 1) ∈ Graph(B) implies f ∈ Bx. For a maximal monotone operator
B on H, and r > 0, we may define the single-valued resolvent Jr : H → Dom(B), where Dom(B) denote the
domain of B. It is known that Jr is firmly nonexpansive, and B−1(0) = F(Jr).

In order to prove our main results, we also need the following tools.

Lemma 2.1 [33] Let E be a Banach space and let A be an m-accretive operator. For λ > 0, µ > 0, and x ∈ E, we have
Jλx = Jµ

(
µ
λx +

(
1 − µ

λ

)
Jλx

)
, where Jλ = (I + λA)−1 and Jµ = (I + µA)−1.

Lemma 2.2 [34] Let {xn} and {yn} be bounded sequences in a Banach space E, and {βn} be a sequence in (0, 1) with
0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1. Suppose that xn+1 = (1 − βn)yn + βnxn, ∀n ≥ 1 and

lim sup
n→∞

(‖yn+1 − yn‖ − ‖xn+1 − xn‖) ≤ 0.

Then limn→∞ ‖yn − xn‖ = 0.

Lemma 2.3 [35] Let {an} be a sequence of nonnegative numbers satisfying the condition an+1 ≤ (1 − tn)an + tnbn,
∀n ≥ 0, where {tn} is a number sequence in (0, 1) such that limn→∞ tn = 0 and

∑
∞

n=0 tn = ∞, {bn} is a number
sequence such that lim supn→∞ bn ≤ 0. Then limn→∞ an = 0.

Lemma 2.4. [13] Let A : C→ H be a mapping, and B : H⇒ H a maximal monotone operator. Then F(Jr(I − rB)) =
(A + B)−1(0).

3. Main Results

Now, we are in a position to give our main results.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be an α-inverse-
strongly monotone mapping and let B be a maximal monotone operator on H. Let S : C → C be a nonexpansive
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mapping with fixed points. Assume that Dom(B) ⊂ C and F(S)∩ (A + B)−1(0) is not empty. Let {αn} and {βn} be real
number sequences in (0, 1) and {rn} be a positive real number sequence in (0, 2α). Assume that the above sequences
satisfy the following restrictions:

(1) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) 0 < a ≤ rn ≤ b < 2α and
∑
∞

n=1 |rn − rn−1| < ∞,

where a and b are two real numbers. Let {xn} be a sequence generated in the following process: x1 ∈ C andyn = αnu + (1 − αn)xn,

xn+1 = βnxn + (1 − βn)SJrn (yn − rnAyn), ∀n ≥ 1,

where u is fixed element in C and Jrn = (I + rnB)−1. Then {xn} converges strongly to a point q ∈ F(S) ∩ (A + B)−1(0),
which is an unique solution to the following variational inequality

〈u − q, p − q〉 ≤ 0, ∀p ∈ F(S) ∩ (A + B)−1(0).

Proof. We first show that the sequence {xn} is bouned. Notice that I− rnA is nonexpansive. Indeed, we have

‖(I − rnA)x − (I − rnA)y‖2

= ‖x − y‖2 − 2rn〈x − y,Ax − Ay〉 + rn
2
‖Ax − Ay‖2

≤ ‖x − y‖2 − rn(2α − rn)‖Ax − Ay‖2.

It follows from the restriction (3) that I − rnA is nonexpansive. Let p ∈ (A + B)−1(0) ∩ F(S). It follows that

‖xn+1 − p‖ ≤ βn‖xn − p‖ + (1 − βn)‖SJrn (yn − rnAyn) − p‖
≤ βn‖xn − p‖ + (1 − βn)‖Jrn (yn − rnAyn) − p‖
≤ βn‖xn − p‖ + (1 − βn)‖(yn − rnAyn) − p‖
≤ βn‖xn − p‖ + (1 − βn)‖yn − p‖

≤

(
1 − (1 − βn)αn

)
‖xn − p‖ + (1 − βn)αn‖u − p‖

· · ·

≤ max{‖x1 − p‖, ‖u − p‖}.

This proves that the sequence {xn} is bounded. Notice that

‖yn − yn−1‖ ≤ (1 − αn)‖xn − xn−1‖ + |αn − αn−1|‖u − xn−1‖. (3.1)

Set zn = yn − rnAyn. It follows from Lemma 2.1 that

‖Jrn zn − Jrn−1 zn−1‖ = ‖Jrn−1

( rn−1

rn
zn + (1 −

rn−1

rn
)Jrn zn

)
− Jrn−1 zn−1‖

≤ ‖
rn−1

rn
(zn − zn−1) + (1 −

rn−1

rn
)(Jrn zn − zn−1)‖

≤ ‖zn − zn−1‖ +
|rn − rn−1|

a
‖Jrn zn − zn‖

≤ ‖yn − yn−1‖ + |rn−1 − rn|(‖Ayn−1‖ +
‖Jrn zn − zn‖

a
).

(3.2)
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Substituting (3.1) into (3.2), we find that

‖Jrn zn − Jrn−1 zn−1‖ ≤ ‖xn − xn−1‖ + |αn − αn−1|‖u − xn−1‖

+ |rn−1 − rn|(‖Ayn−1‖ +
‖Jrn zn − zn‖

a
).

It follows that
‖SJrn zn − SJrn−1 zn−1‖

≤ ‖Jrn zn − Jrn−1 zn−1‖

≤ ‖xn − xn−1‖ + |αn − αn−1|‖u − xn−1‖ + |rn−1 − rn|M,

where M is an appropriate constant. In view of the restrictions (1) and (3), we find that

lim sup
n→∞

(
‖SJrn zn − SJrn−1 zn−1‖ − ‖xn − xn−1‖‖

)
≤ 0.

It follows from Lemma 2.2 that limn→∞ ‖SJrn zn − xn‖ = 0. Notice that

xn+1 − xn = (1 − βn)(SJrn zn − xn).

This yields that
lim
n→∞
‖xn+1 − xn‖ = 0. (3.3)

On the other hand, we also have
lim
n→∞
‖yn − xn‖ = 0. (3.4)

Since ‖ · ‖2 is convex, we find that

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1 − βn)‖SJrn zn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)‖Jrn (I − rnA)yn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)‖(I − rnA)yn − (I − rnA)p‖2

≤ βn‖xn − p‖2 + (1 − βn)‖yn − p‖2 − rn(1 − βn)(2α − rn)‖Ayn − Ap‖2

≤ βn‖xn − p‖2 + αn(1 − βn)‖u − p‖2 + (1 − βn)(1 − αn)‖xn − p‖2

− rn(1 − βn)(2α − rn)‖Ayn − Ap‖2.

It follows that
rn(1 − βn)(2α − rn)‖Ayn − Ap‖2

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + αn(1 − βn)‖u − p‖2

≤ (‖xn − p‖ + ‖xn+1 − p‖)‖xn+1 − xn‖ + αn‖u − p‖2.

In view of the restrictions (1), (2), and (3), we find from (3.3) that

lim
n→∞
‖Ayn − Ap‖ = 0. (3.5)

Since Jrn is firmly nonexpansive, thus we have

‖Jrn zn − p‖2 ≤ 〈Jrn zn − p, (yn − rnAyn) − (p − rnAp)〉

=
1
2

(
‖Jrn zn − p‖2 + ‖(yn − rnAyn) − (p − rnAp)‖2

− ‖(Jrn zn − p) −
(
(yn − rnAyn) − (p − rnAp)

)
‖

2
)

≤
1
2

(
‖Jrn zn − p‖2 + ‖yn − p‖2 − ‖Jrn zn − yn‖

2

− ‖rnAyn − rnAp‖2 + 2rn‖Ayn − Ap‖‖Jrn zn − yn‖
)
.



S. Wang / Filomat 29:6 (2015), 1409–1417 1413

This implies that
‖Jrn zn − p‖2 ≤ ‖yn − p‖2 − ‖Jrn zn − yn‖

2

− ‖rnAyn − rnAp‖2 + 2rn‖Ayn − Ap‖‖Jrn zn − yn‖

≤ αn‖u − p‖2 + (1 − αn)‖xn − p‖2 − ‖Jrn zn − yn‖
2

+ 2rn‖Ayn − Ap‖‖Jrn zn − yn‖.

On the other hand, we have

‖xn+1 − p‖2 ≤ βn‖xn − p‖2 + (1 − βn)‖SJrn zn − p‖2

≤ βn‖xn − p‖2 + (1 − βn)‖Jrn zn − p‖2

≤ ‖xn − p‖2 + αn‖u − p‖2 − (1 − βn)‖Jrn zn − yn‖
2

+ 2rn‖Ayn − Ap‖‖Jrn zn − yn‖.

This implies that

(1 − βn)‖Jrn zn − yn‖
2
≤ (‖xn − p‖ + ‖xn+1 − p‖)‖xn − xn+1‖ + αn‖u − p‖2

+ 2rn‖Ayn − Ap‖‖Jrn zn − yn‖.

In view of the restrictions (1) and (2), we find from (3.3) and (3.5) that

lim
n→∞
‖Jrn zn − yn‖ = 0. (3.6)

Next, we show that lim supn→∞〈u − x̄, yn − x̄〉 ≤ 0. To show it, we can choose a subsequence {yni } of {yn}

such that
lim sup

n→∞
〈u − x̄, yn − x̄〉 = lim

i→∞
〈u − x̄, yni − x̄〉.

Since {yni } is bounded, we can choose a subsequence {yni j
} of {yni } which converges weakly some point x.

We may assume, without loss of generality, that yni converges weakly to x.
Now, we are in a position to show that x ∈ (A + B)−1(0). Set mn = Jrn (yn − rnAyn). It follows that

yn − rnAyn ∈ (I + rnB)mn

That is, yn−mn

rn
− Ayn ∈ Bmn. Since B is monotone, we get, for any (µ, ν) ∈ B, that

〈mn − µ,
yn −mn

rn
− Ayn − ν〉 ≥ 0.

Replacing n by ni and letting i→∞, we obtain from (3.6) that

〈x − µ,−Ax − ν〉 ≥ 0.

This gives that −Ax ∈ Bx, that is, 0 ∈ (A + B)(x). This proves that x ∈ (A + B)−1(0). Next, we prove that
x ∈ F(S). Notice that

‖Smn − yn‖ ≤
1

1 − βn
‖xn+1 − yn‖ +

βn

1 − βn
‖yn − xn‖.

This implies that ‖Smn − yn‖ → ∞0. On the other hand, we have

‖Smn −mn‖ ≤ ‖Smn − yn‖ + ‖yn −mn‖.

It follows from (3.6) that ‖Smn −mn‖ → 0. In view of demiclosed of the mapping, we find that x ∈ F(S). This
complete the proof that x ∈ F(S) ∩ (A + B)−1(0). It follows that

lim sup
n→∞

〈u − x̄, yn − x̄〉 ≤ 0.
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Finally, we show that xn → x̄. Notice that

‖yn − x̄‖2 ≤ αn〈u − x̄, yn − x̄〉 + (1 − αn)‖xn − x̄‖‖yn − x̄‖

≤ αn〈u − x̄, yn − x̄〉 +
1 − αn

2
(‖xn − x̄‖2 + ‖yn − x̄‖2).

This implies that
‖yn − x̄‖2 ≤ αn〈u − x̄, yn − x̄〉 + (1 − αn)‖xn − x̄‖2.

It follows that
‖xn+1 − x̄‖2 ≤ βn‖xn − x̄‖2 + (1 − βn)‖SJrn (I − rnA)yn − x̄‖2

≤ βn‖xn − x̄‖2 + (1 − βn)‖yn − x̄‖2

≤

(
1 − αn(1 − βn)

)
‖xn − x̄‖2 + αn(1 − βn)〈u − x̄, yn − x̄〉

In view of the restrictions (1) and (2), we find from Lemma 2.3 that xn → x̄. This completes the proof.

4. Applications

Recall the classical variational inequality is to find u ∈ C such that

〈Au, v − u〉 ≥ 0, ∀v ∈ C.

The solution set of the inequality is denoted by VI(C,A) in this section. Let f : H → (−∞,+∞] a proper
convex lower semicontinuous function. Then the subdifferential ∂ f of f is defined as follows:

∂ f (x) = {y ∈ H : f (z) ≥ f (x) + 〈z − x, y〉, z ∈ H}, ∀x ∈ H.

From Rockafellar [36], we know that ∂ f is maximal monotone. It is easy to verify that 0 ∈ ∂ f (x) if and only
if f (x) = miny∈H f (y). Let IC be the indicator function of C, i.e.,

IC(x) =

0, x ∈ C,
+∞, x < C.

(4.1)

Since IC is a proper lower semicontinuous convex function on H, we see that the subdifferential ∂IC of IC is
a maximal monotone operator.

Lemma 4.1 [5] Let C be a nonempty closed convex subset of a real Hilbert space H, ProjC the metric projection from
H onto C, ∂IC the subdifferential of IC, where IC is as defined in (4.1) and Jλ = (I + λ∂IC)−1. Then y = Jλx⇐⇒ y =
ProjCx, ∀x ∈ H, y ∈ C.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be an α-
inverse-strongly monotone mapping and let S : C → C be a nonexpansive mapping with fixed points. Assume that
F(S) ∩ VI(C,A) is not empty. Let {αn} and {βn} be real number sequences in (0, 1) and {rn} be a positive real number
sequence in (0, 2α). Assume that the above sequences satisfy the following restrictions:

(1) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) 0 < a ≤ rn ≤ b < 2α and
∑
∞

n=1 |rn − rn−1| < ∞,

where a and b are two real numbers. Let {xn} be a sequence generated in the following process: x1 ∈ C andyn = αnu + (1 − αn)xn,

xn+1 = βnxn + (1 − βn)SProjC(yn − rnAyn), ∀n ≥ 1,
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where u is fixed element in C and Jrn = (I + rnB)−1. Then {xn} converges strongly to a point q ∈ F(S) ∩ VI(C,A),
which is an unique solution to the following variational inequality

〈u − q, p − q〉 ≤ 0, ∀p ∈ F(S) ∩ VI(C,A).

Proof Putting Bx = ∂IC, we find from Lemma 4.1 the desired conclusion immediately.

First we consider the following inclusion problem.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be an α-
inverse-strongly monotone mapping and let B be a maximal monotone operator on H. Assume that Dom(B) ⊂ C and
(A + B)−1(0) is not empty. Let {αn} and {βn} be real number sequences in (0, 1) and {rn} be a positive real number
sequence in (0, 2α). Assume that the above sequences satisfy the following restrictions:

(1) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) 0 < a ≤ rn ≤ b < 2α and
∑
∞

n=1 |rn − rn−1| < ∞,

where a and b are two real numbers. Let {xn} be a sequence generated in the following process: x1 ∈ C andyn = αnu + (1 − αn)xn,

xn+1 = βnxn + (1 − βn)Jrn (yn − rnAyn), ∀n ≥ 1,

where u is fixed element in C and Jrn = (I + rnB)−1. Then {xn} converges strongly to a point q ∈ (A + B)−1(0), which
is an unique solution to the following variational inequality

〈u − q, p − q〉 ≤ 0, ∀p ∈ (A + B)−1(0).

Proof. Putting S = I, the identity mapping, the desired conclusion can be immediately concluded.

Let F be a bifunction of C × C into R, where R denotes the set of real numbers. Recall the following
equilibrium problem.

Find x ∈ C such that F(x, y) ≥ 0, ∀y ∈ C. (4.2)

In this paper, we use EP(F) to denote the solution set of the equilibrium problem (4.2).
To study the equilibrium problems (4.2), we may assume that F satisfies the following conditions:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, i.e., F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C,
lim sup

t↓0
F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y 7→ F(x, y) is convex and weakly lower semi-continuous.

Putting F(x, y) = 〈Ax, y − x〉 for every x, y ∈ C, we see that the equilibrium problem (4.2) is reduced to a
variational inequality.
Lemma 4.4. [5] Let C be a nonempty closed convex subset of a real Hilbert space H, F a bifunction from C × C to R
which satisfies (A1)-(A4) and AF a multivalued mapping of H into itself defined by

AFx =

{z ∈ H : F(x, y) ≥ 〈y − x, z〉, ∀y ∈ C}, x ∈ C,
∅, x < C.

(4.3)
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Then AF is a maximal monotone operator with the domain D(AF) ⊂ C, EP(F) = A−1
F (0) and

Trx = (I + rAF)−1x, ∀x ∈ H, r > 0,

where Tr is defined as

Trx = {z ∈ C : F(z, y) +
1
r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C}

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C → H be an α-inverse-
strongly monotone mapping and Let FB be a bifunction from C × C to R which satisfies (A1)-(A4). Let S : C→ C be
a nonexpansive mapping with fixed points. Assume that F(S)∩ EP(F) is not empty. Let {αn} and {βn} be real number
sequences in (0, 1) and {rn} be a positive real number sequence in (0, 2α). Assume that the above sequences satisfy the
following restrictions:

(1) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) 0 < a ≤ rn ≤ b < 2α and
∑
∞

n=1 |rn − rn−1| < ∞,

where a and b are two real numbers. Let {xn} be a sequence generated in the following process: x1 ∈ C andyn = αnu + (1 − αn)xn,

xn+1 = βnxn + (1 − βn)STrn (yn − rnAyn), ∀n ≥ 1,

where u is fixed element in C and Jrn = (I + rnB)−1. Then {xn} converges strongly to a point q ∈ F(S) ∩ EP(F), which
is an unique solution to the following variational inequality

〈u − q, p − q〉 ≤ 0, ∀p ∈ F(S) ∩ EP(F).

If S = I, the identity mapping, we have the following result.

Corollary 4.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A : C→ H be an α-inverse-
strongly monotone mapping and Let FB be a bifunction from C × C to R which satisfies (A1)-(A4). Assume that
EP(F) is not empty. Let {αn} and {βn} be real number sequences in (0, 1) and {rn} be a positive real number sequence
in (0, 2α). Assume that the above sequences satisfy the following restrictions:

(1) limn→∞ αn = 0,
∑
∞

n=0 αn = ∞;

(2) 0 < lim infn→∞ βn ≤ lim supn→∞ βn < 1;

(3) 0 < a ≤ rn ≤ b < 2α and
∑
∞

n=1 |rn − rn−1| < ∞,

where a and b are two real numbers. Let {xn} be a sequence generated in the following process: x1 ∈ C andyn = αnu + (1 − αn)xn,

xn+1 = βnxn + (1 − βn)Trn (yn − rnAyn), ∀n ≥ 1,

where u is fixed element in C and Jrn = (I + rnB)−1. Then {xn} converges strongly to a point q ∈ EP(F), which is an
unique solution to the following variational inequality 〈u − q, p − q〉 ≤ 0,∀p ∈ EP(F).
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