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Abstract.

In this paper, we investigate the concept of Abel statistical quasi Cauchy sequences. A real function f
is called Abel statistically ward continuous if it preserves Abel statistical quasi Cauchy sequences, where
a sequence () of point in R is called Abel statistically quasi Cauchy if limy 1-(1 = X) Xjjag s X = 0 for
every € > 0, where Aay = a1 — ax for every k € IN. Some other types of continuities are also studied and
interesting results are obtained. It turns out that the set of Abel statistical ward continuous functions is a
closed subset of the space of continuous functions.

1. Introduction

The concept of continuity and any concept involving continuity play a very important role not only
in pure mathematics but also in other branches of sciences involving mathematics especially in computer
sciences, information theory, biological science, economics, and dynamical systems.

Throughout the paper, IN, and R will denote the set of non negative integers and the set of real numbers,
respectively. A function f : R — R is continuous if and only if it preserves Cauchy sequences. Using
the idea of continuity of a real function in this manner, many kinds of continuities were introduced and
investigated, not all but some of them we recall in the following: ward continuity ([1], and [5]), p-ward
continuity ([9]), statistical ward continuity, ([8]), A-statistically ward continuity ([18]), p-statistical ward
continuity ([11]), slowly oscillating continuity ([2], and [35]), quasi-slowly oscillating continuity ([23]),
lacunary statistical ward continuity ([14]), and Abel continuity ([13]) which enabled some authors to
obtain interesting results related to uniform continuity via one of the following types of sequences: quasi-
Cauchy sequences, p-quasi-Cauchy sequences, statistical quasi-Cauchy sequences [12], lacunary statistical
quasi-Cauchy sequences, p-statistical quasi-Cauchy sequences, ideal quasi-Cauchy sequences, strongly
lacunary quasi-Cauchy sequences, slowly oscillating sequences. A real sequence (ay) of points in R is called
statistically convergent to an ¢ € R if lim, %I{k <n:lag =1 2 €}| = 0 for every ¢ > 0, and this is denoted
by st —limay = € ([4, 7, 16, 21, 22, 26, 28, 29]). A sequence (ay) is called lacunary statistically convergent
([30]) to an € € R if lim,_,q hl,Hk €l :|lax — €] > €}| = 0 for every ¢ > 0, where I, = (k,—1, k], and kg = 1,
hy : ky — k-1 = o0 asr — oo and 0 = (k;) is an increasing sequence of positive integers, and this is denoted
by S¢ — lima, = £. Throughout this paper we assume that lim inf, k; > 1. A sequence (ay) is slowly
oscillating, if for any given ¢ > 0 there exista 6 = 6(¢) > 0 and an N = N(¢) such that |a,, — an| < € whenever
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n> N(e)and n < m < (1 + 0)n. A sequence (ax) is quasi-slowly oscillating if (Aay) is slowly oscillating,
where Aay = a1 — ay for each k € IN ([23]).

The purpose of this paper is to introduce and investigate the concept of Abel statistical ward continuity
and present interesting results.

2. Abel Statistical Ward Continuity
A sequence (ay) of real numbers is called Abel convergent (or Abel summable) to ¢ if the series
Z;‘;oakxk
is convergent for 0 < x < 1and

lim (1 - 0 k=t
X— k:O

(see for example [13]). In this case, we write Abel — lim oy = £. The concept of a Cauchy sequence involves
far more than that the distance between successive terms is tending to 0 and specially speaking, than that
the distance between successive terms is Abel convergent to zero. Nevertheless, sequences which satisfy
this weaker property, i.e. Abel quasi Cauchy sequences satisfying Abel — limA ay = 0, are interesting in
their own right. In other words, a sequence (ax) of points in R is called Abel quasi-Cauchy if (Aay) is Abel
convergent to 0, i.e. the series

Z Aagx*

k=0

is convergent for 0 < x < 1 and
. _ k _
xh—>m1*(1 X) kE_O Aagx” = 0.

A and AA will denote the set of Abel convergent sequences and the set of Abel quasi Cauchy sequences,
respectively.

Recently the concept of Abel statistical convergence of a sequence is investigated in [34] (see also [20])
in the sense that a sequence (ay) is called Abel statistically convergent to a real number L if

. _ k _
xhj?f(l X) Z x=0

k:loag—L|>e

for every ¢ > 0, and denoted by Abely — lim ay = L.
Now we introduce the concept of Abel statistical quasi Cauchyness in the following:

Definition 2.1. A sequence of points in a subset E of R is called Abel statistically quasi Cauchy if Abel; —
limA ag = 0, i.e. limy1-(1 = %) Ypyag e X° = 0 for every € > 0, and

. _ k _
lim (1 - ) Z ¥=0
ki|Aag|>e

for every € > 0, where Aay = ay+1 — ay for every k € IN.

For any fixed constant ¢ € R, the sequence (cay) is Abel statistically quasi Cauchy whenever (ay) is,
and the sum of two Abel statistically quasi-Cauchy sequence is Abel statistically quasi-Cauchy. Thus the
set of all Abel statistically quasi Cauchy sequences is a vector space of the space of all sequences. The
product of two Abel statistical quasi-Cauchy sequences need not be Abel statistically quasi-Cauchy as it

can be seen by considering the product of the sequence ( Vk) itself. Cauchy sequences have the property
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that any subsequence of a Cauchy sequence is Cauchy. The analogous property fails for Abel statistical
quasi Cauchy sequences. A counter example is the sequence ( Vk) with the subsequence (k) ([20]). Any
convergent sequence is Abel statistically quasi Cauchy: let (ax) be a convergent sequence with limit L, and
¢ > 0. Then there exists an N € N such that |a; — L| < § for k > N. Hence

(ke N:|ax-Ll >z} <{1,2,..,N}

N m

for every ¢ > 0. Therefore
<Y o
keN:|ax—L[> 5 k=1

for every ¢ > 0. On the other hand,

N
¥ < Z X+ Z xk<22xk

k:|Aay|>e k:logy1—L|

\%
[S1
>~
T
15}
=
Y
[N
P
I
—_

for every € > 0. Therefore

N
. _ k . _ k _
)}glﬁ(l X) Z X <2lim(1 x)Zx =0
k| Aay|>e k=1
for every ¢ > 0.
Furthermore, a slowly oscillating sequence is Abel statistically quasi-Cauchy, so is a Cauchy sequence.

Definition 2.2. A subset E of R is called Abel statistically ward compact if any sequence of points in E has
an Abel statistical quasi Cauchy subsequence, i.e. whenever a = (a,) is a sequence of points in E, there is
an Abel statistical quasi Cauchy subsequence & = (&) = (ay,) of a.

According to this definition, any bounded subset of R is Abel statistically ward compact. The union
of two Abel statistical ward compact subsets of R is Abel statistically ward compact, therefore it is seen
inductively that any finite union of Abel statistical ward compact subsets of R is Abel statistically ward
compact, whereas the union of the infinite family of Abel statistical ward compact subsets of IR is not always
Abel statistically ward compact. The intersection of any family of Abel statistical ward compact subsets of
R is Abel statistically ward compact. The sum of two Abel statistical ward compact subsets of R is Abel
statistically ward compact. These observations above suggest to us the following.

Theorem 2.3. A subset of R is Abel statistically ward compact if and only if it is bounded.

Proof. Since Abel statistical sequential method is regular, it is clear that any bounded subset of R is Abel
statistically ward compact. Suppose now that E is unbounded. First pick an element g of E so that oy > 1.
Then choose an element a; of E so that @y > @ + 1. Similarly choose an element «; of E so that ap > a; + 21,
We can inductively choose elements of E so that a1 > ay + 2k for each k € N. Take any subsequence a, of
the sequence (a,). Thus

o]

DI

keN:|Aag|>1 k=1

Hence "
. _ k_ 1: _ k_
lim (1 - ) Y, o« = lim(1 0 F=1%0.
keN:|Aag/>1 k=1

Thus the sequence a; has no Abel statistical quasi Cauchy subsequence as well. If it is unbounded below,
then similarly we construct a sequence of points in E which has no Abel statistical quasi Cauchy subsequence.
This completes the proof of the theorem. [
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We note that Abel statistical ward compactness coincides with not only Abel ward compactness, but
also statistical ward compactness, A-statistical ward compactness, p-statistical ward compactness, lacunary
statistical ward compactness, strongly lacunary ward compactness. We note that a subset of R is Abel
statistically ward compact if and only if it is statistically upward half compact and statistically downward
half compact, which follows from [13, Theorem 5] and [10, Corollary 3.9]); and a subset of R is Abel
statistically ward compact if and only if it is p-ward compact for a p € IN, which follows from [13, Theorem
5] and [9, Theorem 2.3].

We now introduce a new type of continuity defined via Abel statistical quasi-Cauchy sequences.

Definition 2.4. A function f is called Abel statistically ward continuous on a subset E of R if it preserves
Abel statistical quasi Cauchy sequences of pointsin E, i.e. (f(ax))is Abel statistically quasi Cauchy whenever
(ax) is an Abel statistical quasi Cauchy sequence of points in E.

We note that this definition of continuity can not be obtained by A-continuity for any regular summability
matrix A considered in [24] (see also [3], [6], [17], and [31]).

Proposition 2.5. The sum of two Abel statistical ward continuous functions is Abel statistically ward continuous.

Proof. Let f and g be Abel statistical ward continuous functions on a subset E of R, and (ax) be an Abel
statistical quasi Cauchy sequence of points in E. Take any € > 0. Since f is Abel statistically ward continuous
on E, we have

lim (1 — x) Z xF = 0;
kIAf (a5

since g is Abel statistically ward continuous on E,
lim (1 - “=0.
x—>1*( X) Z X 0
k:lAg(a)l>5
Now it follows from the inequality

xk< Z x* + Z X

k:l(f+9)(axsn) - (f+g)(a)ze kIAf(a)l>5 k1Ag(ax)l>5

k

that

. _ k< T _ k : k _ -
xhﬁr{{(l X) Z | X< xhj?f(l X) Z X+ xhﬁr{[ Z | x=0+0=0.
kl(f+9) (k)= (f+g) () 5 kIAf(a)>5 kilAg(ar)>5

This completes the proof. [J

The composite of two Abel statistical ward continuous functions is Abel statistically ward continuous
but the product of two Abel statistical ward continuous functions need not be Abel statistically ward
continuous as it can be seen by considering the product of the Abel statistical ward continuous function
f(t) = t with itself, and the Abel statistical quasi Cauchy sequence (vn). If f is an Abel statistical ward
continuous function, then cf is also Abel statistically ward continuous for any constant ¢ € R. max{f, g}
is an Abel statistical ward continuous function, whenever f and g are Abel statistically ward continuous
functions.

Theorem 2.6. Abel statistical ward continuous image of any Abel statistical ward compact subset of R is Abel
statistically ward compact.

Proof. Let f : E — R be an Abel statistical ward continuous function and B be an Abel statistical ward
compact subset of E. Take any sequence 1 = (1) of points in f(B). Write n, = f(ax) for eachk € N, a = (k).
Since B is Abel statistically ward compact, there exists an Abel statistical quasi Cauchy subsequence & = (&)
of the sequence a. Since f is Abel statistically ward continuous, f(&) = (f(&k)) is Abel statistically quasi
Cauchy, which is a subsequence of the sequence 7. This completes the proof of the theorem. [
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In connection with Abel statistical quasi Cauchy sequences and convergent sequences the problem arises
to investigate the following types of continuity of functions on IR.

(AAst) (ak) € AAst = (f(ak)) € AAst
(AAsic) (ag) € AAg = (f(aw)) €

(Ast) (ak) € Ast = (f(ak)) € Ast
(cAAg) (ax) € ¢ = (f(ax)) € AAy

(©) (ax) €c= (flax)) € c

We see that AA,; is Abel statistical ward continuity of f, (Ay) states the Abel statistical continuity of f, and
(c) states the ordinary continuity of f. We easily see that (As) implies (cAAs); (AAs) implies (cAAs); (Ast)
implies (c), but (c) does not imply (As) ([13, Theorem 7]); and (AAgc) implies (AAg).

Now we give the implication (AAy) implies (c), i.e. any Abel statistical ward continuous function is
continuous in the ordinary sense.

Theorem 2.7. If a function is Abel statistically ward continuous on a subset E of R, then it is continuous on E.

Proof. Suppose that a function f is not continuous on E so that there exists a convergent sequence (a,) with
lim, . an = € such that (f(a,)) is not convergent to f(¢). If (f(a,)) is bounded, then either (f(a,)) has a limit
different from f(¢), or there are at least two convergent subsequences of (f(a,)) with different limits. In
both cases it is not difficult to fall in a contradiction. If (f(a,)) is unbounded above. Then we can find an 1,
such that f(a,,) > f(ao) + 1. There exists a positive integer an n, > n; such that f(a,,) > f(a,,) +2. Suppose
that we have chosen an #;_; > nx_, such that f(a,_,) > f(an_,) + 22 Then we can choose an 1 > 11
such that f(a,) > f(ay,,) + 251, Inductively we can construct a subsequence (f(a,,)) of (f(a,)) such that
f(@n,.,) > f(an,)+2" for each k € IN. Since the sequence (&) is a subsequence of (a,), the subsequence (a,)
is convergent so is Abel statistically quasi Cauchy. But (f(a,,)) is not Abel statistically quasi-Cauchy as we
see below. For each k € N we have Af(a,,) > 2*. The series Y., Flan )51 x* is convergent and equal to 7= for

any x satisfying 0 < x < 1, so limy,1-(1 — x) Zk:IAf(ank)Dl xF =1 # 0. Thus the sequence (f(ay,)) is not Abel
statistically quasi Cauchy. If (f(a,)) is unbounded below, similarly limy1-(1 —x) Y5 Flan 51 xk is found not

to be 0. The contradiction for all possible cases to the Abel statistical ward continuity of f completes the
proof of the theorem. O

The converse of the preceding theorem is not always true. As a counterexample consider the function
defined by f(x) = x* and the Abel statistical quasi Cauchy sequence defined by (/). We note that Abel
statistical ward continuity implies not only ordinary continuity, but also statistical continuity, which follows
from [4, Corollary 4], Lemma 1 and Theorem 8 in [6]; lacunary statistical sequential continuity, which was
observed in [14] (see also [36]), A-statistical continuity ([18]), p-statistical continuity, and ([11]); G-sequential
continuity for any regular subsequential method G, which follows from Theorem 8 in [6](see also [31])

It is well-known that any continuous function on a compact subset E of R is uniformly continuous on
E. We have an analogous theorem for an Abel statistical ward continuous function defined on an Abel
statistical ward compact subset of R.

Theorem 2.8. Any Abel statistical ward continuous function on an Abel statistical ward compact subset E of R is
uniformly continuous.

Proof. Let f be a function defined on an Abel statistical ward compact subset E of R into IR. Suppose that
f is not uniformly continuous on E so that there exist an €y > 0 and sequences (a,) and (B,) of points in E
such that |a, — Bu| < 1/n and |f(a,) — f(Bn)| = € for all n € IN. By Theorem 2.3, E is Abel statistically ward
compact, there is a subsequence (a;,) of (@) that is Abel statistically quasi-Cauchy. On the other hand there
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is a subsequence (‘Bnk/) of (B,,) that is Abel statistically quasi-Cauchy. The corresponding subsequence (ankj)
is also Abel statistically quasi-Cauchy, which follows from the following inclusion

&
{k € N : |ank].+1 - ank/.| > é‘} c {k € N : |0(Vlkl+1 _ﬁnkj+1| > }U {k € N : |‘Bnkl+1 _ﬁnkjl > g}

W m

U{k € N : |,3nk] - al’lkjl > }

W[ m

for every ¢ > 0, that implies

. k
limy,1- (1 - X) Zke]N:Iﬁ,, —ay  peX
ki1 s

< lim(1 - x) Z X+ lim (1 - %) Z ¥+ lim (1 - %) Z ey
x—1- . x—1- . x—1- .
kE]I\Izlﬁnkj*_1 _,Bnk] |>§ kEN:lﬁnkj _ank/_ ‘25 kEN:‘ank/_ _a"k]'+1 [> 3

=0+0+0=0
for every ¢ > 0. Now the sequence

(n)) = (a,,kl,ﬁnkl, ...,a,,kj,ﬁ,,kj, )
is Abel statistically quasi-Cauchy while the sequence
(fO) = (flen, ), fBu), -wos fletn, ), f(Bry), --2)
is not Abel statistically quasi-Cauchy since

1

(1—x):1¢0‘

: _ k _ 1z _ k _ _
lim (1 - x) Z x = lim (1 x)Zx =(1-%)
kNI f(1))=f (n1)I>e0 k=0

Hence this establishes a contradiction so completes the proof of the theorem. [J

3. Conclusion

In this paper we investigate the concept of Abel statistical ward continuity, and present theorems related
to this kind of continuity, and some other kinds of continuities. One may expect this investigation to be
a useful tool in the field of analysis in modeling various problems occurring in many areas of science,
dynamical systems, computer science, information theory, and biological science. On the other hand, we
suggest to investigate the concept of fuzzy Abel statistical quasi Cauchy sequences of fuzzy points or soft
points (see [15] for the definitions and related concepts in fuzzy setting, and see [25] related concepts in soft
setting). However due to the change in settings, the definitions and methods of proofs will not always be
the same. An investigation of Abel ward continuity and Abel ward compactness can be done for double
sequences (see [33] for basic concepts in the double sequences case). However due to the change in settings,
the definitions and methods of proofs will not always be the same. For some further study, we suggest
to investigate Abel statistical quasi Cauchy sequences of points in a topological vector space valued cone
metric space (see [19], and [32]) or in 2-normed spaces ([27]).
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