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Abstract. For two vertices u and v of a graph G, the set I[u, v] consists of all vertices lying on some u − v
geodesic in G. If S is a set of vertices of G, then I[S] is the union of all sets I[u, v] for u, v ∈ S. A subset S of
vertices of G is a geodetic set if I[S] = V. The geodetic number 1(G) is the minimum cardinality of a geodetic
set of G. It was shown that a connected graph G of order n ≥ 3 has geodetic number n− 1 if and only if G is
the join of K1 and pairwise disjoint complete graphs Kn1 ,Kn2 , . . . ,Knr , that is, G = (Kn1 ∪ Kn2 ∪ . . .Knr ) + K1,
where r ≥ 2, n1,n2, . . . ,nr are positive integers with n1 + n2 + . . . + nr = n − 1. In this paper we characterize
all connected graphs G of order n ≥ 3 with 1(G) = n − 2.

1. Introduction

Throughout this paper, G is a simple connected graph with vertex set V(G) and edge set E(G) (briefly V
and E). We refer the reader to the book [17] for graph theory notation and terminology not defined here.
For every vertex v ∈ V, the open neighborhood N(v) is the set {u ∈ V | uv ∈ E} and the closed neighborhood of v
is the set N[v] = N(v) ∪ {v}. The degree of a vertex v ∈ V is degG(v) = deg(v) = |N(v)|. A vertex v is called a
simplicial vertex in a graph G if the subgraph induced by its neighbors is complete. For vertices x and y in
a connected graph G, the distance dG(x, y) is the length of a shortest x − y path in G. For a vertex x of G, the
eccentricity eG(x) is the distance between x and a vertex farthest from x. The maximum eccentricity among
the vertices of G is the diameter, diam(G). An x − y path of length dG(x, y) is called an x − y geodesic. The
geodetic interval I[x, y] consists of x, y and all vertices lying in some x− y geodesic of G, and for a nonempty
subset S of V(G), we define I[S] = ∪x,y∈SI[x, y].

A subset S of vertices of G is a geodetic set if I[S] = V. The geodetic number 1(G) is the minimum cardinality
of a geodetic set of G. A 1(G)-set is a geodetic set of G of size 1(G). The geodetic sets of a connected graph
were introduced by Harary, Loukakis and Tsouros [8], as a tool for studying metric properties of connected
graphs. It was shown in [1] that the determination of 1(G) is an NP-hard problem and its decision problem is
NP-complete. The geodetic number and its variants have been studied by several authors (see for example
[1, 5–7, 9–16, 18]). Clearly, a connected graph G of order n ≥ 2 has geodetic number n if and only if G = Kn.
It was shown in [3] that a connected graph G of order n ≥ 3 has geodetic number n − 1 if and only if G is
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the join of K1 and pairwise disjoint complete graphs Kn1 ,Kn2 , . . . ,Knr , that is, G = (Kn1 ∪ Kn2 ∪ . . .Knr ) + K1,
where r ≥ 2, n1,n2, . . . ,nr are positive integers with n1 + n2 + . . . + nr = n − 1.

The purpose of this paper is to characterize all connected graphs G of order n ≥ 3 with 1(G) = n − 2.
We make use of the following results in this paper.

Observation 1.1. ([4]) Every geodetic set of a graph contains its simplicial vertices.

Observation 1.2. Every connected graph G of order n different from Kn, has a geodetic set S of size n − 1
such that the vertex not in S, belongs to a geodesic path of length two.

Proof. Let G be a connected graph of order n different from Kn. Since G , Kn, G has three vertices u, v and w
such that uv,uw ∈ E(G) and vw < E(G) (see Exercise 1.6.14 in [2]). It follows that dG(v,w) = 2 and u ∈ I[v,w]
and hence S = V(G) − {u} is a geodetic set of G with desired property.

Observation 1.3. Let G be a connected graph of order n with 1(G) ≤ n− 2 and let u be an arbitrary vertex of
G. Then G has a geodetic set S of size n − 1 containing u such that the vertex not in S, belongs to a geodesic
path of length two.

Proof. If there is a vertex v at distance 2 from u and w ∈ N(u) ∩ N(v), then V(G) − {w} is a geodetic set of G
with desired property. Thus, we assume u is adjacent to all vertices of G. Since 1(G) ≤ n − 2, G − u has a
component H that is not complete. By Observation 1.2, H has a geodetic set S of size |V(H)| − 1 such that
the vertex not in S, say x, belongs to a geodesic path of length two. Then obviously V(G) − {x} is a geodetic
set of G with desired property.

Proposition 1.4. Let G be a connected graph and H be a connected induced subgraph of G that is not
complete. If

1. G − V(H) has a cycle (v1v2v3v4) in which v1v3 < E(G), or
2. G −V(H) has a path v1v2v3v4 in which dG(v1, v4) = 3 and there is no edge between the sets {v1, v4} and

V(H),

then 1(G) ≤ n − 3.

Proof. By Observation 1.2, H has a geodetic set S of size |V(H)|−1 such that the vertex not in S, say x, belongs
to a (y, z)-geodesic path where dH(y, z) = 2. Clearly dG(y, z) = 2. If (1) holds, then clearly dG(v1, v3) = 2
and {v2, v4} ⊆ I[v1, v3]. It follows that V(G) − {x, v2, v4} is a geodetic set of G that implies 1(G) ≤ n − 3. If
(2) holds, then x ∈ I[y, z] and v2, v3 ∈ I[v1, v4] and so V(G) − {x, v2, v3} is a geodetic set of G implying that
1(G) ≤ n − 3.

2. Graphs with Large Geodetic Number

Chartrand, Harary and Zhang [4] established the following upper bound on geodetic number of a graph
in terms of its order and diameter.

Theorem A. If G is a nontrivial connected graph of order n and diameter d, then 1(G) ≤ n − d + 1.

Corollary 2.1. If G is a connected graph of order n with 1(G) = n − i, then diam(G) ≤ i + 1.

In what follows, we characterize all graphs G of order n ≥ 3 with 1(G) = n − 2. By Corollary 2.1 we need to
consider connected graphs G for which diam(G) = 2 or 3. First we introduce four families of graphs.

Let F1 be the collection of all graphs obtained from a cycle C4 = (v1v2v3v4) and complete graphs
Kn1 , . . . ,Knr (possibly no complete graphs) by joining v1 and v2 to all vertices of complete graphs. Clearly
C4 ∈ F1.

Let F2 be the collection of all graphs obtained from a triangle K3 = uvw and complete graphs Kn1 , . . . ,Knr

(possibly no complete graphs of this kind), Km,Km1 , . . . ,Kms , by joining u to all vertices of complete graphs,
v to all vertices of Km1 , . . . ,Kms and w to the vertices of Km.
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Suppose F3 is the collection of all graphs obtained from K2 = uv and two classes of complete graphs
Kn1 , . . . ,Knr (possibly no complete graphs of this kind) and Km1 , . . . ,Kms (at least two complete graphs of this
kind if there is no complete graph of the first kind), by joining u to all vertices of complete graphs and v to
all vertices of Km1 , . . . ,Kms .

Finally assume that F4 is the collection of all graphs obtained from K2 = xy and complete graphs
Kn1 , . . . ,Knr ,Km1 , . . . ,Kms and Kl1 , . . . ,Klt (may be no complete graph of this kind) by joining x and y to all
vertices of Kl1 , . . . ,Klt and joining x to all vertices of Kn1 , . . . ,Knr and y to all vertices of Km1 , . . . ,Kms .
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Theorem 2.2. Let G be a connected graph of order n with diam(G) = 2. Then 1(G) = n − 2 if and only if
G � C5 or G ∈ F1 ∪ F2 ∪ F3.

Proof. If G = C4 or G = C5, then clearly 1(G) = n− 2. If G ∈ F3 then by Observation 1.1, 1(G) = n− 2 because
every vertex of V(G) − {u, v} is a simplicial vertex of G. Now let G ∈ F1 − {C4} and S be a 1(G)-set. By
Observation 1.1, V(G) − {v1, v2, v3, v4} ⊆ S. If v3, v4 ∈ S, then 1(G) = |S| ≥ n − 2. If v3 < S (the case v4 < S is
similar), then we must have v2, v4 ∈ S implying that 1(G) = |S| ≥ n − 2. On the other hand, V(G) − {v1, v2}

is a geodetic set of G that implies 1(G) = n − 2. Finally let G ∈ F2 and S be a 1(G)-set. By Observation 1.1,
V(G)− {u, v,w} ⊆ S. Since w < I[w1,w2] for each w1,w2 ∈ V(G)− {u, v,w}, we deduce that V(G)− {u, v,w} $ S
and so 1(G) = |S| ≥ n − 2. On the other hand, V(G) − {u, v} is a geodetic set of G that yields 1(G) = n − 2.

Conversely, let G be a connected graph of order n, diam(G) = 2 and 1(G) = n − 2. Suppose that
S = V(G) − {x1, x2} is a 1(G)-set. Since, xi < S, there exists a ui − vi geodesic path containing xi for i = 1, 2.
Further, let among the 1(G)-sets S, the one be selected such that |{u1, v1} ∩ {u2, v2}| is as large as possible and
x1x2 < E(G) if possible. We consider two cases:
Case 1: |{u1, v1} ∩ {u2, v2}| = 2.
We assume that u1 = u2 and v1 = v2. Then {x1, x2} ⊆ N(u1)∩N(v1). On the other hand, since V(G)− (N(u1)∩
N(v1)) is a geodetic set of G and since 1(G) = n − 2, we deduce that

N(u1) ∩N(v1) = {x1, x2}. (1)

If n = 4, then G = C4 and hence G ∈ F1. Let n ≥ 5. Consider the following subcases.
Subcase 1.1. x1x2 < E(G).

Then dG(x1, x2) = 2. An argument similar to that described above, we obtain

N(x1) ∩N(x2) = {u1, v1}. (2)

Let w be an arbitrary vertex in V(G) − {u1, v1, x1, x2}. Since 1(G) = n − 2, w must be adjacent to some
vertex in {u1, v1, x1, x2}. We may assume w ∈ N(u1) \ {x1, x2}. It follows from N(u1) ∩ N(v1) = {x1, x2} and
the fact dG(w, v1) ≤ 2 that wv1 < E(G) and v1 and w have a common neighbor, say y. If y < {x1, x2}, then
V(G) − {x1, x2, y} is a geodetic set of G which is a contradiction. Therefore y ∈ {x1, x2} and hence w ∈ N(x1)
or w ∈ N(x2). By (2), w ∈ N(x1) \N(x2) or w ∈ N(x2) \N(x1). We claim that N(u1) − {x1, x2} ⊆ N(x1) \N(x2) or
N(u1) − {x1, x2} ⊆ N(x2) \ N(x1). Suppose w1 ∈ N(u1) ∩ (N(x1) \ N(x2)) and w2 ∈ N(u1) ∩ (N(x2) \ N(x1)). If
w1w2 ∈ E(G), then x2 ∈ I[v1,w2] and {u1,w1} ⊆ I[x1,w2] that implies V(G)− {x2,w1,u1} is a geodetic set of G, a
contradiction. Let w1w2 < E(G). Then u1 ∈ I[w1,w2], x1 ∈ I[w1, v1] and x2 ∈ I[w2, v1] and so V(G)− {x1, x2,u1}

is a geodetic set of G, a contradiction. Assume, without loss of generality, that

N(u1) \ {x1, x2} ⊆ N(x1) \N(x2). (3)
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Similarly, we have

N(x1) \ {u1, v1} ⊆ N(u1) \N(v1) (4)

and

N(v1) \ {x1, x2} ⊆ N(x1) \N(x2) or N(v1) \ {x1, x2} ⊆ N(x2) \N(x1). (5)

Next we show that deg(v1) = 2. Suppose z ∈ N(v1) − {x1, x2}. By (5), we deduce that zx1 ∈ E(G) and
zx2 < E(G) or zx1 < E(G) and zx2 ∈ E(G). First let zx1 ∈ E(G) and zx2 < E(G). By (1), w , z. If wz ∈ E(G), then
V(G) − {x1, x2,w} is a geodetic set of G, and if wz < E(G), then u1 ∈ I[w, x2] by (3), x1 ∈ I[w, z] and v1 ∈ I[x2, z]
and so V(G) − {u1, v1, x1} is a geodetic set of G, a contradiction. Now let zx1 < E(G) and zx2 ∈ E(G). If
wz ∈ E(G) then we get a contradiction as above. Let wz < E(G). Then w and z have a common neighbor
y not in {x1, x2} and so u1 ∈ I[w, x2] by (3), y ∈ I[w, z] and v1 ∈ I[x1, z]. This implies that V(G) − {u1, v1, y}
is a geodetic set of G, a contradiction. Thus deg(v1) = 2. By symmetry, we must have deg(x2) = 2. Since
1(G) = n − 2, we deduce from Proposition 1.4 that the components of G[V − {u1, v1, x1, x2}] are complete
graphs and hence G ∈ F1.

Subcase 1.2. x1x2 ∈ E(G).
Consider the components of G − {x1, x2}. Since 1(G) = n − 2, we conclude from Proposition 1.4 that the
components of G − {x1, x2} not containing u1, v1 are complete graphs.

Now let Hu1 and Hv1 be the components of G − {x1, x2} containing u1 and v1. Clearly, Hu1 ∩ Hv1 = ∅,
otherwise u1 and v1 must have a common neighbor in Hu1 , a contradiction. Thus Hu1 and Hv1 are disjoint.
If 1(Hu1 ) ≤ |V(Hu1 )| − 2 (the case 1(Hv1 ) ≤ |V(Hv1 )| − 2 is similar), then by Observation 1.3, we can choose a
geodetic set S of Hu1 containing u1 and size |V(Hu1 )| − 1 such that the vertex not in S, say a, belongs to a x− y
geodesic path where x, y ∈ S and dG(x, y) = 2. Then obviously V(G) − {a, x1, x2} is a geodetic set of G of size
at most n − 3 which is a contradiction. Hence 1(Hu1 ) ≥ |V(Hu1 )| − 1 and 1(Hv1 ) ≥ |V(Hv1 )| − 1 implying that
Hu1 and Hv1 are complete graphs or join of K1 and at least two pairwise disjoint complete graphs where u1
and v1 are adjacent to all vertices of Hu1 and Hv1 , respectively (cf. [3]).

Let w , u1 be an arbitrary vertex of Hu1 . Since wv1 < E(G) and diam(G) = 2, we have dG(v1,w) = 2. If
v1 and w have a common neighbor z not in {x1, x2}, then V(G) − {x1, x2, z} is a geodetic set of G which is a
contradiction. Therefore, we may assume that wx1 ∈ E(G). We show that V(Hu1 ) ⊂ N(x1). Suppose Hu1 has a
vertex y which is not adjacent to x1. As above we must have x2y ∈ E(G). If wy < E(G), then V(G)−{u1, x1, x2}

is a geodetic set of G and if wy ∈ E(G), then V(G) − {u1,w, x2} is a geodetic set of G, a contradiction. Hence
V(Hu1 ) ⊂ N(x1). If Hu1 has a vertex z , u1 adjacent to x2, then as above we have V(Hu1 ) ⊂ N(x2). Thus
either V(Hu1 ) − {u1} ⊂ N(x1) − N(x2) or V(Hu1 ) ⊂ N(x1) ∩ N(x2). Similarly, V(Hv1 ) − {v1} ⊂ N(x1) − N(x2),
V(Hv1 ) − {v1} ⊂ N(x2) −N(x1) or V(Hv1 ) ⊂ N(x1) ∩N(x2).
Claim. G−{x1, x2} has at most one component H of order at least 2 with z ∈ V(H) such that z ∈ N(x1)∩N(x2)
and V(H) − {z} ⊆ N(x1) −N(x2) or V(H) − {z} ⊆ N(x2) −N(x1).
Proof. Let H1 and H2 be the components of G − {x1, x2} of order at least 2 with zi ∈ V(Hi) such that
zi ∈ N(x1) ∩N(x2) and V(Hi) − {zi} ⊆ N(x1) −N(x2) or V(Hi) − {zi} ⊆ N(x2) −N(x1) for i = 1, 2. Let z′i ∈ V(Hi)
for i = 1, 2. If V(Hi) − {zi} ⊆ N(x1) − N(x2) for i = 1, 2, then x1 ∈ I[z′1, z

′

2], z1 ∈ I[z′1, x2], z2 ∈ I[z′2, x2]
and hence V(G) − {x1, z1, z2} is a geodetic set of G, a contradiction. If V(H1) − {z1} ⊆ N(x1) − N(x2) and
V(H2) − {z2} ⊆ N(x2) −N(x1), then dG(z′1, z

′

2) = 3 which is a contradiction again. The other cases also lead to
a contradiction. �

First assume that G − {x1, x2} has no component H of order at least 2 with z ∈ V(H) such that z ∈
N(x1)∩N(x2) and V(H)− {z} ⊆ N(x1)−N(x2) or V(H)− {z} ⊆ N(x2)−N(x1). Then V(Hu1 ) ⊂ N(x1)∩N(x2) and
V(Hv1 ) ⊂ N(x1)∩N(x2). It will now be shown that Hu1 and Hv1 are complete graphs. Assume to the contrary
that Hu1 is not complete (the other case is similar). Since 1(Hu1 ) ≥ n − 1, we have 1(Hu1 ) = n − 1. Then
Hu1 = (Kn1 ∪ Kn2 ∪ . . .Knr ) + K1, where r ≥ 2, n1,n2, . . . ,nr are positive integers with n1 + n2 + . . . + nr = n − 1
and u1 is adjacent to all vertices of Hu1 . Let z1 and z2 belong to different components of Hu1 − u1. Then
u1 ∈ I[z1, z2] and x1, x2 ∈ I[z1, v1] that implies V(G) − {u1, x1, x2} is a geodetic set of G, a contradiction. Let H
be a component of G − {x1, x2} not containing u1, v1, if any. Since dG(V(H),u1) ≤ 2, we must have zx1 ∈ E(G)
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or zx2 ∈ E(G) for each z ∈ V(H). Assume, without loss of generality, that H has a vertex x that is adjacent to
x1.

We show that V(H) ⊂ N(x1). Assume first |V(H)| ≥ 3. Suppose H has a vertex y which is not adjacent
to x1. Since dG(y,u1) = 2, we must have yx2 ∈ E(G). If H has a vertex z , x which is adjacent to x1, then
x, z ∈ I[y, x1], x2 ∈ I[y,u1] which leads to a contradiction. This implies that V(H) − {x} ⊆ N(x2). If xx2 < E(G),
then V(H)−{x} ⊆ I[x, x2] and x1 ∈ I[x, v1], implying that V(G)−({x1}∪(V(H)−{x})) is a geodetic set of G which
is a contradiction. Hence x ∈ N(x1)∩N(x2) and V(H) − {x} ⊆ N(x2) −N(x1) contradicting the assumption. If
H has a vertex adjacent to x2, then as above we have V(H) ⊆ N(x2). This implies that V(H) ⊂ (N(x1)−N(x2))
or V(H) ⊂ (N(x1) ∩N(x2)).

Now suppose |V(H)| = 2 and let V(H) = {x, y}. We have xx1 ∈ E(G). If yx1 ∈ E(G), then by assumption
we must have V(H) ⊂ (N(x1) − N(x2)) or V(H) ⊂ (N(x1) ∩ N(x2)). Let yx1 < E(G). Since dG(v1, y) = 2, we
must have yx2 ∈ E(G). It follows from assumption that xx2 < E(G). Then V(G) − {x1, y} is a 1(G)-set which
contradicts the choice of S.

If H1 and H2 are components of G − {x1, x2} not containing u1, v1, such that V(H1) ⊂ (N(x1) − N(x2))
and V(H2) ⊂ (N(x2) −N(x1)), then dG(V(H1),V(H2)) = 3 which contradicts our assumption. Thus for every
component K of G− {x1, x2} not containing u1, v1, we have V(K) ⊂ (N(x1)−N(x2)) or V(H) ⊂ (N(x1)∩N(x2)).
Let Kn1 , . . . ,Knr be the components of G − {x1, x2} not containing u1, v1 such that V(Kn j ) ⊂ (N(x1) − N(x2))
for 1 ≤ j ≤ r and let Km1 , . . . ,Kms be the components of G − {x1, x2} not containing u1, v1 such that V(Km j ) ⊂
(N(x1) ∩N(x2)) for 1 ≤ j ≤ s. It follows that G ∈ F3.

Now let G − {x1, x2} has exactly one component H of order at least 2 with z ∈ V(H) such that z ∈ N(x1) ∩
N(x2) and V(H)−{z} ⊆ N(x1)−N(x2) or V(H)−{z} ⊆ N(x2)−N(x1). We may assume, without loss of generality,
that H = Hu1 and V(Hu1 )− {u1} ⊆ N(x1)−N(x2). An argument similar to that described above shows that for
any component H , Hu1 , either V(H) ⊂ N(x1) ∩ N(x2) or V(H) ⊂ N(x1) − N(x2)). Let Hu1 = Km, Kn1 , . . . ,Knr

be the components of G − {x1, x2} not containing u1, v1 such that V(Kn j ) ⊂ (N(x1) − N(x2)) for 1 ≤ j ≤ r and
let Km1 , . . . ,Kms be the components of G− {x1, x2} not containing u1, v1 such that V(Km j ) ⊂ (N(x1)∩N(x2)) for
1 ≤ j ≤ s. It follows that G ∈ F2.

Case 2. |{u1, v1} ∩ {u2, v2}| = 1.
Let u1 = u2 and v1 , v2.

Subcase 2.1. x1x2 < E(G).
By the choice of S, we have v1x2 < E(G) and v2x1 < E(G). Since diam(G) = 2, d(v1, v2) ≤ 2. If d(v1, v2) = 2
and w ∈ N(v1)∩N(v2), then w < {x1, x2} and the set V(G)− {x1, x2,w} is a geodetic set of G which contradicts
1(G) = n − 2. Hence v1v2 ∈ E(G). Since x1x2 < E(G), we deduce that the cycle (u1x1v1v2x2) has no chord. We
claim that n = 5. Suppose n ≥ 6. Since G is connected, we may choose a vertex w ∈ V(G) − {u1, x1, v1, v2, x2}

which is adjacent to a vertex in {u1, x1, v1, v2, x2}. Suppose, without loss of generality, that wu1 ∈ E(G). If
v1w ∈ E(G) or v2w ∈ E(G), then V(G) − {x1, x2,w} is a geodetic set of G which is a contradiction. Therefore
v1w < E(G) and v2w < E(G). Since d(v1,w) ≤ 2, w and v1 have a common neighbor, say y. If y , x1, then
V(G) − {x1, x2, y} is a geodetic set of G which contradicts 1(G) = n − 2. Hence N(w) ∩N(v1) = {x1}. Similarly,
we have N(w) ∩ N(v2) = {x2}. Then V(G) − {v1,u1,w} is a geodetic set of G which contradicts 1(G) = n − 2.
Thus n = 5 and so G = C5.

Subcase 2.2. x1x2 ∈ E(G).
By the choice of S, we must have v1x2 < E(G) and v2x1 < E(G). Also, v1 and v2 are adjacent, for otherwise they
have a common neighbor, say w, and V(G) − {x1, x2,w} is a geodetic set of G, contradicting the assumption
1(G) = n − 2. Let S′ = V(G) − {v1, x2}. Clearly, S′ is a 1(G)-set. Setting u′1 = u′2 = x1 and v′1 = v′2 = v2, we
obtain |{u′1, v

′

1} ∩ {u
′

2, v
′

2}| = 2 that contradicts the choice of S. Thus this case is impossible.

Case 3. |{u1, v1} ∩ {u2, v2}| = 0.
By the choice of S, u1x2, v1x2,u2x1, v2x1 < E(G). Since diam(G) = 2, d(u1,u2) ≤ 2. If d(u1,u2) = 2 and w is
a common neighbor of u1,u2, then V(G) − {x1, x2,w} is a geodetic set of G which is a contradiction. Hence
u1u2 ∈ E(G). Similarly, we must have v1v2 ∈ E(G). Then clearly V(G) − {x1,u2, v2} is a geodetic set of G, a
contradiction. Thus this case is impossible. This completes the proof.
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Theorem 2.3. Let G be a connected graph of order n with diam(G) = 3. Then 1(G) = n − 2 if and only if
G ∈ F4.

Proof. If G ∈ F4, then clearly 1(G) = n − 2, because every vertex of V(G) − {x, y} is a simplicial vertex of G.
Let 1(G) = n − 2 and let uxyv be a diametral path in G. Obviously V(G) − {x, y} is a 1(G)-set and

N(u) ∩N(y) = {x} and N(v) ∩N(x) = {y}. We claim that all components of G − {x, y} are complete graphs. It
follows from Proposition 1.4 that the components of G − {x, y} not containing u and v are complete graphs.
Now let Hu and Hv be the component of G − {x, y} containing u and v, respectively.

If 1(Hu) ≤ |V(Hu)| − 2 (the case 1(Hv) ≤ |V(Hv)| − 2 is similar), then by Observation 1.3, we can choose a
geodetic set S of Hu containing u and size |V(Hu)| −1 such that the vertex not in S, say a, belongs to a w1−w2
geodesic path where w1,w2 ∈ S and dG(w1,w2) = 2. Then obviously V(G) − {a, x, y} is a geodetic set of G of
size at most n− 3 which is a contradiction. Hence 1(Hu) ≥ |V(Hu)| − 1 and 1(Hv) ≥ |V(Hv)| − 1 implying that
Hu and Hv are complete graphs or join of K1 and at least two pairwise disjoint complete graphs.

Suppose Hu is not a complete graph. Then Hu is the join of K1 and at least two pairwise disjoint complete
graphs. Then clearly u is the central vertex of Hu, otherwise the central vertex of Hu, say w, lies on some
u − w1 geodesic path implying that V(G) − {x, y,w} is geodetic set of G which is a contradiction. Let z1 and
z2 belong to different components of Hu − {u}. Then dG(z1, z2) = 2 and u ∈ I[z1, z2]. On the other hand, since
dG(u, v) = 3, z1v < E(G). If N(v) ∩ N(z1) , ∅, then z1, x, y ∈ I[u, v] and so V(G) − {x, y, z1} is a geodetic set of
G, a contradiction. Hence N(v) ∩ N(z1) = ∅. It follows that dG(z1, v) = 3. Similarly, dG(z2, v) = 3. If z1x′y′v
is a diametral path in G, then obviously u, z2 < {x′, y′}. This implies that V(G) − {u, x′, y′} is a geodetic set
of G, a contradiction. Thus Hu is a complete graph. Now we claim that each vertex of Hu is adjacent to x.
Assume to the contrary that some vertex of Hu, say w, is not adjacent to x. Since dG(u, v) = 3, wv < E(G). If
N(v)∩N(w) , ∅, then w, x, y ∈ I[u, v] and so V(G)− {x, y,w} is a geodetic set of G, a contradiction. Therefore
N[v] ∩ N[w] = ∅ and hence dG(w, v) = 3. Let wx′y′v be a diametral path in G. Since wx < E(G), we have
x , x′. Then x, y ∈ I[u, v] and x′ ∈ I[w, v] that yields V(G) − {x, y, x′} is a geodetic set of G, a contradiction.
Thus each vertex of Hu is adjacent to x. Similarly, Hv is a complete graph and every vertex of Hv is adjacent
to y.

Now let H be a component of G− {x, y} different from Hu and Hv. Since G is connected, we may assume,
without loss of generality, that H has a vertex w1 which is adjacent to x. If H has a vertex w2 that is not
adjacent to x, then V(G)− {x, y,w1} is a geodetic set of G, a contradiction. Thus all vertices of H are adjacent
to x. Similarly, if a component of G − {x, y} different from Hu and Hv, has a vertex that is adjacent to y, then
all of its vertices must be adjacent to y.

Let Kn1 , . . . ,Knr be the components of G− {x, y}whose vertices are adjacent to x, Km1 , . . . ,Kms be the com-
ponents of G − {x, y}whose vertices are adjacent to y, and Kl1 , . . . ,Klt (possibly there is no such component)
be the components of G − {x, y} whose vertices are adjacent to x and y. Thus G ∈ F4 and the proof is
complete.
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