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Abstract. In this paper, we prove that if there exists a second order symmetric parallel tensor on an
almost Kenmotsu manifold (M2n+1, φ, ξ, η, 1) whose characteristic vector field ξ belongs to the (k, µ)′-nullity
distribution, then either M2n+1 is locally isometric to the Riemannian product of an (n + 1)-dimensional
manifold of constant sectional curvature −4 and a flat n-dimensional manifold, or the second order parallel
tensor is a constant multiple of the associated metric tensor of M2n+1. Furthermore, some properties of an
almost Kenmotsu manifold admitting a second order parallel tensor with ξ belonging to the (k, µ)-nullity
distribution are also obtained.

1. Introduction

In 1923, L. P. Eisenhart [12] proved that if a positive definite Riemannian manifold (M, 1) admits a
second order parallel symmetric covariant tensor other than a constant multiple of the metric tensor, then
it is reducible. In 1926, H. Levy [16] proved that a second order parallel symmetric non-degenerated tensor
in a space form is proportional to the metric tensor. Since then, many authors investigated the Eisenhart
problem of finding symmetric and skew symmetric parallel tensors on various spaces and obtained fruitful
results. For instance, by giving a global approach based on the Ricci identity, R. Sharma firstly investigated
Eisenhart problem on complex space forms in [21]. In addition to space forms, R. Sharma considered the
Eisenhart problem on contact geometry in [22] and [24], for example for K-contact manifolds in [23]. Note
that the Eisenhart problem have also been studied in [17] on P-Sasakian manifolds with a coefficient k, in
[8] on P-Sasakian manifolds, in [7] on α-Sasakian manifold and in [6] on N(k)-quasi Einstein manifolds,
respectively.

However, the results of Eisenhart problem on Kenmotsu manifolds are lack, until recently De-Mondal
[9] and Calin-Crasmareanu [5] have obtained some theorems of Eisenhart problem on 3-dimensional nor-
mal almost contact metric manifolds and on f -Kenmotsu manifolds respectively. Thus, motivated by the
related results mentioned above, the object of this paper is to start the study of the Eisenhart problem
on a type of almost Kenmotsu manifolds. In fact, let M2n+1 be an almost Kenmotsu manifold admitting
a second order symmetric parallel covariant tensor with ξ belonging to the (k, µ)′-nullity distribution, by

2010 Mathematics Subject Classification. Primary 53C15; Secondary 53C25, 53D10, 53D15
Keywords. Almost Kenmotsu manifold, Second order parallel tensor, Nullity distribution.
Received: 29 April 2013; Accepted: 25 July 2013
Communicated by Ljubica Velimirović
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using the classification theorems of almost Kenmotsu manifolds proved by Dileo-Pastore in [11] we prove
that M2n+1 is locally isometric toHn+1(−4) ×Rn, provided that the second order symmetric parallel tensor
is not a constant multiple of the associated metric tensor of M2n+1. Moreover, we also obtain some results
concerning the existence of second order parallel covariant tensors on almost Kenmotsu manifolds such
that ξ belongs to the (k, µ)-nullity distribution.

This paper is organized in the following way. In Section 2, we provide some basic formulas and
properties of almost Kenmotsu manifolds. Section 3 is devoted to investigating the Eisenhart problem
on an almost Kenmotsu manifold M2n+1 whose characteristic vector field ξ belongs to the (k, µ)-nullity
distribution. Finally, in Section 4, we study the existence of symmetric and skew symmetric parallel
covariant tensors on an almost Kenmotsu manifold with ξ belonging to the (k, µ)′-nullity distributions
respectively. Some classification theorems are obtained in this paper.

2. Almost Kenmotsu Manifolds

Firstly, we shall recall some basic notions and properties of almost Kenmotsu manifolds (see [10, 11]).
An almost contact structure (see [3]) on a (2n + 1)-dimensional smooth manifold M2n+1 is a triplet (φ, ξ, η),
where φ is a (1, 1)-tensor, ξ a global vector field and η a 1-form, such that

φ2 = −Id + η ⊗ ξ, η(ξ) = 1, (1)

which implies that φ(ξ) = 0, η ◦ φ = 0 and rank(φ) = 2n. A Riemannian metric 1 on M2n+1 is said to be
compatible with the almost contact structure (φ, ξ, η) if

1(φX, φY) = 1(X,Y) − η(X)η(Y) (2)

for any vector fields X,Y. An almost contact structure endowed with a compatible Riemannian metric is
said to be an almost contact metric structure. The fundamental 2-form Φ is defined by Φ(X,Y) = 1(X, φY) for
any vector fields X and Y on M2n+1. An almost Kenmotsu manifold is defined as an almost contact metric
manifold together with dη = 0 and dΦ = 2η ∧ Φ. The normality of an almost contact structure is expressed
by the vanishing of the tensor Nφ = [φ,φ] + 2dη⊗ ξ, where [φ,φ] is the Nijenhuis tensor of φ. According to
Janssens-Vanhecke [14], a normal almost Kenmotsu manifold is said to be a Kenmotsu manifold.

Now let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold. We denote by l = R(·, ξ)ξ and h = 1
2Lξφ

on M2n+1, where R is the Riemannian curvature tensor of 1 and L is the Lie differentiation. Thus, the two
(1, 1)-type tensor fields l and h are symmetric and satisfy

hξ = 0, lξ = 0, trh = 0, tr(hφ) = 0, hφ + φh = 0. (3)

We also have the following formulas presented in [10, 11]

∇Xξ = −φ2X − φhX (⇒ ∇ξξ = 0), (4)

φlφ − l = 2(h2
− φ2), (5)

tr(l) = S(ξ, ξ) = 1(Qξ, ξ) = −2n − trh2, (6)

R(X,Y)ξ = η(X)(Y − φhY) − η(Y)(X − φhX) + (∇Yφh)X − (∇Xφh)Y, (7)

∇ξh = −φ − 2h − φh2
− φl (8)

for any X,Y ∈ Γ(TM), where S, Q, ∇ and Γ(TM) denote the Ricci curvature tensor, the Ricci operator, the
Levi-Civita connection of 1 and the Lie algebra of all vector fields on M2n+1, respectively.

Finally, we recall the definitions of the nullity distributions. Blair-Koufogiorgos-Papantoniou [4] intro-
duced and studied a generalized notion of the k-nullity distribution (see [13, 25]), namely, the (k, µ)-nullity
distribution on contact metric manifolds (M2n+1, φ, ξ, η, 1), which is defined by

Np(k, µ) =
{
Z ∈ TpM : R(X,Y)Z = k[1(Y,Z)X − 1(X,Z)Y] + µ[1(Y,Z)hX − 1(X,Z)hY]

}
, (9)
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where L denotes the Lie differentiation and k, µ ∈ R.
Recently, Dileo-Pastore [11] introduced another generalized notion of the k-nullity distribution named

the (k, µ)′-nullity distribution on almost Kenmotsu manifolds (M2n+1, φ, ξ, η, 1), which is defined by

Np(k, µ) =
{
Z ∈ TpM : R(X,Y)Z = k[1(Y,Z)X − 1(X,Z)Y] + µ[1(Y,Z)h′X − 1(X,Z)h′Y]

}
, (10)

where h′ = h ◦ φ, L denotes the Lie differentiation and k, µ ∈ R.
Here, it is worth to point out that almost Kenmotsu pseudo-metric manifolds satisfying the (k, µ) or

(k, µ)′-nullity distributions were studied by the present authors in [26]. For some results on the k-nullity
distributions, the generalized (k, µ)′ and (k, µ)-nullity distributions on almost Kenmotsu manifolds, we refer
the reader to Pastore-Saltarelli [19, 20]. Some classification theorems of almost Kenmotsu manifolds with ξ
belonging to the nullity distributions are also obtained by the present authors in [27].

3. ξ Belongs to the (k, µ)-Nullity Distribution

A covariant tensor α of second order is said to be a parallel tensor if ∇α = 0, where ∇ denotes the
operator of the covariant differentiation with respect to the metric tensor 1. Let α be a (0, 2)-type symmetric
tensor field on an almost Kenmotsu manifold (M2n+1, φ, ξ, η, 1) such that ∇α = 0, then it follows that

α(R(W,X)Y,Z) + α(Y,R(W,X)Z) = 0 (11)

for arbitrary vector fields X,Y,Z,W ∈ Γ(TM).
Let M2n+1 be an almost Kenmotsu manifold for which ξ belongs to the (k, µ)-nullity distribution, that is

R(X,Y)ξ = k[η(Y)X − η(X)Y] + µ[η(Y)hX − η(X)hY]. (12)

Thus, it follows from (12) that

R(ξ,X)Y = k[1(X,Y)ξ − η(Y)X] + µ[1(hX,Y)ξ − η(Y)hX]. (13)

Theorem 3.1. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold with ξ belonging to the (k, µ)-nullity
distribution. If M2n+1 admits a second order symmetric parallel tensor, then the second order parallel tensor is a
constant multiple of the associated metric tensor of M2n+1.

Proof. Substituting Y = Z = W = ξ in (11) gives that α(R(ξ,X)ξ, ξ) + α(ξ,R(ξ,X)ξ) = 0, then it follows
from the symmetry of α that

α(R(ξ,X)ξ, ξ) = 0 (14)

for the arbitrary vector field X ∈ Γ(TM). Replacing Y by ξ in (13) gives that R(ξ,X)ξ = k[η(X)ξ − X] − µhX,
by substituting this equation into (14) we obtain

k[1(X, ξ)α(ξ, ξ) − α(X, ξ)] − µα(hX, ξ) = 0 (15)

for any X ∈ Γ(TM). It follows from Dileo-Pastore [11] that an almost Kenmotsu manifold with ξ belonging
to the (k, µ)-nullity distribution satisfies h = 0 and k = −1. Then from (15) it is easy to see

α(X, ξ) = 1(X, ξ)α(ξ, ξ) (16)

for any X ∈ Γ(TM). Noticing that α is parallel, then, by differentiating (16) along the arbitrary vector field
Y on M2n+1 we obtain

α(∇YX, ξ) + α(X,∇Yξ) = 1(∇YX, ξ)α(ξ, ξ) + 1(X,∇Yξ)α(ξ, ξ) + 21(X, ξ)α(∇Yξ, ξ) (17)

for any X,Y ∈ Γ(TM). On the other hand, replacing X by ∇YX in (16) yields that

α(∇YX, ξ) = 1(∇YX, ξ)α(ξ, ξ) (18)
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for any X,Y ∈ Γ(TM). Thus, it follows from (17) and (18) that

α(X,∇Yξ) = 1(X,∇Yξ)α(ξ, ξ) + 21(X, ξ)α(∇Yξ, ξ). (19)

Taking into account (4) and the fact that h = 0, then we get ∇Yξ = Y− η(Y)ξ for any Y ∈ Γ(TM), substituting
this equation into (19) gives that

α(X,Y) = 1(X,Y)α(ξ, ξ) + η(Y)α(X, ξ) − η(X)η(Y)α(ξ, ξ) + 2η(X)α(Y, ξ) − 2η(X)η(Y)α(ξ, ξ). (20)

Finally, using (16) in (20) yields the following relation

α(X,Y) = α(ξ, ξ)1(X,Y) (21)

for any X,Y ∈ Γ(TM). This completes the proof. �

Corollary 3.2. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold for which ξ belongs to the (k, µ)-nullity
distribution. If M2n+1 is Ricci symmetric, that is, ∇S = 0, then the Ricci curvature tensor is given by

S(X,Y) = −2n1(X,Y) (22)

for any X,Y ∈ Γ(TM).
Proof. Noticing that h = 0 in this context, then it follows from (7) that

R(X, ξ)ξ = η(X)ξ − X (23)

for any vector field X ∈ Γ(TM). Hence, taking the inner product with X on both sides of (23) gives
that R(X, ξ,X, ξ) = (η(X))2

− 1(X,X) for any X ∈ Γ(TM), contracting X in the above equation gives that
S(ξ, ξ) = −2n. By applying Theorem 3.1 we complete the proof. �

We remark that the above corollary was proved in [2] on Kenmotsu manifolds.
Theorem 3.3. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold for which ξ belongs to the (k, µ)-nullity

distribution. Then there exists no non-zero second order skew symmetric parallel tensor on M2n+1.
Proof. Let α be a non-zero second order skew symmetric parallel tensor (that is, α is a parallel 2-form)

on M2n+1, then (11) holds. Substituting Y = W = ξ into (11) and using (13) we obtain

α(R(ξ,X)ξ,Z) + α(ξ,R(ξ,X)Z)
= α(kη(X)ξ − kX − µhX,Z) + α(ξ, k[1(X,Z)ξ − η(Z)X]) + α(ξ, µ[1(hX,Z)ξ − η(Z)hX])
= −η(X)α(ξ,Z) + α(X,Z) + η(Z)α(ξ,X) − 1(X,Z)α(ξ, ξ)
= 0

(24)

for any X,Z ∈ Γ(TM). The second equality in (24) follows because we used the conclusion of Dileo-Pastore
[11] that an almost Kenmotsu manifold with ξ belonging to the (k, µ)-nullity distribution satisfies h = 0 and
k = −1. Moreover, in view of the skew symmetry of α we see that α(X,X) = 0 for any X ∈ Γ(TM), thus it
follows from (24) that

α(X,Z) = η(X)α(ξ,Z) − η(Z)α(ξ,X) (25)

for any X,Z ∈ Γ(TM). We denote by A the dual (1, 1)-type tensor which is metrically equivalent to α, that is,
α(X,Y) = 1(AX,Y). Thus, (25) is equivalent to the following relation

AX = η(X)Aξ − 1(Aξ,X)ξ. (26)

Taking the covariant differentiation along the arbitrary vector field Y on (26) gives that

∇YAX = Y(η(X))Aξ + η(X)∇YAξ − Y(1(Aξ,X))ξ − 1(Aξ,X)∇Yξ (27)
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for any X,Y ∈ Γ(TM). On the other hand, replacing X by ∇YX in (26) implies that

A∇YX = η(∇YX)Aξ − 1(Aξ,∇YX)ξ (28)

for any X,Y ∈ Γ(TM). Taking into account the assumption that the 2-form α is parallel and hence A is
parallel, then it follows from (27) and (28) that

1(∇Yξ,X)Aξ + η(X)∇YAξ − 1(∇YAξ,X)ξ − 1(Aξ,X)∇Yξ

= 1(X,Y)Aξ − 21(X, ξ)1(Y, ξ)Aξ + 1(X, ξ)AY − 1(AY,X)ξ + 21(Y, ξ)1(Aξ,X)ξ − 1(Aξ,X)Y
= 0

(29)

for any X,Y ∈ Γ(TM). Substituting X = ξ into (29) gives

AY + 1(AY, ξ)ξ = 1(Y, ξ)Aξ (30)

for any Y ∈ Γ(TM). Taking the inner product with ξ on both sides of (30) we obtain

1(AY, ξ) = α(Y, ξ) = 0 (31)

for any Y ∈ Γ(TM). Since that α is parallel, then taking the covariant differentiation on (31) along the
arbitrary vector field X and using∇Yξ = Y−η(Y)ξ in the resulting equation we obtain the following relation

α(Y,X) = 0 (32)

for any X,Y ∈ Γ(TM). This completes the proof. �

Remark 3.4. We observe from relation (7), Theorem 4.1 of [11] and Section 3 of [20] that on an almost
Kenmotsu manifold (M2n+1, φ, ξ, η, 1) the following three conditions are equivalent:

(1) the tensor field h vanishes;
(2) the characteristic vector field ξ belongs to the (k, µ)-nullity distribution;
(3) the Reeb foliation is conformal.

Therefore, under one of the above conditions the conclusions of Theorem 3.1 and 3.3 still hold.

4. ξ Belongs to the (k, µ)′-Nullity Distribution

Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold for which ξ belongs to the (k, µ)′-nullity distribu-
tion, that is

R(X,Y)ξ = k[η(Y)X − η(X)Y] + µ[η(Y)h′X − η(X)h′Y] (33)

for any X,Y ∈ Γ(TM). Clearly, it follows from (33) that

R(ξ,X)Y = k[1(X,Y)ξ − η(Y)X] + µ[1(h′X,Y)ξ − η(Y)h′X] (34)

for any X,Y ∈ Γ(TM).

It is easy to see that h′X = λX implies h′φX = −λφX for any X ∈ D and λ , 0, where D is the contact
distribution defined by D = ker(η) = Im(φ). We denote by [λ]′ and [−λ]′ the corresponding eigenspaces
related to the eigenvalue λ , 0 and −λ of h′, respectively. Before presenting our main theorems, we need
the following result due to G. Dileo and A. M. Pastore [11].

Lemma 4.1. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold such that ξ belongs to the (k, µ)′-nullity
distribution and h′ , 0. Then k < −1, µ = −2 and Spec(h′) = {0, λ,−λ}, with 0 as simple eigenvalue and
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λ =
√
−k − 1. The distributions [ξ] ⊕ [λ]′ and [−λ]′ are integrable with totally geodesic leaves and integrable with

totally umbilical leaves, respectively. Furthermore, the sectional curvatures are given as follows:
(a) K(X, ξ) = k − 2λ if X ∈ [λ]′ and K(X, ξ) = k + 2λ if X ∈ [−λ]′;
(b) K(X,Y) = k − 2λ if X,Y ∈ [λ]′; K(X,Y) = k + 2λ if X,Y ∈ [−λ]′ and K(X,Y) = −(k + 2) if X ∈ [λ]′,Y ∈

[−λ]′;
(c) M2n+1 has constant negative scalar curvature r = 2n(k − 2n).

By applying the above result, we may present our main results as follows.
Theorem 4.2. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold such that ξ belongs to the (k, µ)′-nullity

distribution and h′ , 0. If M2n+1 admits a second order symmetric parallel tensor, then either M2n+1 is locally
isometric to the Riemannian product of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat
n-dimensional manifold, or the second order parallel tensor is a constant multiple of the associated metric tensor 1 of
M2n+1.

Proof. Replacing Y by ξ in (34) gives R(ξ,X)ξ = k[η(X)ξ −X] − µh′X for any X ∈ Γ(TM), by substituting
this equation into (14) we obtain

k[1(X, ξ)α(ξ, ξ) − α(X, ξ)] − µα(h′X, ξ) = 0

for any X ∈ Γ(TM). Noticing that Dileo-Pastore [11] proved that an almost Kenmotsu manifold with ξ
belonging to the (k, µ)′-nullity distribution and h′ , 0 satisfies µ = −2 and h′2X = (k + 1)φ2X for any
X ∈ Γ(TM), hence we have k < −1 and obtain

k[1(X, ξ)α(ξ, ξ) − α(X, ξ)] + 2α(h′X, ξ) = 0 (35)

for any X ∈ Γ(TM). Replacing X by h′X in (35) gives

kα(h′X, ξ) + 2(k + 1)α(X, ξ) − 2(k + 1)η(X)α(ξ, ξ) = 0 (36)

for any X ∈ Γ(TM). Substituting (36) into (35) implies that

(k + 2)2[α(X, ξ) − 1(X, ξ)α(ξ, ξ)] = 0 (37)

for any X ∈ Γ(TM). Now we separate our discussion into two cases as following:
case 1: k , −2. It follows from (37) that

α(X, ξ) = 1(X, ξ)α(ξ, ξ) (38)

for any X ∈ Γ(TM). Noticing that α is parallel, then by differentiating (38) along the arbitrary vector field Y
on M2n+1 we obtain

α(∇YX, ξ) + α(X,∇Yξ) = 1(∇YX, ξ)α(ξ, ξ) + 1(X,∇Yξ)α(ξ, ξ) + 21(X, ξ)α(∇Yξ, ξ) (39)

for any X,Y ∈ Γ(TM). On the other hand, replacing X by ∇YX in (38) yields that

α(∇YX, ξ) = 1(∇YX, ξ)α(ξ, ξ) (40)

for any X,Y ∈ Γ(TM). Thus, it follows from (39) and (40) that

α(X,∇Yξ) = 1(X,∇Yξ)α(ξ, ξ) + 21(X, ξ)α(∇Yξ, ξ). (41)

From (4) we see that ∇Yξ = Y− η(Y)ξ−φhY = Y− η(Y)ξ+ h′Y for any Y ∈ Γ(TM), substituting this equation
into (41) gives that

α(X,Y) =[1(X,Y) − η(X)η(Y) + 1(X, h′Y)]α(ξ, ξ) + 2η(X)α(Y, ξ)
+ 2η(X)α(h′Y, ξ) − α(X, h′Y) + η(Y)α(X, ξ) − 2η(X)η(Y)α(ξ, ξ).

(42)
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Using (38) and the fact that h′ξ = 0 in (42) we have the following equation

α(X,Y) + α(X, h′Y) = 1(X,Y)α(ξ, ξ) + 1(X, h′Y)α(ξ, ξ) (43)

for any X,Y ∈ Γ(TM). Substituting Y by h′Y in (43) and using (38) we have

α(X, h′Y) − (k + 1)α(X,Y) = 1(X, h′Y)α(ξ, ξ) − (k + 1)1(X,Y)α(ξ, ξ) (44)

for any X,Y ∈ Γ(TM). Finally, subtracting (44) from (43) and noticing the assumption k , −2 we obtain

α(X,Y) = α(ξ, ξ)1(X,Y) (45)

for any X,Y ∈ Γ(TM), this means that α is a constant multiple of the associated metric tensor 1 of M2n+1.
case 2: k = −2. Noticing that the relation h′2X = (k + 1)φ2X for any X ∈ Γ(TM) holds in this context,

then we see that the nonzero eigenvalue of h′ is either 1 or −1 with the same multiplication n. Without
losing the generality we now choose λ = 1, in view of µ = −2 and then it follows from Lemma 4.1 that
K(X, ξ) = −4 for any X ∈ [λ]′ and K(X, ξ) = 0 for any X ∈ [−λ]′. Also from Lemma 4.1 we see that K(X,Y) =
−4 for any X,Y ∈ [λ]′; K(X,Y) = 0 for any X,Y ∈ [−λ]′ and K(X,Y) = 0 for any X ∈ [λ]′,Y ∈ [−λ]′. As is
shown in [11] that the distribution [ξ] ⊕ [λ]′ is integrable with totally geodesic leaves and the distribution
[−λ]′ is integrable with totally umbilical leaves given by H = −(1 − λ)ξ, where H is the mean curvature
vector field of the leaves of [−λ]′ immersed in M2n+1. Since that λ = 1, then we know that two orthogonal
distributions [ξ] ⊕ [λ]′ and [−λ] are both integrable with totally geodesic leaves immersed in M2n+1. Then
we conclude that M2n+1 is locally isometric toHn+1(−4) ×Rn. This completes the proof. �

Corollary 4.3. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold for which ξ belongs to the (k, µ)′-nullity
distribution and h′ , 0. If M2n+1 is Ricci symmetric, that is,∇S = 0, then M2n+1 is locally isometric to the Riemannian
product of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat n-dimensional manifold.

Proof. We may apply Theorem 4.2 and Corollary 3.2 and obtain that either M2n+1 is locally isometric
to Hn+1(−4) × Rn, or the Ricci curvature tensor is given by S(X,Y) = −2n1(X,Y) for any vector fields X,Y.
However, the later case can not occur. In fact, the later case implies that S(ξ, ξ) = −2n, comparing this
relation with (6) we have trh2 = 0. Noticing that h2 = (k + 1)φ2 holds in this case, then we obtain h = 0, this
is a contradiction. Thus we complete the proof. �

Theorem 4.4. Let (M2n+1, φ, ξ, η, 1) be an almost Kenmotsu manifold for which ξ belongs to the (k, µ)′-nullity
distribution and h′ , 0. If M2n+1 admits a second order skew symmetric parallel tensor, i.e., a 2-from, then M2n+1 is
locally isometric to the Riemannian product of an (n + 1)-dimensional manifold of constant sectional curvature −4
and a flat n-dimensional manifold.

Proof. Let α be a non-zero second order skew symmetric parallel tensor (that is, α is a parallel 2-form) on
M2n+1, then relation (11) follows in this context. From [11] we know that under the assumption of Theorem
4.4 it is easy to get µ = −2. Then substituting Y = W = ξ into (11) and using (34) we obtain

α(R(ξ,X)ξ,Z) + α(ξ,R(ξ,X)Z)
= α(kη(X)ξ − kX − µh′X,Z) + α(ξ, k[1(X,Z)ξ − η(Z)X]) + α(ξ, µ[1(h′X,Z)ξ − η(Z)h′X])
= −kα(X,Z) + 2α(h′X,Z) + kη(X)α(ξ,Z) − kη(Z)α(ξ,X)
+ [k1(X,Z) + µ1(h′X,Z)]α(ξ, ξ) + 2η(Z)α(ξ, h′X)
= 0

(46)

for any X,Z ∈ Γ(TM). Also, in view of the skew symmetry of α we see that α(X,X) = 0 for any X ∈ Γ(TM),
thus it follows from (46) that

−kα(X,Z) + 2α(h′X,Z) + kη(X)α(ξ,Z) − kη(Z)α(ξ,X) + 2η(Z)α(ξ, h′X) = 0. (47)

for any X,Z ∈ Γ(TM). Replacing X by h′X in (47) and using h′2X = (k + 1)φ2X for any X ∈ Γ(TM) we obtain
the following relation

−kα(h′X,Z) − 2(k + 1)α(X,Z) + 2(k + 1)η(X)α(ξ,Z) − kη(Z)α(ξ, h′X) − 2(k + 1)η(Z)α(ξ,X) = 0. (48)
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Consequently, it follows from relations (47) and (48) that

(k + 2)2[α(X,Z) + η(Z)α(ξ,X) − η(X)α(ξ,Z)] = 0 (49)

for any X,Z ∈ Γ(TM). Similarly, now we separate our proof into two cases as following:
case 1: k , −2. It follows from (49) that

α(X,Z) = η(X)α(ξ,Z) − η(Z)α(ξ,X) (50)

for X,Z ∈ Γ(TM). We denote by A the dual (1, 1)-type tensor which is metrically equivalent to α, that is,
α(X,Y) = 1(AX,Y). Thus, (50) is equivalent to the following equation

AX = η(X)Aξ − 1(Aξ,X)ξ (51)

for any X ∈ Γ(TM). If Aξ = 0, then from (51) we know that AX = 0 for any X ∈ Γ(TM) and hence α = 0.
Now we assume that Aξ , 0, then taking the inner product with Aξ on both sides of (51) and using the
skew symmetry α(X,X) = 0 for any X ∈ Γ(TM), we obtain 1(X,A2ξ) = −η(X)1(Aξ,Aξ) for any X ∈ Γ(TM),
which means that

A2ξ = −‖Aξ‖2ξ, (52)

where ‖Aξ‖2 = 1(Aξ,Aξ). Differentiating (52) covariantly along X ∈ Γ(TM) and using (4) in the resulting
equation, it follows that

∇XA2ξ = A2
∇Xξ =A2X − η(X)A2ξ + A2h′X

=21(X + h′X,A2ξ)ξ − ‖Aξ‖2(X + h′X) + 3η(X)‖Aξ‖2ξ
(53)

for any X ∈ Γ(TM). Using (52) in (53) we have that

A2X + A2h′X + ‖Aξ‖2(X + h′X) = 0 (54)

for any X ∈ Γ(TM). Replacing X by h′X in (54) and using h′2X = (k + 1)φ2X gives that

A2h′X − (k + 1)A2X + (k + 1)η(X)A2ξ + ‖Aξ‖2[h′X − (k + 1)X + (k + 1)η(X)ξ] = 0 (55)

for any X ∈ Γ(TM). Substituting (52) into (55) we obtain

A2h′X − (k + 1)A2X + ‖Aξ‖2[h′X − (k + 1)X] = 0,

then subtracting the above equation from (54) implies that

(k + 2)[A2X + ‖Aξ‖2X] = 0 (56)

for any X ∈ Γ(TM). Noticing the hypothesis k , −2, then it follows from (56) that

A2X + ‖Aξ‖2X = 0 (57)

for any X ∈ Γ(TM). The following proof is similar to that of Theorem 3.2 of [18]. Now if ‖Aξ‖ , 0, then
J = 1

‖Aξ‖A is an almost complex structure on U, where U is a non-empty open subset of M2n+1 such that
k , −2. In fact, (J, 1) is a Kähler structure on U. The fundamental second order skew-symmetric parallel
tensor is 1(JX,Y) = κ1(AX,Y) = κα(X,Y) for any X,Y ∈ Γ(TM), where κ = 1

‖Aξ‖ is a nonzero constant.
However, relation (50) means that α(X,Y) = η(X)α(ξ,Y) − η(Y)α(ξ,X) and thus α is degenerate, which is a
contradiction. Therefore we have ‖Aξ‖ = 0 and hence it follows from (50)-(52) that α = 0 on U. Since that α
is parallel on U, then α = 0 on M2n+1.

case 2: k = −2. The proof for this case follows from case 2 of Theorem 4.2. Thus, we complete the
proof. �
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