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Abstract. A cooperative model in a polluted environment with stochastic perturbations and impulsive
toxicant input is proposed and studied. For each population, sufficient conditions for extinction, strong
persistence in the mean and stochastic permanence are established. The threshold between strong persis-
tence in the mean and extinction is obtained. Some simulation figures are worked out to illustrate the main
results.

1. Introduction

In the world today, with the rapid development of industry and agriculture, lots of toxicants and
contaminants enter into ecosystems. Organisms are often exposed to polluted environments and are
affected by toxicants. This motivates scholars to investigate the effects of toxins on the species and to assess
the risks taken by the population. Therefore, it is important to find a theoretical threshold value which
determines extinction and persistence of a species or community.

Since Hallam and his coworkers [6–8] proposed toxicant-population systems in 1980s, a lot of determin-
istic mathematical models of single or multiple populations in polluted environments have been proposed,
see e.g. [9]-[10]. It is important to point out that all the above papers have assumed that the exogenous
input of toxicant is continuous. However, in many cases, toxicants are emitted in regular pulses. One
example is the use of pesticides, another example is the pollution by heavy metals (see e.g. [4, 12]). Thus
several population models in a polluted environment with pulse toxicant input have been proposed and
studied, see e.g. [14]-[24]. Particularly, Liu, Chen and Zhang [14] proposed a single-species population
model with impulsive toxicant input and obtained the survival threshold. Then Liu et al. [15] and Liu
and Zhang [23] investigated a two-species Lotka-Volterra competition model with impulsive toxicant in-
put. The authors obtained the persistence-extinction threshold. At the same time, Yang, Jin and Xue [35]
studied a two-species Lotka-Volterra predator-prey system with impulsive toxicant input and obtained the
persistence-extinction threshold.
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However, it is an usual phenomena in nature that one species enhances the growth rate of the other. As
we know, one famous model for this type is the Lotka-Volterra cooperation system. Moreover, population
models are inevitably affected by the stochastic noises, and in many cases, the noises should not be neglected,
for example, when the population size is small or when the mean and variance of perturbations are large
(May [28]). Thus many stochastic population models have been proposed (see e.g. [1]-[22]). For example,
Liu and Wang [19] considered stochastic single-species population models in a polluted environment with
impulsive toxicant input; Liu [22] studied stochastic predator-prey system with impulsive toxicant input.
However, to the best of our knowledge, no results related to cooperation system (even in deterministic case)
in polluted environments with impulsive toxicant input have been reported.

Motivated by these, in Section 2, we propose a stochastic cooperation system in polluted environments
with impulsive toxicant input. Then in Section 3, we carry out the survival analysis for this model. Sufficient
conditions for extinction, strong persistence in the mean and stochastic permanence are established. The
threshold between strong persistence in the mean and extinction is obtained. In Section 4, we introduce
some figures to support the results. We close the paper with conclusions in Section 5.

2. Model formulation

To begin with, we formulate the following deterministic system in polluted environments with impulsive
toxicant input which is motivated by the systems in [14, 15, 23, 35]

ẋ1(t) = x1(t)[r10 − r11C0(t) − a11x1(t) + a12x2(t)]

ẋ2(t) = x2(t)[r20 − r21C0(t) + a21x1(t) − a22x2(t)]

Ċ0(t) = kCe(t) − (1 + m)C0(t),

Ċe(t) = −hCe(t).


, t , nτ, n ∈ Z+.

∆xi(t) = 0, ∆C0(t) = 0, ∆Ce(t) = b, t = nτ, n ∈ Z+, i = 1, 2.

(1)

where all the parameters are positive constants, ∆xi(t) = xi(t+) − xi(t), ∆C0(t) = C0(t+) − C0(t), ∆Ce(t) =
Ce(t+) − Ce(t), Z+ = {1, 2, ...}; xi(t) is the size of the ith population; ri0 stands for the growth rate of the
ith population without toxicant; ri1 denotes the ith population response to the pollutant present in the
organism; ai j represents the action of species j upon the growth rate of species i (particularly, aii stands for
the intraspecific competition coefficient of species i); C0(t) is the concentration of toxicant in the organism;
Ce(t) is the concentration of toxicant in the environment; kCe(t) stands for the organism’s net uptake of
toxicant from the environment; 1C0(t) and mC0(t) represent the egestion and depuration rates of the toxicant
in the organism, respectively; hCe(t) is the toxicant loss from the environment itself by volatilization and so
on; τ is the period of the impulsive effect about the exogenous input of toxicant and b is the toxicant input
amount at every time. In system (1), we have assumed that the capacity of the environment is so large that
the change of toxicant in the environment that comes from the uptake and egestion by the organisms can
be neglected ([8, 14, 15, 23, 35]), moreover, we have assumed that the individuals in the two species have
the identical organismal toxicant concentration at time t ([13, 15, 23]).

Let us now take a further step by considering the stochastic fluctuations. Suppose that the population
lives in an environment subjected to stochastic fluctuations which mainly affect the growth rate ri0 (see e.g.
[1]-[22]). Thus ri0 can be written as an average rate plus an error term. Generally, by the famous central
limit theorem, the error term follows a normal distribution; thus the error term can be approximated by a
white noise αiḂi(t), where α2

i denotes the intensity of the noise, and Ḃi(t) is a Gaussian white noise process
(i.e., {Bi(t), t ≥ 0} is a Brownian motion, i = 1, 2). Then

ri0 → ri0 + αiḂi(t).
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Consequently we obtain the following stochastic system:

dx1(t) = x1(t)[r10 − r11C0(t) − a11x1(t) + a12x2(t)]dt + α1x1(t)dB1(t)

dx2(t) = x2(t)[r20 − r21C0(t) + a21x1(t) − a22x2(t)]dt + α2x2(t)dB2(t)

dC0(t)
dt

= kCe(t) − (1 + m)C0(t),

dCe(t)
dt

= −hCe(t).


, t , nτ, n ∈ Z+.

∆xi(t) = 0, ∆C0(t) = 0, ∆Ce(t) = b, t = nτ, n ∈ Z+, i = 1, 2.

(2)

In order to establish our main result, we recall some classical concepts.

Definition 2.1. (i) x(t) is said to be extinctive if lim
t→+∞

x(t) = 0;

(ii) x(t) is said to be weakly persistent in the mean ([13]) if 〈x〉∗ > 0, where f ∗ = lim sup
t→+∞

f (t), 〈x〉 = t−1
∫ t

0 x(s)ds;

(iii) x(t) is said to be strongly persistent in the mean ([27]) if 〈x〉∗ > 0, where f∗ = lim inf
t→+∞

f (t);

(iv) Model (2) is said to be stochastically permanent if for any ε ∈ (0, 1), there exist positive constants β = β(ε) and
χ = χ(ε) such that

lim inf
t→+∞

P{x1(t) ≥ β} ≥ 1 − ε, lim inf
t→+∞

P{x2(t) ≥ β} ≥ 1 − ε; (3)

lim inf
t→+∞

P{x1(t) ≤ χ} ≥ 1 − ε, lim inf
t→+∞

P{x2(t) ≤ χ} ≥ 1 − ε. (4)

3. Persistence and extinction

Throughout this paper, we suppose that {(B1(t),B2(t)), t ≥ 0} is a two-dimensional Brownian motion
defined on a complete probability space (Ω,F ,P). Define:

R2
+ = {a|ai > 0, a ∈ R2, i = 1, 2}; A = a11a22 − a12a21; bi = ri0 − α

2
i /2, i = 1, 2;

B = r11b2 − r21b1; C1 = a22b1 + a12b2; C2 = a11b2 + a21b1;

D1 = a22r11 + a12r21; D2 = a11r21 + a21r11.

To begin with, let us consider the following subsystem of (2):

dC0(t)
dt

= kCe(t) − (1 + m)C0(t)

dCe(t)
dt

= −hCe(t)

 , t , nτ, n ∈ Z+.

∆C0(t) = 0, ∆Ce(t) = b, t = nτ, n ∈ Z+.
0 ≤ C0(0) ≤ 1, 0 ≤ Ce(0) ≤ 1.

(5)

Lemma 3.1. ([14]) System (5) has a unique positive τ-periodic solution (C̃0(t), C̃e(t))T and for every solution
(C0(t),Ce(t))T of (5), C0(t) → C̃0(t) and Ce(t) → C̃e(t) as t → ∞. Moreover, C0(t) > C̃0(t) and Ce(t) > C̃e(t)
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for all t ≥ 0 if C0(0) > C̃0(0) and Ce(0) > C̃e(0), where

C̃0(t) = C̃0(0)e−(1+m)(t−nτ) +
kb(e−(1+m)(t−nτ)

− e−h(t−nτ))
(h − 1 −m)(1 − e−hτ)

,

C̃e(t) =
be−h(t−nτ)

1 − e−hτ
,

C̃0(0) =
kb(e−(1+m)τ

− e−hτ)
(h − 1 −m)(1 − e−(1+m)τ)(1 − e−hτ)

,

C̃e(0) =
b

1 − e−hτ

for t ∈ (nτ, (n + 1)τ] and n ∈ Z+. In addition,

lim
t→+∞

t−1
∫ t

0
C̃0(s)ds =

kb
h(1 + m)τ

=: δ. (6)

Note that both C0(t) and Ce(t) in (5) stand for concentrations, so we must have 0 ≤ C0(t) < 1, 0 ≤ Ce(t) <
1 for all t ≥ 0 to be realistic. In fact,

Lemma 3.2. ([14]) For model (5), if k ≤ 1 + m, b ≤ 1 − e−hτ, then 0 ≤ C0(t) ≤ 1 and 0 ≤ Ce(t) ≤ 1 for all t ≥ 0.

Consequently, from now on we always suppose k ≤ 1 + m, b ≤ 1 − e−hτ.

Lemma 3.3. ([17]) Let x(t) ∈ C[Ω × [0,+∞),R+].
(I) If there are three constants λ0 > 0, T > 0 and λ such that

ln x(t) ≤ λt − λ0

∫ t

0
x(s)ds +

2∑
i=1

βiBi(t)

for t ≥ T, where β1 and β2 are constants, then: if λ ≥ 0, then 〈x〉∗ ≤ λ/λ0 almost surely (a.s.); if λ < 0, then
lim

t→+∞
x(t) = 0 a.s.

(II) If there are three positive constants λ0, T and λ such that

ln x(t) ≥ λt − λ0

∫ t

0
x(s)ds +

n∑
i=2

βiBi(t)

for t ≥ T, then 〈x〉∗ ≥ λ/λ0 a.s.

Now let us establish some conditions under which model (2) has a unique global positive solution.

Lemma 3.4. Consider the first two equations of system (2), if A > 0, then for any given initial value x(0) =
(x1(0), x2(0)) ∈ R2

+, the two equations have a unique solution x(t) = (x1(t), x2(t)) on t ≥ 0 and the solution will remain
in R2

+ with probability one (w.p.o.). Moreover,

{t−1 ln x1(t)}∗ ≤ 0, {t−1 ln x2(t)}∗ ≤ 0, a.s. (7)

From now on, we always suppose that A > 0. Now we are in the position to establish the threshold
theorem.

Theorem 3.5. Let

κ1 =


b1/r11, B ≤ 0;

C1/D1, B ≥ 0
; κ2 =


C2/D2, B ≤ 0;

b2/r21, B ≥ 0.

(I) If B ≤ 0 (clearly, κ1 ≥ κ2 in this case), then
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(i) If δ < κ2, then both x1 and x2 are strongly persistent in the mean w.p.o. and moreover,

lim
t→+∞

〈x1(t)〉 =
C1 −D1δ

A
, lim

t→+∞
〈x2(t)〉 =

C2 −D2δ
A

, w.p.o. (8)

(ii) If κ2 < δ < κ1, then x1 is strongly persistent in the mean w.p.o. and

lim
t→+∞

〈x1(t)〉 =
b1 − r11δ

a11
, w.p.o. (9)

At the same time, x2 is extinctive w.p.o.
(iii) If κ1 < δ, then both x1 and x2 are extinctive w.p.o.

(II) If B > 0 (clearly, κ1 < κ2 in this case), then

(iv) If δ < κ1, then both x1 and x2 are strongly persistent in the mean w.p.o. and

lim
t→+∞

〈x1(t)〉 =
C1 −D1δ

A
; lim

t→+∞
〈x2(t)〉 =

C2 −D2δ
A

, w.p.o.

(v) If κ1 < δ < κ2, then x1 is extinctive w.p.o. and x2 is strongly persistent in the mean w.p.o. and

lim
t→+∞

〈x2(t)〉 =
b2 − r22δ

a22
, w.p.o.

(vi) If κ2 < δ, then both x1 and x2 are extinctive w.p.o.

Remark 3.6. Theorem 3.5 reveals some interesting and important biological results. Theorem 3.5 obtains the threshold
between extinction and strongly persistence in the mean for each population:

(a) Suppose that B < 0. From result (I) we can see that if δ > κ1, then both x1 and x2 are extinctive; If κ2 < δ < κ1,
then x1 is strongly persistent in the mean and x2 is extinctive; If δ < κ2, then both x1 and x2 are strongly
persistent in the mean. That is to say, the persistence ability of x1 is stronger than that of x2. From the
viewpoint of biology, this is reasonable. Note that B < 0, i.e. r21(r10 − α2

1/2) > r11(r20 − α2
2/2), in other words

the population x1 has smaller environmental noise (i.e., α2
1) and smaller dose-response parameter (i.e., r11), then

x1 is more possible to be persistent.
(b) Suppose that B = 0, then κ1 = κ2. If δ > κ1, then both x1 and x2 are extinctive; If δ < κ1, then both x1 and x2

are strongly persistent in the mean. In other words, the persistence abilities of x1 and x2 are equal in this case.
(c) Suppose that B > 0. If δ > κ2, then both x1 and x2 are extinctive; If κ1 < δ < κ2, then x1 is extinctive and x2 is

strongly persistent in the mean; if δ < κ1, then both x1 and x2 are strongly persistent in the mean. That is to
say the persistence ability of x2 is stronger than that of x1. The biological reason is similar to (a).

In the study of population system, it is well-known that permanence is one of the most desired properties.
Now we shall show that if the white noises are sufficiently small, then system (2) is permanent.

Theorem 3.7. If bi > ri1 lim sup
t→+∞

C̃0(t), i = 1, 2, then model (2) is stochastically permanent.

4. Numerical Simulations

Now let us use the famous Milstein method (see e.g. [11]) to support the analytical results. Here, we
only give the case B < 0. When B ≥ 0, the simulations can be obtained similarly.

In Fig.1, we choose r10 = 0.55, r20 = 0.45, r11 = r21 = 1, a11 = a22 = 1, a21 = a12 = 0.6, α2
2 = 0.8,

k = 1 = m = 0.1, h = 0.5, b = 0.6, τ = 6. Then Lemma 3.2 holds and A = a11a22−a12a21 = 0.75 > 0. At the same
time, it follows from (6) that δ = 0.1. The only difference between conditions of Fig.1(a), Fig.1(b) and Fig.1(c)
is that the value of α2

1 is different. In Fig.1(a), we choose α2
1 = 0.5. Clearly, B = r11b2 − r21b1 = −0.25 < 0,
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Figure 1: Solutions of system (2) for r10 = 0.55, r20 = 0.45, r11 = r21 = 1, a11 = a22 = 1, a21 = a12 = 0.5, α2
2 = 0.8, k = 1 = m = 0.1,

h = 0.5, b = 0.6, τ = 6, x1(0) = 0.3, x2(0) = 0.2, C0(0) = Ce(0) = 0.1, step size ∆t = 0.001. (a) is with α2
1 = 0.5; (b) is with α2

1 = 0.8; (c) is
with α2

1 = 0.94.
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1 = 0.5, α2

2 = 0.8,
k = 1 = m = 0.1, h = 0.5, b = 0.6, τ = 1.9, x1(0) = 0.3, x2(0) = 0.2, C0(0) = Ce(0) = 0.1, step size ∆t = 0.001.
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Figure 3: Solutions of system (2) for r10 = 0.55, r20 = 0.45, α2
1 = 0.14, α2

2 = 0.64, r11 = r21 = 1, a11 = a22 = 1, a21 = a12 = 0.5,
k = 1 = m = 0.1, h = 0.5, τ = 6, b = 0.6, x1(0) = 0.3, x2(0) = 0.2, C0(0) = Ce(0) = 0.1, step size ∆t = 0.001.
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κ1 = b1/r11 = 0.3 and κ2 = C2/D2 = 0.133 > δ. By (i) in Theorem 3.5, we can obtain that both x1 and x2 are
strongly persistent in the mean and

lim
t→+∞

〈x1(t)〉 =
C1 −D1δ

A
= 0.233, lim

t→+∞
〈x2(t)〉 =

C2 −D2δ
A

= 0.0667.

Fig.1(a) confirms these. In Fig.1(b), we choose α2
1 = 0.8. Note that B = −0.1, κ1 = 0.15 and κ2 = 0.083, then

κ2 < δ < κ1. In view of (ii) in Theorem 3.5, one can see that x2 is extinctive and x1 is strongly persistent in
the mean and

lim
t→+∞

〈x1(t)〉 =
b1 − r11δ

a11
= 0.05.

See Fig.1(b). In Fig.1(c), we choose α2
1 = 0.94. Then B = −0.03 and κ1 = 0.08 < δ. Making use of (iii) in

Theorem 3.5 gives that both x1 and x2 are extinctive. Fig.1(c) confirms these. By comparing Fig.1(a) with
Fig.1(c), it is easy to obtain that with increasing α2

1 value, x1 is inclined to extinction. That is to say the
stochastic noise of x1 is unfavorable for the persistence of x1. At the same time, by comparing Fig.1(a)
with Fig.1(b), one can observe that with increasing α2

1 value, x2 is inclined to extinction. In other words the
stochastic noise of x1 is also unfavorable for the persistence of x2.

In Fig.2, we choose r10 = 0.55, r20 = 0.45, r11 = r21 = 1, a11 = a22 = 1, a21 = a12 = 0.5, α2
1 = 0.5, α2

2 = 0.8,
k = 1 = m = 0.1, h = 0.5, b = 0.6. The only difference between conditions of Fig.1(a) and Fig.2 is that the
value of τ is different. In Fig.2, we choose τ = 1.9. Then κ1 = 0.3 < δ = 0.3158. An application of (iii)
in Theorem 3.5 leads to that both x1 and x2 are extinctive. Fig.2 confirms these. By comparing Fig.1(a)
with Fig.2, one can see that the impulsive period τ plays a key role in determining the persistence and the
extinction of x1 and x2.

In Fig.3, we choose r10 = 0.55, r20 = 0.45, α2
1 = 0.14, α2

2 = 0.64, r11 = r21 = 1, a11 = a22 = 1, a21 = a12 = 0.5,
k = 1 = m = 0.1, h = 0.5, τ = 6, b = 0.6. Then it follows from Theorem 3.7 that the model (2) is stochastically
permanent. Fig.3 confirms this.

5. Conclusions and future directions

This paper has been devoted to a stochastic cooperative system in polluted environments with impulsive
toxicant input. For each species, the threshold between strongly persistence in the mean and extinction has
been established. Moreover, sufficient conditions for stochastic permanence have been obtained. These
results have revealed that both the random perturbations and the impulsive period play key roles in
determining the persistence and the extinction of the species.

Our results and numerical simulations reveal an important property of environmental noise: the stochas-
tic noise of xi is unfavorable for the persistence of both x1 and x2. From the viewpoint of biology, this is
reasonable. Note that model (2) is a cooperative system, in which each member enhances the growth of
others. Since the stochastic noise of xi is unfavorable for the persistence of xi, then x j will obtain less
supports. That is to say, stochastic noise of xi is unfavorable for the persistence of x j, j , i, i, j = 1, 2. Our
results and numerical simulations also reveal that impulsive period τ play key roles in determining the
persistence and the extinction of the species. Thus in order to conserve x1 and x2, we have the following
approaches:

• To reduce the intensity of the white noises α2
1 and α2

2;

• To increase the impulsive period τ;

• To cut down the toxicant input amount at each time b.

Some interesting questions deserve further investigations. It is interesting to study n-species model. It
is useful to point out that part methods developed in this paper are also applicable to n-species system. It
is also interesting to consider others parameters, e.g., ai j, are disturbed by stochastic noises.
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Appendix

Proof. of Lemma 3.4: From Theorems 2.1 and 3.1 in Pang et al. [31], we only need to prove that there exist
positive numbers p1 and p2 such that

λ+
max(PĀ + ĀTP) < 0,

where

Ā =

(
−a11 a12
a21 −a22

)
, P =

(
p1 0
0 p2

)
and λ+

max(Q) = sup
x∈Rn

+, |x|=1
xTQx for a symmetric matrix Q. In fact, since a11 > 0, a12 > 0 and a21 > 0, then we

can choose positive numbers p1 and p2 such that λmax(PĀ + ĀTP) < 0, where λmax(PĀ + ĀTP) is the largest
eigenvalue of PĀ + ĀTP. On the other hand, for any symmetric matrix Q, it follows from the definition of
λ+

max that λ+
max(Q) ≤ λmax(Q). Then the desired assertion follows.

Proof. of Theorem 3.5: We only present the proof for (I), the proof of (II) is analogous. Note that κ1 =
b1/r11 ≥ κ2 = C2/D2.

From Lemma 3.1, for ∀ ε > 0, there exists a constant T > 0 such that

C̃0(t) − ε ≤ C0(t) ≤ C̃0(t) + ε, t > T. (10)

Applying Itô’s formula to Eq. (2) leads to

ln(x1(t)/x1(0))
t

= b1 − r11〈C0(t)〉 − a11〈x1(t)〉 + a12〈x2(t)〉 +
α1B1(t)

t
; (11)

ln(x2(t)/x2(0))
t

= b2 − r21〈C0(t)〉 + a21〈x1(t)〉 − a22〈x2(t)〉 +
α2B2(t)

t
. (12)

From (12)×a12+(11)×a22, we obtain

a22
ln(x1(t)/x1(0))

t
+ a12

ln(x2(t)/x2(0))
t

= C1 −D1〈C0(t)〉 − A〈x1(t)〉

+
a22α1B1(t) + a12α2B2(t)

t
,

(13)

Similarly, from (12)×a11+(11)×a21, we have

a11
ln(x2(t)/x2(0))

t
+ a21

ln(x1(t)/x1(0))
t

= C2 −D2〈C0(t)〉 − A〈x2(t)〉

+
a11α2B2(t) + a21α1B1(t)

t
,

(14)

Moreover, by the property of limit superior, it follows from (6), (10), (11) and (12) that

ln(x1(t)/x1(0))
t

≤ b1 + ε1 − r11δ − a11〈x1(t)〉 + a12〈x2(t)〉∗ +
α1B1(t)

t
;

ln(x2(t)/x2(0))
t

≤ b2 + ε2 − r21δ + a21〈x1(t)〉∗ − a22〈x2(t)〉 +
α2B2(t)

t
.

Let
λ1 = b1 + ε1 − r11δ + a12〈x2〉

∗; λ2 = b2 + ε2 − r21δ + a21〈x1〉
∗.

Thus

ln(x1(t)/x1(0))
t

≤ λ1 − a11〈x1(t)〉 +
α1B1(t)

t
; (15)
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ln(x2(t)/x2(0))
t

≤ λ2 − a22〈x2(t)〉 +
α2B2(t)

t
. (16)

(i) It follows from (7) that for arbitrarily given and sufficiently small ε > 0, there exists T > 0 such that
for all t ≥ T

D1〈C0(t)〉 ≤ D1δ + ε/2; a12
ln(x2(t)/x2(0))

t
≤ a12[

ln x2(t)
t

]∗ + ε/2 ≤ ε/2.

Substituting the above inequalities into (13) yields

a22
ln(x1(t)/x1(0))

t
≥ C1 −D1δ − ε − A〈x1(t)〉 +

a22α1B1(t) + a12α2B2(t)
t

. (17)

Since C1/D1 ≥ C2/D2 > δ > 0, then we can let ε be sufficiently small such that C1 −D1δ − ε > 0. Then using
(II) in Lemma 3.3 gives

〈x1〉∗ ≥ (C1 −D1δ − ε)/A.

Then it follows from the arbitrariness of ε that

〈x1〉∗ ≥ (C1 −D1δ)/A. (18)

In other words, we have shown that x1 is persistent in the mean, that is, 〈x1〉∗ > 0. Thus λ1 > 0 (otherwise,
inequalities (15) and Lemma 3.3 would lead to 〈x1〉

∗ = 0). Similarly, making use of (14) yields

a11
ln(x2(t)/x2(0))

t
≥ C2 −D2δ − ε − A〈x2(t)〉 +

a12α1B1(t) + a11α2B2(t)
t

.

An application of (II) in Lemma 3.3, one can see that

〈x2〉∗ ≥ (C2 −D2δ)/A > 0. (19)

Thus λ2 > 0. Then by (I) in Lemma 3.3, it follows from (15) and (16) that

〈x1〉
∗
≤ λ1/a11, 〈x2〉

∗
≤ λ2/a22.

That is to say

a11〈x1〉
∗
− a12〈x2〉

∗
≤ b1 − r11δ; (20)

−a21〈x1〉
∗ + a22〈x2〉

∗
≤ b2 − r21δ.

Solving these two inequalities, we obtain

〈x1〉
∗
≤ (C1 −D1δ)/A, 〈x2〉

∗
≤ (C2 −D2δ)/A.

Then the required assertion (8) follows from the above inequalities, (18) and (19).
(ii) Since C1/D1 > δ > 0, then (18) holds. That is to say, the population x1 is persistent in the mean:

〈x1〉∗ > 0. Thus λ1 > 0. In other words, inequality (20) holds. If ω ∈ {〈x2〉
∗ > 0}, then an application of

Lemma 3.3 to inequality (16) results in

〈x2(ω)〉∗ ≤
λ2

a22
=

b2 + ε2 − r21δ + a21〈x1(ω)〉∗

a22

Substituting (20) into the above inequality, we can see that

(a11a22 − a12a21)〈x2(ω)〉∗ ≤ a11b2 + a21b1 − (a11r21 + a21r11)δ + ε
= C2 −D2δ + ε,
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where ε = a11ε2 + a21ε1.Note that A = a11a22− a12a21 > 0, then the left side of the above inequality is positive.
Since ε is arbitrarily small, then δ ≤ C2/D2 = κ2, which is a contradiction with δ > κ2. Consequently,
P{ω : 〈x2〉

∗ > 0} = 0, that is to say, 〈x2〉
∗ = 0 a.s.

Furthermore, substituting inequality (20) into inequality (16), one can derive that

ln(x2(t)/x2(0))
t

≤ b2 + ε2 − r21δ +
a21

a11
(b1 + ε1 − r11δ + a12〈x2〉

∗)

−a22〈x2(t)〉 + α2B2(t)/t
= [C2 −D2δ + ε(t) + a11ε2 + a21ε1]/a11 + α2B2(t)/t,

where ε(t) = a12a21〈x2〉
∗
− a12a21〈x2(t)〉. Since δ > C2/D2, then we have 〈x2〉

∗ = 0, which is to say, ε(t) → 0.
Thus applying Lemma 3.3 again leads to

lim
t→+∞

x2(t) = 0.

In other words, we have shown that if δ > C2/D2, then the population x2 goes to extinction a.s.
Now let us prove (9). Since lim

t→+∞
x2(t) = 0, then by (11), for sufficiently large t

ln(x1(t)/x1(0))
t

≤ b1 + ε − r11〈C0(t)〉 − a11〈x1(t)〉 +
α1B1(t)

t
; (21)

ln(x1(t)/x1(0))
t

≥ b1 − ε − r11〈C0(t)〉 − a11〈x1(t)〉 +
α1B1(t)

t
. (22)

Making use of (21) and (I) in Lemma 3.3 one can see that

〈x1〉
∗
≤ [b1 + ε − r11δ]/a11.

Similarly, using (22) and (II) in Lemma 3.3, we get

〈x1〉∗ ≥ [b1 − ε − r11δ]/a11.

Then the desired assertion (9) follows from the arbitrariness of ε.
(iii) To begin with, let us prove lim

t→+∞
x2(t) = 0 a.s..

Case (a): Suppose that 〈x1〉
∗ > 0. Then λ1 > 0. Consequently, similar to the proof of (ii), we can obtain

lim
t→+∞

x2(t) = 0.

Case (b): Suppose that 〈x1〉
∗ = 0. Then it follows from (16) that

ln(x2(t)/x2(0))
t

≤ b2 + ε2 − r21δ − a22〈x2(t)〉 +
α2B2(t)

t

for sufficiently large t. Making use of δ > C2/D2 > b2/r21 and Lemma 3.3, we obtain lim
t→+∞

x2(t) = 0.

Now we are in the position to prove lim
t→+∞

x1(t) = 0 a.s. In fact, since lim
t→+∞

x2(t) = 0, then it follows from

(15) that for sufficiently large t,

ln(x1(t)/x1(0))
t

≤ b1 + ε1 − r11δ − a11〈x1(t)〉 +
α1B2(t)

t
.

Then the desired assertion follows from δ > b1/r11 and Lemma 3.3.

Proof. of Theorem 3.7: We shall divide the proof into two parts. To begin with, let us prove (3). Note that
bi − ri1C̃∗0 > 0, i = 1, 2, we can choose a constant θ > 0 such that

bi − ri1C̃∗0 > 0.5θα2
i , i = 1, 2

where C̃∗0 = lim sup
t→+∞

C̃0(t). Define

V1(x) = (1 + x−1
1 )θ + (1 + x−1

2 )θ.
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Making use of Itô’s formula gives

dV1(x) = θ(1 + x−1
1 )θ−2

{
−

1
x2

1

(
b1 − r11C0(t) − 0.5θα2

1

)
+

1
x1

(
− r10 + r11C0(t) + a11 + α2

1

)
+ a11 −

x2

x1

[
a12 +

a12

x1

]}
dt

+θ(1 + x−1
2 )θ−2

{
−

1
x2

2

(
b2 − r21C0(t) − 0.5θα2

2

)
+

1
x2

(
− r20 + r21C0(t) + a22 + α2

2

)
+ a22 −

x1

x2

[
a21 +

a21

x2

]}
dt

+θ(1 + x−1
1 )θ−1α1x−1

1 dB1(t) + θ(1 + x−1
2 )θ−1α2x−1

2 dB2(t)

≤ θ(1 + x−1
1 )θ−2

{
−

1
x2

1

(
b1 − r11C0(t) − 0.5θα2

1

)
+

1
x1

(
r11 + a11 + α2

1

)
+ a11

}
dt

+θ(1 + x−1
2 )θ−2

{
−

1
x2

2

(
b2 − r21C0(t) − 0.5θα2

2

)
+

1
x2

(
r21 + a22 + α2

2

)
+ a22

}
dt

+θ(1 + x−1
1 )θ−1α1x−1

1 dB1(t) + θ(1 + x−1
2 )θ−1α2x−1

2 dB2(t).

Now, let κ be sufficiently small to satisfy

0 <
κ
θ
< bi − ri1C̃∗0 − 0.5θα2

i , i = 1, 2.

Define
V2(x(t)) = eκtV1(x(t)) = eκt(1 + x−1

1 )θ + eκt(1 + x−1
2 )θ.

In view of Itô’s formula, we obtain that for sufficiently large t,

dV2(x(t)) = κeκtV1(x)dt + eκtdV1(x)

≤ θeκt(1 + x−1
1 )θ−2

{
κ(1 + x−1

1 )2/θ +
[
−

1
x2

1

(
b1 − r11C0(t) − 0.5θα2

1

)
+

1
x1

(
r11 + a11 + α2

1

)
+ a11

]}
dt

+θeκt(1 + x−1
2 )θ−2

{
κ(1 + x−1

2 )2/θ +
[
−

1
x2

2

(
b2 − r21C0(t) − 0.5θα2

2

)
+

1
x2

(
r21 + a22 + α2

2

)
+ a22

]}
dt

+κeκtθ(1 + x−1
1 )θ−1α1x−1

1 dB1(t) + κeκtθ(1 + x−1
2 )θ−1α2x−1

2 dB2(t)

≤ θeκt(1 + x−1
1 )θ−2

{
−

1
x2

1

(
b1 − r11C̃∗0 − ε − 0.5θα2

1 − κ/θ
)

+
1
x1

(
r11 + a11 + α2

1 + 2κ/θ
)

+ a11 + κ/θ
}
dt

+θeκt(1 + x−1
2 )θ−2

{
−

1
x2

2

(
b2 − r21C̃∗0 − ε − 0.5θα2

2 − κ/θ
)

+
1
x2

(
r21 + a22 + α2

2 + 2κ/θ
)

+ a22 + κ/θ
}
dt

+κeκtθ(1 + x−1
1 )θ−1α1x−1

1 dB1(t) + κeκtθ(1 + x−1
2 )θ−1α2x−1

2 dB2(t)
=: eκt J(x)dt + κeκtθ(1 + x−1

1 )θ−1α1x−1
1 dB1(t)

+κeκtθ(1 + x−1
2 )θ−1α2x−1

2 dB2(t).

It then follows from the definition of κ that J(x) is upper bounded in R2
+, namely

K1 := sup
x∈R2

+

J(x) < +∞.
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Consequently,
dV2(x(t)) ≤ K1eκtdt − κeκtθ(1 + x−1

1 )θ−1α1x−1
1 dB1(t)

+κeκtθ(1 + x−1
2 )θ−1α2x−1

2 dB2(t)

for sufficiently large t. That is to say,

lim sup
t→+∞

E[x−θ1 (t)] ≤ lim sup
t→+∞

E
[
(1 + x−1

1 (t))θ + (1 + x−1
2 (t))θ

]
≤

K1

κ
= K;

lim sup
t→+∞

E[x−θ2 (t)] ≤ lim sup
t→+∞

E
[
(1 + x−1

1 (t))θ + (1 + x−1
2 (t))θ

]
≤ K.

So for any fixed ε > 0, set β = ε
1
θ /K

1
θ . By Chebyshev’s inequality (see e.g. Mao [26], P. 5), we can derive that

P{xi(t) < β} = P{x−θi (t) > β−θ} ≤ E[x−θi (t)]/β−θ = βθE[x−θi (t)], i = 1, 2.

Hence lim sup
t→+∞

P{xi(t) < β} ≤ βθK = ε. Consequently lim inf
t→+∞

P{xi(t) ≥ β} ≥ 1 − ε, i = 1, 2.

The proof of (4) is standard and hence is omitted (see e.g., [19]).
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