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Abstract. With the growing presence of hazardous materials in daily life, a large number of institutions and
scholars have been paying close attention to this field, providing new directions for exploring hazardous
materials distribution patterns. This paper employs two fuzzy random variables, transportation cost and
risk, to put forward a bi-level minimum objective programming model with a chance measure constraint
within a specified chance level. The lower level is to seek minimum transportation costs and the upper
level is for minimum risk. The model presented in this article simultaneously designs the hybrid algorithm,
which is the combination of the fuzzy random simulation with the genetic algorithm. In the end, a small-
scale instance is given to account for the efficiency of the presented model and algorithm, and the best
distribution solution is presented.

1. Introduction

In recent years, hazardous material transportation has played a gradually increasing role in the economy.
Hazardous materials have a unique character, which means they may create bad consequences for citizens,
the environment, and property. This is why more and more scholars have devoted themselves to this field
and have made great contributions. Fuzzy theory can explain the situation in that the consequence cannot
be calculated using a mathematical formula; therefore, filling in this significant gap is no other than fuzzy
language. As far as we know, the direction of the original is the problem of fuzzy location programming.
After discussing fuzzy accessibility by Darentas [1], Zhou and Liu proposed a maximization model in order
to minimize the total transportation cost [2]. Chen designed the location of distribution centers using a
fuzzy preference relation matrix [3]. To move forward a single step, the time window was considered.
Zheng and Liu were no longer confined to consider the transportation cost to be a fuzzy variable, but also
thought of the travel time as a fuzzy variable to establish a model in order to improve customer satisfying
degree [4]. Wang and Zhao put up a modified model with three layer constraints [5] based on [6]. The
previously mentioned models all considered the transportation cost to be one of the important objectives.
However, Li and Jiang constructed a multi-objective optimization model for the hazardous materials road
transport [7].
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The risk of hazardous material distribution not only has fuzzy attribute, but also random attribute. The
recognition of fuzzy random variables was put forward by Puri [8], Kruse and Meyer [9], Liu and Liu [10],
and Li and Liu [11]. Meiyi set a scene for the distribution of hazardous materials and presumed the risk was
a time-dependent fuzzy random variable. They then explored the optimal departure time and dwell times
for each depotCcustomer pair [12]. This inspired us to speculate new distribution methods considering
the fuzzy random of risk. Different from Meiyis work with chance-constrained programming (CCP) [13],
we built a two-level minimum objective programming model with chance measure constraints for solving
the distribution on the hypothesis that every route between each depot-customer pair is different, with the
purpose of servicing customers using minimal cost and facing minimal risk within the acceptance range of
decision makers.

In this paper, the context is as follows. Section 2 analyses the two-level minimum objective programming
model under certain constraints. In Section 3, the design of the hybrid algorithm integrating fuzzy random
algorithm and genetic algorithm (GA) is discussed. Section 4 provides a small-scale example to show the
best solution. In the end, a brief conclusion is summarized.

2. Mathematic model

Next, we formulate a bi-level chance model minimize transportation cost and risk under certain con-
straints.

2.1. Risk quantitative model

Risk is difficult to calculate. Once an accident occurs, we can say there is a certain number of deaths,
injured persons, or there is a certain loss of property.As there is no united criterion, using population
exposure to model the risk occurring on the transporting path is prevalent. This paper also adopts the
model developed by Erkut and Ingolfsson [14], which is

Risk = p ∗ POP

which means the transportation risk is defined the result of the accident frequency p multiply by the number
of people POP that may be at risk. we can know POP is a fuzzy variable while the accident frequency p is
a random variable, so the risk is a fuzzy random variable.

Similarity, the transportation cost is a fuzzy random variable. Then, we use these two variables to set
up our model.

2.2. Bi-level chance constraint model

In this section, we consider a simple two-stage supply chain distribution problem under an uncertain
environment. The two-stage chain includes several depots and a certain number of customers. The
uncertain environment means the environment has many factors influencing the objectives, such as the
traffic congestion status, road-surface behavior, weather situation, or the experience of a trucker and so on.
Different from the conventional distribution that customers demand comes from the same depot, several
depots can distribute the hazardous material to customers at the same time, and the sum of the distribution
these depots can meet the customer demand. The quantity of hazardous materials delivered may vary
or the route from the depot to the customer may vary; hence, the risk may be different. The distribution
process can be seen in Figure 1.

To set up the bi-level chance model, some symbols need to be defined, as follows:
Index
i depot index, j customer index.
Parameter
Di the capacity of the depot, i = 1, 2, ..., I .
xi the sum of all the hazardous material that needs to be distributed by the depot i .
t j the demand amount of customer j , j = 1, 2, ..., J .
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Figure 1: Figure 1 Illustration of the hazardous materials distribution pattern

yi j the amount of hazardous materials transport from depot i to customer j .
δi if it uses depot i ,it takes the value 1, otherwise, it takes 0.
ai the fixed cost of using depot i .
bi the unit cost of using the vehicle in depot i .
Random variable
ui the accident frequency in depot i ; it obeys uniform distribution.
wi j the accident frequency on the route from the depot i to customer j,it obeys uniform distribution.
Fuzzy variable
ζ̃i j the unit transportation cost from the depot i to customer j .
η̃i the number of influenced people once an accident happens in the depot i .
τ̃i j the number of influenced people once an accident happens on the route from the depot i to customer j .
Fuzzy random variable
R is transportation risk; the risk is denoted as a fuzzy variable multiply a random variable, which is the
number of the influenced people multiplied by the accident frequency. According to the attribute of the
fuzzy random variable, the risk is a fuzzy random variable.
C is transportation cost; the cost is also a fuzzy random variable, as there are lots of random factors, such
as the weather influence, road conditions, traffic condition and so on.

In what follows, we give the expression formula of the risk and cost of the hazardous materials trans-
portation. The total risk mainly consists of two sections, which is distinguished from the place where the
accident happens. The first kind is the risk happening in the depot and the second risk is happening on the
route between the depot and the customer. This can be expressed as

R =

I∑
i=1

η̃iuixi +

I∑
i=1

J∑
j=1

τ̃i jwi jyi j

The cost can be referred to the sum of the fixed cost, the total vehicle cost, and the transportation cost
between depots and customers:

C =

I∑
i=1

(aiδi + bixi) +

I∑
i=1

J∑
j=1

ζ̃i jyi j
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After the above analysis, then the bi-level chance programming model is proposed:

min R
subject to :

Ch{
I∑

i=1
η̃iuixi +

I∑
i=1

J∑
j=1
τ̃i jwi jyi j ≤ R}(α) ≥ β

min C
subject to :

Ch{
I∑

i=1
(aiδi + bixi) +

I∑
i=1

J∑
j=1
ζ̃i jyi j ≤ C}(χ) ≥ γ

j∑
j=1

yi j = xi , i = 1, 2, ..., I

xi ≤ Diδi , i = 1, 2, ..., I
I∑

i=1
yi j = t j, j = 1, 2, ..., J

xi , yi j ∈ N, i = 1, 2, ..., I, j = 1, 2, ..., J
δ j ∈ {0, 1}, i = 1, 2, ..., I, j = 1, 2, ..., J

⇔



min Rin f (α, β)
subject to :

min Cin f (χ, γ)
j∑

j=1
yi j = xi , i = 1, 2, ..., I

xi ≤ Diδi , i = 1, 2, ..., I
I∑

i=1
yi j = t j, j = 1, 2, ..., J

xi , yi j ∈ N, i = 1, 2, ..., I, j = 1, 2, ..., J
δ j ∈ {0, 1}, i = 1, 2, ..., I, j = 1, 2, ..., J

The left-hand figure is our model, the objective is to seek the minimal risk and cost under the condition that
satisfies certain constraints. The lower-level objective is to minimize the cost, and the upper-level objective
is to minimize the risk. The two inequalities are chance measure constraints with credibility measure α ,
χ and probability measure β ,γ . The first equality and the following inequality are used to ensure depot
capacity and the second equality is the customer demand constraint. The other symbols are the domains
of the related variables. Based on the definition of pessimistic value, the left-hand model is equivalent to
the right-hand model. To solve the bi-level chance constraint, we need to design an intelligent algorithm in
the following section.

3. Solution Algorithm

As the model we proposed is a nonlinear problem, the ordinary solution cannot solve it to obtain a
satisfying result. Next, we design a hybrid algorithm which integrates two algorithms-GA and fuzzy
random simulation to explore the optimal answer.

3.1. Fuzzy random simulation
To solve the mentioned models, we must first dispose of the chance measure function:

U1(xi, yi j)→ Ch{R(xi, yi j, η̃i, τ̃i j) ≤ R}(α) ≥ β

U2(xi, yi j)→ Ch{C(xi, yi j, ζ̃i j) ≤ C}(χ) ≥ γ

where the variables are defined before.
Both functions are similar in form and content. To compute the R value and C value, the procedures

about the fuzzy random simulation algorithm [15] are described as follows:
Step 1: Produce the random variable θk from the sample space (k = 1, 2, ...N) according to the random
distribution Pr , where N is a sufficiently large integer.
Step 2. Generate the fuzzy random variable ξ , which means, multiply or add the random variable to the
corresponding fuzzy variable.
Steps 3. Calculate the joint membership for the new fuzzy random variable and then use the fuzzy
simulation algorithm [16] to calculate α-pessimistic of R ,

Rk = in f {Rk|Cr{R(ξ(wn)) ≤ Rk} ≥ α}, k = 1, 2, ...N
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or χ-pessimistic value of

Ck = in f {Ck|Cr{C(ξ(wn)) ≤ Ck} ≥ χ}, k = 1, 2, ...N

.
Step 4. Repeat steps 1 to 3 for the given N times.
Step 5. Set N1 as the integer part of β ∗ N for the risk inequality and N2 as the integer part of γ ∗ N for the
cost inequality.
Step 6. Return the N1 − th largest element of the array {R1,R2, ...,RN} as the (α, β) chance level risk value,
and return the N2 − th largest element of the array {C1,C2, ...,CN} , namely the (χ, γ) chance level cost value.

3.2. Genetic algorithm

3.2.1. Initialization process
The length of the chromosome is decided by two numbers: the number of the depots and the customers.

It consists of two parts: the form of the chromosome [δ1, δ2, ...δi, y11, y12, ...y1 j, y21, y22, ...y2 j, ...yi1, yi1, ...yi j]
and the first part, which is encoded as 0 − 1 variable. Once the depot i is chosen to transport hazardous
materials to the customer, the variable δi is initialized as 1. The second part, yi j , is randomly generated

such that
j∑

j=1
yi j = xi, xi ≤ Di ,

I∑
i=1

yi j = t j and then the chromosomes feasibility is checked given chance

level constraints. If it meets the constraints conditions, the chromosome is retained. The above process is
repeated until a feasible chromosome Z1,Z2, ...Zpopsize is completely produced.

3.2.2. Select process
The proposed model has two objectives. Once the four parameters are predetermined, the feasibility

chromosomes are finished in the initialization process. Therefore, we use the roulette wheel selection
method to choose parents. Its operating principle is a fitness-proportional selection process to choose larger
proportion chromosome to be the parent chromosome. Although the model has bi-level objective, the lower
level objective is adopted as the fitness value. Therefore, the evaluation function is defined as eval(C) .

Table 1: Crossover process

δ1 y11 y12 ... y1k ... y1J

δ2 y21 y22 ... y2k ... y2J

... ... ... ... ... ... ...

δI yI1 yI2 ... yIk ... yIJ

δ′1 y′11 y′12 ... y′1k ... y′1J

δ′2 y′21 y′22 ... y′2k ... y′2J

... ... ... ... ... ... ...

δ′I y′I1 y′I2 ... y′Ik ... y′IJ
↓

δ1 y11 y12 ... y′1k ... y′1J

δ2 y21 y22 ... y′2k ... y′2J

... ... ... ... ... ... ...

δI yI1 yI2 ... y′Ik ... y′IJ

δ′1 y′11 y′12 ... y1k ... y1J

δ′2 y′21 y′22 ... y2k ... y2J

... ... ... ... ... ... ...

δ′I y′I1 y′I2 ... yIk ... yIJ

3.2.3. Crossover process
The crossover probability p c is predefined before the GA starts to work. Repeat the following process

for the entire population: randomly generate a number r , r ∈ [0, 1], if r < p c is established, the chromosome
Zk is selected to be a parent to do crossover operation.
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To better understanding the crossover operation, we turn the chosen parent chromosome into a matrix,
then divide the matrix into pair (Z1,Z2), (Z3,Z4)... ,take (Z1,Z2) as an example, an integer between the
interval k ,k ∈ [1, J] is randomly generated ,swap from k column to the end of the row for all the rows in the
corresponding matrix. The process can be seen in the Table1.

After this operation, the new chromosome is still needed to check whether it is satisfying the constraint,
if the chromosome is not, it must be abandoned, otherwise calculate the new objective.

3.2.4. Mutation process
A parameter p m is defined as the mutation probability and repeat the following process from k =

1, 2, ...popsize : a number r ,r ∈ [0, 1] is randomly generated, if r < p m is established, the chromosome Zk is
selected to be a parent to do mutation operation.

The mutation operation is also taken on the matrix, differ from the traditional mutation operation,
we need to randomly produce four numbers m,n ∈ (1, I) , u, v ∈ (1, J) and m , n , u , v ,then select
gene ymu, ymv, ynu, ynv to mutate, then continue to randomly generate d ∈ [0,min(ymu, ynv)], set ymu ←

ymu − d, ynv ← ynv − d, ymv ← ymv + d, ynv ← ynv + d , the whole process can be shown in Table 2..

Table 2: Crossover process

δ1 y11 y12 ... y1u ... y1v ... y1J

δm ym1 ym2 ... ymu ... ymv ... ymJ

... ... ... ... ... ... ... ... ...

δn yn1 yn2 ... ynu ... ynv ... ynJ

δI yI1 yI2 ... yIu ... yIv ... yIJ

↓

δ1 y11 y12 ... y1u ... y1v ... y1J

δm ym1 ym2 ... ymu − d ... ymv + d ... ymJ

... ... ... ... ... ... ... ... ...

δn yn1 yn2 ... ynu + d ... ynv − d ... ynJ

δI yI1 yI2 ... yIu ... yIv ... yIJ

3.3. Hybrid algorithm

A hybrid algorithm integrating the above two algorithms is presented next, the concept of credibility is
introduced in the paper [17].
Step 1. Initialize GA parameters such as popsize , pm , pc ,max 1en , the number of fuzzy random simulation
cycles N , then obtain popsize feasibility chromosomes on the premise that meeting all the constraints.
Step 2. Do the crossover operation and mutation operation on the feasibility chromosomes, after checking
the new chromosome meeting the constraints, update the chromosome population.
Step 3. Calculate the lower level objective value and fitness through fuzzy random simulation, meanwhile
save the same chromosomes upper level value to set V.
Step 4. Do the select operation by using the roulette wheel method.
Step 5. Repeat from Step 2 to Step 4 for certain cycles.
Step 6. Rank all the elements in the set V, take the least element as the final result, report the corresponding
chromosome as the best distribution solution.
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4. Case study

In this section, a small scale experiment is presented to account for the feasibility of the proposed
model and algorithm. This experiment includes three depots D1,D2,D3 and six customers C1,C2, ...C6
,respectively. The fuzzy transportation costs and the number of influenced people are presented in Table 3
and Table 5, the random factors, i.e. accident frequency are presented in Table 4 and Table 6. Part data is
from paper [13].

Table 3: Transportation cost
C1 C2 C3 C4 C5 C6

D1
(250, 260,
270, 280)

(220, 255,
260, 300)

(360, 400,
500, 550)

(200, 260,
300, 350)

(180, 200,
210, 240)

(800, 850,
950, 1000)

D2
(250, 255,
260, 265)

(200, 240,
260, 310)

(400, 450,
500, 550)

(180, 200,
210, 230)

(500, 600,
650, 700)

(300, 400,
450, 500)

D3
(220, 240,
250, 270)

(800, 850,
880, 920)

(270, 300,
320, 350)

(250, 300,
400, 420)

(240, 300,
320, 350)

(150, 200,
230, 250)

Table 4: Transportation cost uniform distribution
ρ C1 C2 C3 C4 C5 C6
D1 U (30, 40) U (20, 40) U (15, 40) U (20, 30) U (15, 45) (U (20, 35)
D2 U (20, 30) U (40, 60) U (30, 50) U (10, 30) U (40, 80) (U (30, 70)
D3 U (10, 40) U (60, 90) U (30, 60) U (20, 50) U (30, 50) (U (20, 50)

Table 5: Number of people that may be influenced
C1 C2 C3 C4 C5 C6

D1
(300, 350,
380, 450)

(200, 250,
270, 320)

(100, 120,
140, 160)

(500, 600,
800, 900)

(1000, 1100,
1300, 1500)

(200, 240,
360, 420)

D2
(150, 180,
200, 230)

(220, 240,
250, 280)

(80, 100,
150, 180)

(300, 330,
400, 420)

(300, 400,
450, 550)

(500, 700,
850, 950)

D3
(200, 220,
240, 260)

(100, 110,
120, 140)

(150, 200,
210, 240)

(800, 840,
890, 930)

(200, 220,
240, 260)

(660, 680,
700, 750)

The capacities of depots are set to be s = (1200, 1100, 1000)t , and the demand amounts of the customers
are ct = (296, 250, 355, 400, 215, 300)t , the fixed cost a = (400000, 36000000, 30000000)t , the unit vehicle cost
are b = (90, 100, 100)Yuan . The parameters about GA are set to be popsize = 50 , max 1en = 100 , N = 1000.

To compare the final results about cost and risk, we need to choose the decision maker acceptable
level of risk and cost. In theory, the chance level pair can be set to be any number within [0,1], but
according to the realistic meaning, we choose ten different pair parameters, risk is set to be α = β =
[0.75, 0.80, 0.90, 0.92, 0.94, 0.96, 0.98, 0.99] , and cost is set to beχ = γ = [0.75, 0.80, 0.90, 0.92, 0.94, 0.96, 0.98, 0.99],
respectively, the corresponding result of corresponding cases are presented as follows in Table 7.

From the table, we can know, when the chance level (α, β, χ, γ) is to be (0.75, 0.75, 0.75, 0.75) , the minimum
cost and minimum risk are only 66592612 and 13.6107, with the growing of chance level, the cost and risk
is also increasing. This trend is in accordance with the VaR model and CVaR model proposed in the paper
[18]. Although the risk and the cost is high, the credibility measure and probability is also growing, this
means a lot to the decision maker.
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Table 6: Number of people that may be influenced uniform distribution

r C1 C2 C3 C4 C5 C6

D1
U(0.8 ∗ 10−5,
1.2 ∗ 10−5)

U(1.8 ∗ 10−5,
2.2 ∗ 10−5)

U(2.5 ∗ 10−5,
3.2 ∗ 10−5)

U(1.2 ∗ 10−5,
2.0 ∗ 10−5)

U(1.2 ∗ 10−5,
2.0 ∗ 10−5)

U(1.5 ∗ 10−5,
2.5 ∗ 10−5)

D2
U(0.9 ∗ 10−5,
1.5 ∗ 10−5)

U(1.2 ∗ 10−5,
1.8 ∗ 10−5)

U(1.5 ∗ 10−5,
2.5 ∗ 10−5)

U(1.3 ∗ 10−5,
2.0 ∗ 10−5)

U(1.2 ∗ 10−5,
2.0 ∗ 10−5)

U(1.2 ∗ 10−5,
2.0 ∗ 10−5)

D3
U(2.0 ∗ 10−5,
2.5 ∗ 10−5)

U(2.0 ∗ 10−5,
2.8 ∗ 10−5)

U(2.0 ∗ 10−5,
2.5 ∗ 10−5)

U(1.0 ∗ 10−5,
1.8 ∗ 10−5)

U(1.5 ∗ 10−5,
2.5 ∗ 10−5)

U(2.5 ∗ 10−5,
3.2 ∗ 10−5)

Table 7: Cost and risk result for different cases
p c p m α β χ γ C R Error
0.4 0.1 0.75 0.75 0.75 0.75 66592612 13.6107 49.59%
0.4 0.1 0.75 0.75 0.80 0.80 66599429 13.6347 49.50%
0.4 0.1 0.80 0.80 0.75 0.75 66592612 14.1164 47.77%
0.4 0.1 0.80 0.80 0.80 0.80 66599429 14.1222 47.76%
0.4 0.1 0.90 0.90 0.90 0.90 66619396 15.2140 43.66%
0.4 0.1 0.92 0.92 0.92 0.92 66621963 15.0462 44.29%
0.4 0.1 0.94 0.94 0.94 0.94 66622224 15.1567 43.88%
0.4 0.1 0.96 0.96 0.96 0.96 66626294 15.4064 42.96%
0.4 0.1 0.98 0.98 0.98 0.98 66630675 15.7425 41.70%
0.4 0.1 0.99 0.99 0.99 0.99 66638045 16.5371 38.77%

Comparing with the CCP model by Wei [13], we define a relative ratio to better understand the risk
reduction, Error =

[
Risk (CCP) − Risk

(
Thispaper

)]
/Risk (CCP) ,from the last column of Table 7,we can see

that risk reduction has a significant effect, when the (α, β, χ, γ) is (0.75, 0.75, 0.75, 0.75) , the reduction can
be as much as half, it plays an important role in helping decision makers to make a decision from a series
of alternative plans. We choose the best distribution solution to be shown when (α, β, χ, γ) is set to be
(0.9, 0.9, 0.9, 0.9) as Table 8.

Table 8: Distribution Result
Custo.1 Custo.2 Custo.3 Custo.4 Custo.5 Custo.6

Depot1 73 205 57 87 152 96
Depot2 77 19 50 244 39 17
Depot3 146 26 248 69 24 187

The experiment is coded in C++ language using the software Visual Studio 2012 performed on an
experimental computer with an Intel core i5 and 12G RAM, the total runtime of experiment is 48 hours.
Note that the main time is spent on the initialization of the chromosome, the higher of the confidence level,
the large computation is. Although the proposed algorithm is time-consuming, it can remarkably cut down
the risk factor, provide better solutions to decision makers.

5. Conclusion

This paper proposed a bi-level minimum objective programming with chance constraint model for
hazardous materials distribution, it can be understood that the distribution solution could guarantee the
risk reach to the minimum based on the cost minimum. The decision maker can flexibility make choice
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of the distribution solution according to their acceptable range of risk. However, there still exist two big
problems, one of them is during the initialization process of the hybrid algorithm, it occupies a mass of time,
it can be accounted for that there are so many fuzzy variable and random variable, so we need to explore
more effective intelligent algorithm to settle this problem. The other is that we use a small scale case to
verify our model and algorithm, the practical applicability of big scale case is feasible in theory, but it may
occur some unexpected matter in practice, such as how to define the range of big scale case, the big scale
case means there are much more fuzzy random variables, so it is more different to find the ideal solution
and so on. However, the above-mentioned problems point out our research directions in the future.
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