
Filomat 32:5 (2018), 1917–1930
https://doi.org/10.2298/FIL1805917S

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Agricultural data classification attracts more and more attention in the research area of intelligent
agriculture. As a kind of important machine learning methods, ensemble learning uses multiple base
classifiers to deal with classification problems. The rough set theory is a powerful mathematical approach
to process unclear and uncertain data. In this paper, a rough set based ensemble learning algorithm
is proposed to classify the agricultural data effectively and efficiently. An experimental comparison of
different algorithms is conducted on four agricultural datasets. The results of experiment indicate that the
proposed algorithm improves performance obviously.

1. Introduction

Agricultural data classification has become an important technique in the community of intelligent
agriculture because of the massive volume of agricultural data available. Ensemble learning is a popular
algorithm which construct multiple base classifiers and then aggregate these classifiers to predict unknown
instances [1]. Ensemble learning is able to obviously increase generalization performance of the unstable
classifier, and thus has become a very popular issue in data mining and machine learning fields. Recently,
the application of ensemble learning in agricultural data classification is receiving a lot of attention. For
instance, ensemble learning technique is used to enhance SVM to detect rice parcels and yield [2]. However,
existing ensemble techniques often tend to combine all the trained base classifiers into a unnecessarily large
ensembles. Two problem with these ensemble learning techniques are that they require more random access
memory (RAM) to store all based classifiers, and also need more time to complete classification. Rough set
theory is an approach to process vague and uncertain information, and it provides efficient tools to find
hidden patterns in data [3]. Since it was first presented in the 80’s of the 20th century, rough set theory has
extracted much attention from various research fields such as credit rating [4], text classification [5], image
segmentation [6], etc. Attribute reduction is an important method in rough set theory, it does not need any
preliminary information to obtain minimal sets of attributes [7].

An ensemble learning algorithm based on rough set is presented to classify the agricultural data effec-
tively and efficiently in this paper. A set of trained individual classifiers is created by applying bootstrap
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samples firstly and a decision table is constructed. Then a subset of the individual classifiers is selected and
used for aggregation by using rough set theory. An experimental evaluation is conducted on the public
agricultural datasets. The results of experiment show that the proposed algorithm achieves significant
performance improvement compared with popular ensemble methods.

The rest of this paper is organized as follows. Section 2 reports related work. Section 3 reviews the basic
concepts of ensemble learning technique and rough set theory. Section 4 detailedly introduces the proposed
rough set based ensemble learning algorithm. Section 5 reports experimental evaluation and discussion.
Section 6 summarizes the conclusions and presents directions of future work.

2. Related work

Recently, some classification techniques in the machine learning community are applied in agricul-
ture field to solve the classification problem. In optimal site-specific application of herbicides, the Self-
Organizing Map neural network is applied in the classification of crops and weeds for reducing input costs
and environmental impact [8]. One of the major problem affecting the quality of peppers and tomatoes is
cuticle crack. Artificial neural network is introduced to accurately classify cuticle crack in both peppers
and tomatoes produced in greenhouses [9]. Because frost may have serious consequences on crop produc-
tion, artificial neural network, Naive Bayes and k-nearest neighbor (kNN) classifiers have been applied to
develop an empirical prediction system for frost protection of fruits and vegetables [10]. For obtaining a
map of the crops on the scene, Support Vector Machine (SVM) is used to develop crop cover classifiers for
crop classification using hyperspectral images [11]. The automatic classification of birds by their vocal-
ization is useful in some practical applications, such as avoiding collisions between aircraft and birds. In
the studies presented in [12], the bird sound signals have been represented by the descriptive parameters
model, and then SVM classifier with a Gaussian kernel is applied in the classification for the bird sound
and other different sounds. In early crop growth stage, stresses detection is helpful for the application of
site-specific remedies. In [13], SVM method is applied to classify hyperspectral data for identification of
nitrogen stresses and weed in cornfield. Because the coughs detection has important effect to check the
presence of diseases, artificial neural network is used as the classification method for distinguishing cough
sounds of pigs from other sounds, like background noise, metal clang and grunts to reveal the possibility of
an epidemic [14]. Because the identification of soybean development stages is useful to make appropriate
and timely management decisions, an artificial neural network classifier is developed for the classification
of soybean flowering and physiological maturity [15]. To provide better crop management information,
the classification and regression trees (CART) technique is applied in the classification of spectral data from
the corn fields [16].

3. Preliminaries

3.1. Ensemble learning

As a famous supervised learning algorithm, ensemble learning combines several machine learning clas-
sifiers into one predictive model in order to decrease variance and improve predictions [1]. Previous work
has shown that combination of multiple classification models generally increases predictive performance.

Recently, ensemble learning has received considerable attention and has been successfully used in many
fields, such as biomedical prediction task [17], protein structural classification [18] and agricultural data
classification [19]. The ensemble learning framework is shown in Fig. 1.

Firstly, subset Ok, k = 1, · · · ,T of the original training set O is formed. Secondly, one base classifier hk is
trained by using subset Ok. For each new instance, the predictions of all base classifiers are aggregated in
some strategy h∗ = F(h1, h2, · · · , hT) for generating the classification result of the ensemble. Two of the most
popular ensemble learning algorithms are Bagging and Boosting, which we briefly introduce next.



L. Shi et al. / Filomat 32:5 (2018), 1917–1930 1919

O

O1 Oi OT

h1 hi hT

h*=F(h1,h2,   ,hT)

...

...

...

...

(x,?) (x,y*)

...

Figure 1: Framework of a classifier ensemble

3.1.1. Bagging
Bagging, one of the earliest and most intuitive ensemble algorithms, has been successfully applied

in constructing ensembles of unstable classifiers [20]. Bootstrap sampling of the original data is used to
generate different training data subsets. Then, base classifier is trained by using each training subset and
their individual prediction results are aggregated to form a final ensemble decision.

Given an original training dataset S of size n and the integer parameter T which specify the number
of iterations, then T new training sets S1,S2, · · · ,ST are generated by sampling from S uniformly and with
replacement. A classifier Ci is trained by using Si and then T classifiers are aggregated to construct the final
classifier C. The classification label of instance x is assigned to the category classified by most number of
the base classifiers, i.e., C1,C2, · · · ,CT. The Bagging method is shown as Algorithm 1 in detail.

Algorithm 1. The Bagging ensemble algorithm
Input: dataset S={(x1, y1), · · · , (xN, yN)}, number of iterations T;
Output: Bagging ensemble classifier.
(1) For t = 1 to T
(2) Generate a training set St by using bootstrap sample from S;
(3) Construct a classifier Ct on St;
(4) Output C(x) = ar1maxy(

∑T
t=1 I(Ct(x) = y)).

where I is a function such that I(true) = 1, I( f alse) = 0.

3.1.2. Boosting
The Boosting is one of the most popular and successful implementations of ensemble methods [21]. As

a two-step approach, Boosting uses subsets of the original data to produce a series of performing models
firstly, and then combines them together using a particular cost function such as majority voting. Unlike
bagging, the subset creation of Boosting is not random and depends upon the performance of the previous
models. Boosting assigns a weight for each instance. When a classifier is trained from the training set, the
weights for misclassified instances are increased. The instances with higher weight have more influences
on the next classifier learned. Boosting is in fact a family of algorithms since there are many variants.
AdaBoost is a popular boosting algorithm and is shown as Algorithm 2.

Algorithm 2. The AdaBoost ensemble algorithm
Input: dataset S, number of iterations T;
Output: AdaBoost classifier.
(1) Init data weights d(1)

n = 1
N for all n = 1, · · · ,N;

(2) For t = 1 to T
(3) Train classifier with respect to the weighted instance set {S, d(t)

} and obtain hypothesis: ht : x→ {−1,+1},
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i.e., ht = L(S, d(t));
(4) Compute the weighted training error εt of ht: εt =

∑N
n=1 d(t)

n I(yn , ht(xn));
(5) Set αt = 1

2 lo1 1−εt
εt

;

(6) Update the data weights d(t+1)
n =

d(t)
n exp{−αt ynht(xn)}

Zt
,

where Zt is a normalization constant, such that
∑N

n=1 d(t+1)
n = 1;

(7) Break if ε = 0 or εt ≥
1
2 and set T = t − 1;

(8) Output fT(x) =
∑T

t=1
αt∑T

r=1 αr
ht(x).

3.2. Rough set theory
As an efficient mathematical theory, rough set can handle imprecise or vague information [3]. Some

important notions of rough set theory are introduced in this section.
Definition 1. Information system. An information system is defined as a pair as follows:

I = (U,A) (1)

whereU is a set of instances, andA is a set of attributes.
Definition 2. Decision table. In rough set theory, decision table is defined as a pair as follows:

I = (U,C ∪D) (2)

where C is a set of conditional attributes, and D is a set of decision attributes. For instance, Table 1
shows a dataset which has four conditional attributes (a, b, c, d), one decision attribute (e), and six objects
(x1, x2, x3, x4, x5, x6).

Definition 3. Indiscernibility relation. Objects may be indiscernible because available information is
limited. For any P ⊆ A, an associated equivalence relation IND(P) onU is defined as follows:

IND(P) = {(x, y) ∈ U2
|∀a ∈ P, a(x) = a(y)} (3)

where a(x) indicates the value on attribute a of object x. If (x, y) ∈ IND(P), x and y are indiscernible by
attributes from P. In rough set theory, the indiscernibility relation is one of the most important concepts.
The equivalence classes of the P-indiscernibility relation are defined as [x]P, x ∈ U.

Table 1: An example dataset
x ∈ U a b c d e

x1 1 0 0 1 1
x2 1 0 0 0 2
x3 0 0 1 2 2
x4 0 1 2 1 1
x5 2 2 1 0 1
x6 0 1 2 2 0

U/IND(P) is generated by IND(P), and it is computed as follows:

U/IND(P) = ⊗{U/IND(a)|a ∈ P} (4)

where

A ⊗ B = {X ∩ Y : ∀X ∈ A,∀Y ∈ B,X ∩ Y , ∅} (5)

According to the definition ofU/IND(P) and data from illustrative example in Table 1, if P = {b, c}, then
objects x1 and x2 are indiscernible. Similarly, objects x4 and x6 are indiscernible too. Therefore, IND(P)
generates the partition ofU as follows:
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U/IND(P) = {{x1, x2}, {x3}, {x4, x6}, {x5}}.
Definition 4. Lower approximation and upper approximation. Let I = (U,A) be an information system,

X ⊆ U and P ⊆ A. The lower approximation P(X) and upper approximation P(X) of X with respect to P are
defined as follows:

PX = {x ∈ U|[x]P ⊆ X} (6)

PX = {x ∈ U|[x]P ∩ X , ∅} (7)

The lower approximation of a set X is the set of objects ofU, which can be certainly classified as X with
respect to P. The upper approximation of a set X is the set of objects ofU, which can be possibly classified
as X with respect to P. Suppose X = {x3, x4} with the previous example, it is noted that PX = {x3} and
PX = {x3, x4, x6}.

A diagram of a rough set X within the lower approximation and upper approximation is shown in Fig.
2.

Lower approximation

Set X

Upper approximation

U

Figure 2: Lower and upper approximation

Definition 5. Positive region, negative region and boundary region. Let P and Q be subsets ofA, then
the positive region, negative region and boundary region are defined as follows:

POSP(Q) =
⋃

X∈U/Q

PX (8)

NEGP(Q) = U −
⋃

X∈U/Q

PX (9)

BNDP(Q) =
⋃

X∈U/Q

PX −
⋃

X∈U/Q

PX (10)

The positive region, POSP(Q), is the set of all objects in the universe U that certainly belong to classes of
U/Q. The negative region, NEGP(Q), is the set of objects that cannot be classified to classes ofU/Q by using
attributes of P. The boundary region, BNDP(Q), is the set of objects that can possibly belong to classes of
U/Q . X is definable with respect to P if BNDPX = ∅, otherwise X is rough with respect to P. For instance,
let P = {b, c} and Q = {e}, then POSP(Q) = {x3, x5}, NEGP(Q) = ∅ and BNDP(Q) = {x1, x2, x4, x6}.
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If values of attributes of P uniquely determine values of attributes of Q, then the set of attributes Q
depends totally on the set of attributes P, denoted P ⇒ Q. The definition of dependency is given as
following.

Definition 6. Dependency degree. When Q and P be subsets of A, we will say that Q depends on P to
a degree k(0 ≤ k ≤ 1), denoted P⇒k Q, if

k = γP(Q) =
|POSP(Q)|
|U|

(11)

where |U| is the cardinality of setU. If k = 1, we say that Q depends totally on P, and if 0 < k < 1, we say that
Q depends partially on P. If k = 0 then we say that Q does not depend on P [22]. For instance, let P = {b, c}
and Q = {e}, then the dependency degree of attribute set Q from the attribute set P is γP(Q) =

|POS{b,c}({e})|
|U| = 1

3 .
Definition 7. Reduct. Let I = (U,A) be an information system, P ⊆ A and a ∈ P. Attribute a is

redundant in P if U/P = U/(P − a), otherwise a is indispensable in P. P is independent if every a ∈ P is
indispensable in P. P is a reduct of A if U/P = U/A and P is independent. Thus, a reduct of attributes is
sufficient subset to represent the category structure.

Attribute reduction selects a minimal subset of attributes with the same information of classification,
and it has become a much more important issue in rough set theory. QuickReduct algorithm [22] is a
popular technique to discover reduct. The QuickReduct algorithm is shown as follows.

Algorithm 3. QuickReduct algorithm
Input: The set of entire conditional attributes C, the set of entire decision attributesD;
Output: the reduct Q of C.
(1)Q = ∅;
(2)Do
(3) H = Q;
(4) ∀x ∈ (C −Q)
(5) If γQ∪{x}(D) > γH(D)
(6) H = Q ∪ {x};
(7) Q = H;
(8)Until γQ(D) == γC(D)
(9)Return Q.

4. The proposed algorithm

A rough set based ensemble learning algorithm is introduced for effective classification of the agricultural
data in this section. A schematic diagram of the proposed algorithm is illustrated in Fig. 3.

The proposed algorithm consists of six stages, i.e., partitioning stage, bootstraping stage, training stage,
constructing stage, selecting stage and combining stage. In the first stage, the original agricultural dataset S
is randomly partitioned into two subsets S1 and S2 for building the proposed algorithm. Then, a bootstrap
sampling method is applied to construct different training datasets from the dataset S1 for improving the
diversity of the classifier in the second stage. The multiple base classifiers are trained by using training
subsets obtained from the previous stage in the third stage. All base classifiers are applied to classify
instances in the S2 dataset and accordingly classification labels are obtained in the fourth stage. The real
labels and classification labels of instances in the S2 dataset are then used to create the decision table I. In
the decision table I, the real class label of the instances are used as the value of decision attribute, and the
classification label of the mth instance given by nth base classifier is indicated as the element Imn. The reduct
of the decision table I is obtained by using QuickReduct algorithm in the fifth stage. In the reduct, the
appropriate ensemble members are selected from the multiple trained base classifiers. Finally the selective
base classifiers are combined in terms of majority voting strategy to classify the new unlabeled instance in
the sixth stage. The proposed method is shown in Algorithm 4.

Algorithm 4. The proposed rough set based ensemble learning algorithm
Inputs:original agricultural dataset S, trials T;
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Figure 3: General architecture of the proposed algorithm

Outputs:ensemble classifier.
(1) Partition the S into two sets S1 and S2;
(2) Generate T training datasets from the dataset S1;
(2.1) For t = 1 to T
(2.2) Build set St via bootstrap sample from S1;
(2.3) End For
(3) Train T base classifiers;
(3.1) For t = 1 to T
(3.2) Train the base classifier Ct on St;
(3.3) End For
(4) Create the decision table;
(4.1) Apply T base classifiers to classify the instances in the S2;
(4.2) Create a decision table in which the classification class labels of instances in the S2 are used as
conditional attributes and real class labels are used as decision attribute;
(5) Select the base classifiers;
(5.1) Apply QuickReduct algorithm in the decision table to obtain a reduct;
(6) Create the final ensemble classifier;
(6.1)The base classifiers in reduct are used to classify instance and then majority voting strategy is used to
aggregate the corresponding predictions.
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5. Experimental results and discussions

The experimental evaluation is conducted on four public agricultural datasets in this section. First, the
dataset descriptions and evaluation measures are given. Next, experimental settings and results of the
experiments on the four datasets are presented.

5.1. Experimental datasets

In the experiment, four agricultural datasets [23], i.e., the white clover dataset, the grub damage dataset,
the eucalyptus dataset and the pasture dataset, are employed as benchmarks. The white clover dataset
consists of 63 instances and 32 attributes. The grub damage dataset consists of 155 instances and 9
attributes. The eucalyptus dataset consists of 736 instances and 20 attributes. The pasture dataset consists
of 36 instances and 23 attributes.

5.2. Performance metrics

Two popular metric techniques F1 and AUC are used as performance measures to demonstrate the
effectiveness of different methods. The decision of classifier is indicated as a confusion matrix in Table 2
[24].

Table 2: A confusion matrix

Class C Result of classifier
belong Not belong

Real Belong TP FN
classification Not belong FP TN

The four categories of confusion matrix are described as follows:
True Positives (TP): the number of positive instances correctly classified as positive.
False Positives (FP): the number of negative instances incorrectly classified as positive.
True Negatives (TN): the number of negative instances correctly classified as negative.
False Negatives (FN): the number of positive instances incorrectly classified as negative.
TP and TN are the observations that are correctly predicted. FP and FN occur when actual class

contradicts with the predicted class. According to these four parameters, precision, recall, and F1 measure
can be defined. Precision is the rate of correctly classified positive instances to the total results which are
classified as positive. Recall is the rate of correctly classified positive instances to the all observations in
actual class. F1 measure is the weighted average of precision and recall.

precision =
TP

TP + FP
(12)

recall =
TP

TP + FN
(13)

F1 measure = 2 ×
precision × recall
precision + recall

(14)

Receiver operating characteristic (ROC) curve is a useful tool that presents the diagnostic ability of
classifier without regard to class distribution or error cost [25]. The ROC curve is generated according to
the trade-off between the true positive rate (TPR) and the false positive rate (FPR) for various cut-off values
of a parameter. The TPR and FPR are defined as follows:
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True positive rate =
TP

TP + FN
(15)

False positive rate =
FP

FP + TN
(16)

ROC curve is not convenient for making a direct comparison of different classifiers.
The Area Under the receiver operating characteristic Curve (AUC) uses simple scores between 0 and

1 to measure the performance, and it is intuitive and more sensitive for comparison of the classifiers’
performances [26]. Typical AUC are shown in Fig. 4 where the two ROC curves represent classifiers A and
B, respectively.

False positive rate
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te

AUC

classifier A

classifier B

Figure 4: A schematic view of AUC

AUC score of classifier A is larger than AUC score of classifier B, and thus performance of classifier A is
better than performance of classifier B. Recently, AUC is increasingly employed in the study of classification
systems. In the experiment, F1 and AUC are used to evaluate the classification performance of different
methods.

5.3. Experimental settings
In the experiments, two popular ensemble algorithms Bagging and AdaBoost are implemented and the

classification results of them are included as benchmark. Bagging, AdaBoost and the proposed algorithm
use decision tree C4.5 algorithm [27] as base classifier. The experimental result of C4.5 algorithm is also
included for comparison. Bagging and Boosting change the ensemble sizes from ten to fifty respectively to
construct a various range of parameter.

The 10-fold cross validation is conducted on the datasets to avoid over-fitting. Each dataset is first
partitioned into ten equal-sized parts. Any nine of the ten parts is selected to perform training. The
remaining tenth acts as an independent holdout test set for evaluation. For ensuring the effectiveness of
the comparison among different algorithms in experiments, the algorithms are repeated three times with
different random seeds of each training and test process in 10-fold cross validation. Thus, thirty experiment
results for each technique can be obtained and the mean of the thirty performances is used as final results
for the C4.5, Bagging and Boosting methods respectively. Moreover, the process of partitioning the training
set into S1 and S2 is done for the proposed algorithm. For each dataset, α% of the training dataset instances
is selected randomly to construct the set S1 in the experiment. The rest of the training set instances is
used as the set S2. According to Algorithm 4, the set S1 and S2 are employed to training the proposed
rough set based ensemble learning algorithm. Then, the test dataset is applied to evaluate the classification
performance. To minimize potential biases of the randomized sampling process, the partition process are
repeated three times in each training and test process. Thus, ninety experiment results of the proposed
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algorithm are obtained and the mean of those results is adopted to measure the classification performance.
For designing a variation of parameter settings, the range of α values are investigated from 10% to 90% with
a step size of 10% in the experiments. The tuning results indicate that when α equals 70%, the proposed
method obtains the best performance. Thus, α is set as 70% for our subsequent experiments.

5.4. Results and discussion

Table 3 indicates experimental results when a subset is selected from 20 trained C4.5 decision trees by
the proposed algorithm. In the Table 3, the sixth column shows average number of base decision trees
using by our proposed method. The ensemble sizes of Boosting and Bagging equal 20.

Table 3: F1 of the different methods on datasets (full ensemble size = 20)
Dataset C4.5 Bagging Boosting Proposed Number

white clover 0.578 0.701 0.685 0.713 5.5
grub damage 0.310 0.325 0.330 0.339 4.3

eucalyptus 0.592 0.641 0.642 0.656 7.6
pasture 0.682 0.823 0.674 0.871 8.1

As shown in Table 3, the proposed algorithm achieves considerable performance improvement over
other algorithms on all datasets. For instance, the F1 of the proposed method on white clover dataset
equals 71.3%, which beats C4.5 by approximately 13.5%, Bagging by approximately 1.2%, and Boosting by
approximately 2.8%. The ensemble size of the proposed mehtod is about only 27.5% (5.5/20).

Table 4: F1 of the different methods on datasets (full ensemble size = 50)
Dataset C4.5 Bagging Boosting Proposed Number

white clover 0.578 0.672 0.684 0.692 5.9
grub damage 0.310 0.331 0.326 0.346 7.3

eucalyptus 0.592 0.632 0.655 0.668 6.2
pasture 0.682 0.825 0.707 0.856 11.2

Table 4 gives the results in terms of F1 value when a subset is selected from 50 trained C4.5 decision trees
by the proposed algorithm, and the ensemble sizes of Boosting and Bagging equal 50. the proposed method
also achieves considerable performance improvement over other algorithms on all datasets. For instance,
the F1 of the proposed method on eucalyptus dataset is 66.8%, which beats C4.5 by approximately 7.6%,
Bagging by approximately 3.6%, and Boosting by approximately 1.3%. The ensemble size of the proposed
algorithm is about only 12.4% (6.2/50).

The performance curve of C4.5, Bagging, Boosting and the proposed method at different ensemble size
on each dataset are shown in figures 5, 6, 7 and 8, respectively. From the four figures, it can be seen that the
proposed algorithm beats C4.5, Bagging and Boosting on all four agricultural datasets.

AUC is widely used for judging the performance and discriminative ability of classifiers. Table 5 gives
the AUC results of C4.5, Bagging, Boosting and the proposed method. The ensemble sizes of Boosting and
Bagging equal 10. However, the proposed method selects a subset from 10 trained C4.5 decision trees to
construct ensemble.

Table 5: AUC of the different methods on datasets (full ensemble size = 10)
Dataset C4.5 Bagging Boosting Proposed

white clover 0.686 0.705 0.708 0.716
grub damage 0.592 0.640 0.604 0.672

eucalyptus 0.842 0.892 0.869 0.896
pasture 0.841 0.884 0.888 0.915
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Figure 5: F1 comparison of different algorithms on the white clover dataset
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Figure 6: F1 comparison of different algorithms on the grub damage dataset
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Figure 7: F1 comparison of different algorithms on the eucalyptus dataset

Table 5 indicates that the AUC values of the proposed algorithm are improved significantly compared
with the other algorithms on white clover, grub damage, eucalyptus and pasture datasets, respectively. For
instance, the AUC value of the proposed algorithm on white clover dataset is 71.6%, which beats C4.5 by
approximately 3.0%, Bagging by approximately 1.1%, and Boosting by approximately 0.8% . The number
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Figure 8: F1 comparison of different algorithms on the pasture dataset

of base classifiers using by the Bagging and Boosting equal 10. However, the number of base classifiers
using by the proposed algorithm is about 4.

Table 6: AUC of the different methods on datasets (full ensemble size = 20)
Dataset C4.5 Bagging Boosting Proposed

white clover 0.686 0.694 0.715 0.730
grub damage 0.592 0.648 0.623 0.675

eucalyptus 0.842 0.904 0.879 0.909
pasture 0.841 0.885 0.893 0.906

Table 7: AUC of the different methods on datasets (full ensemble size = 30)
Dataset C4.5 Bagging Boosting Proposed

white clover 0.686 0.703 0.727 0.739
grub damage 0.592 0.632 0.623 0.681

eucalyptus 0.842 0.904 0.888 0.912
pasture 0.841 0.894 0.911 0.918

Table 8: AUC of the different methods on datasets (full ensemble size = 40)
Dataset C4.5 Bagging Boosting Proposed

white clover 0.686 0.713 0.729 0.732
grub damage 0.592 0.629 0.624 0.682

eucalyptus 0.842 0.904 0.884 0.918
pasture 0.841 0.898 0.898 0.929

Table 9: AUC of the different methods on datasets (full ensemble size = 50)
Dataset C4.5 Bagging Boosting Proposed

white clover 0.686 0.742 0.734 0.745
grub damage 0.592 0.633 0.627 0.689

eucalyptus 0.842 0.906 0.889 0.913
pasture 0.841 0.895 0.899 0.935
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When the ensemble sizes equal 20, 30, 40 and 50 on each dataset respectively, Tables 6, 7, 8 and 9 display
the AUC value comparison of C4.5, Bagging, Boosting and the proposed method.

According to the experimental results presented in Tables 6, 7, 8 and 9, The AUC results of the proposed
algorithm also achieve effective improvement compared with other methods.

Table 10: Comparison of different algorithms in efficiency on the eucalyptus dataset
Cost resource C4.5 Bagging Boosting Proposed

Time 0.9 22.4 24.6 3.1
Memory 7 27 29 12

Table 10 summarizes the comparison of the efficiency on the eucalyptus dataset when a subset is selected
from 50 trained C4.5 decision trees by the proposed algorithm, and the ensemble sizes of both Bagging and
Boosting equal 50. All the algorithms are written in Java programming language. Times and memory used
by different methods to classify the test set are shown in Table 10.

According to Table 10, it is shown that the proposed algorithm is much better than Bagging and Boosting
methods, and it is comparable to the C4.5 algorithm. The memory that the proposed method used is 12
MB, which is about only 44.4% and 41.4% respectively of those costed by Bagging and Boosting techniques.
The computational time that the proposed method used is 3.1 second, which is about only 13.8% and 12.6%
of those used by Bagging and Boosting techniques respectively. On white clover, grub damage and pasture
datasets, the proposed algorithm improves the memory consumption and computational cost too. Because
of space limitations, those results are not listed here.

The following observations are given according to experimental results. The proposed method outper-
forms the C4.5, Bagging and Boosting classifiers in terms of F1 and AUC on the four agricultural datasets.
The proposed method is more efficient than Bagging and Boosting, and is comparable to the C4.5 algorithm.

6. Conclusion

Since the massive volume of agricultural data is available, agricultural data classification has become
critical. A rough set based ensemble learning algorithm is presented in this paper, and the experimental
results indicate that the proposed method obtains improvement obviously. In future research, the combi-
nation of the proposed algorithm and feature selection methods will be research so that the performance of
agricultural data classification can be further improved.
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