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Some New Chebyshev and Griiss-type Integral Inequalities for Saigo
Fractional Integral Operators and Their g-analogues

Wengui Yang?

*Ministry of Public Education, Sanmenxia Polytechnic, Sanmenxia, Henan 472000, China

Abstract. By making use of Saigo fractional integral operators, we establish some new results of the
fractional Chebyshev and Griiss-type integral inequalities. Furthermore, the g-extensions of the main
results are also presented. Our results in special cases yield some of the recent results on Chebyshev and
Griiss-type integral inequalities.

1. Introduction

Recently, by applying the fractional integral operators and the fractional g-integral operators, many
researchers have obtained a lot of fractional integral inequalities and fractional g-integral inequalities and
applications. For example, we refer the reader to [3-5, 7, 28, 30] and the references cited therein. Belarbi
and Dahmani [6] gave the following integral inequality, using the Riemann-Liouville fractional integrals:
if f and g are two synchronous functions on C[0, o), then

RY(f0)() = W UR FR 900, 0
and
a 8
Ta TR DO + R U9 2 R FOR'0) + REFOR (), @

forallt >0, >0, and g > 0. Ogﬁnmez and Ozkan [24], Chinchane and Pachpatte [11] and Purohit
and Raina [25] obtained the Riemann-Liouville fractional g-integral inequalities, the Hadamard fractional
integral inequalities and the Saigo fractional integral and g-integral inequalities similar to the inequalities (1)
and (2), respectively. Here we should point out that the Saigo fractional integral and g-integral inequalities
include the Riemann-Liouville fractional integral and g-integral inequalities, respectively.

2010 Mathematics Subject Classification. Primary 26D10; Secondary 26A33, 05A30

Keywords. Chebyshev-type integral inequalities, Griiss-type integral inequalities, Saigo fractional integral operators, Saigo frac-
tional g-integral operators, synchronous (asynchronous) functions

Received: 30 November 2013; Accepted: 24 April 2014

Communicated by H.M. Srivastava

Email address: wgyang0617@yahoo.com (Wengui Yang)



W. Yang / Filomat 29:6 (2015), 1269-1289 1270

Dahmani [13] established the following fractional integral inequalities which are generalizations of the
inequalities (1) and (2), by using the Riemann-Liouville fractional integrals. Let f and g be two synchronous
functions on [0, o) and let u, v : [0, 00) — [0, o). Then

R*u(HR*(vfg)(t) + R*o(HR*(ufg)(t) = R*(uf) ()R (vg)(t) + R*(vf)(H)R (ug)(t). 3)
and
R*u()RP(vfg)(t) + RPo()R*(ufg)(t) = R*(uf)(t)RF (vg)(t) + RP(wf)(H)R* (ug)(h). 4)

forallt > 0, @ > 0 and § > 0. Yang [31], Brahim and Taf [9] and Chinchane and Pachpatte [12] gave the

fractional g-integral inequalities, the fractional integral inequalities with two parameters of deformation g,

and g,, and the Hadamard fractional integral inequalities similar to inequalities (3) and (4), respectively.
Let us consider the celebrated Chebyshev functional (see [10, 22])

1 (0 1 (0 1
10,0 = 5= [ st 1 [ oo 1 [ oo 6

where f and g are two integrable functions on [g, b]. In [23], Griiss proved the well known inequality:

1
Tl < (@ =GN = ), ©)
where f and g are two integrable functions on [g, b] satisfying the conditions
P<fX)<D, Y<gx)<V¥, ¢,D,¢9,VEeR, x€lab] (7)

The inequality (6) is known Griiss” inequality. It has gained a considerable attentions, for example, under
suitable assumptions for the involved operators, Dragomir [18] gave some inequalities of Griiss’ type for
vectors and continuous functions of selfadjoint operators in Hilbert spaces. In the case of f, g satisfying the
conditions (7), Dragomir (see [19]) proved that

b 2
5,00 ;@=ov =y [ peos], ®

where

b

b b b
.00 = 3TGa.p = [ peos [ pwseageots— [ peoseis [ peogeo, ©)

and

b b b b
T(F,9,p,0) = f A f P00 F()g(x)dx + f p(x)dx f 90 f)g()x

b b b b
- f 10 f()x f P90 — f p(x) f(x)dx f @g@dx. (10)

In the case of f’, g’ € Lo(a,b), Dragomir (see [19]) proved that

2

(7,201 < 1 hollg o f " s f beP(X)dx—( f bxp(x)dx) ) (1)



W. Yang / Filomat 29:6 (2015), 1269-1289 1271
If f is M-g-Lipschitzian on [a, ], i.e.,
f(@) = fWI < Mlg(x) —g(y)l, M >0, x,y€[a,b], (12)

Dragomir (see [19]) proved that

b b b 2
50,00 <M{ [ px [ Fped - ( [ acopeod) ) 13
If f is an L;-lipschitzian function on [4, b] and g is an L,-lipschitzian function on [a, b], Dragomir (see [19])
proved that
b b b 2
IS(f, g,p)| < L1L2(f p(x)dxf xzp(x)dx - (f xp(x)dx) ) (14)

By using the Riemann-Liouville fractional integral and g-integral operators, Dahmani et al. [16] and Zhu
et al. [32] gave the fractional integral and g-integral inequality similar to inequality (6) satisfying the
conditions (7), respectively. By using the Riemann-Liouville fractional g-integral operators, Dahmani and
Benzidane [15] gave the fractional g-integral inequality similar to (8) satisfying the conditions (5). Dahmani
[14] and Dahmani et al [17] obtained the fractional integral inequalities for the extended functional (10)
similar to inequalities (11), (13) and (14), using the Riemann-Liouville fractional integrals. By using the
Riemann-Liouville fractional g-integral operators, Brahim and Taf [8, 9] established the fractional g-integral
inequalities and fractional integral inequalities for the extended functional (10) with two parameters of
deformation g1 and g, similar to inequalities (11), (13) and (14), respectively.

Motivated by the above mentioned works, the main aim of this paper is to establish some new results
of the fractional Chebyshev and Griiss-type integral inequalities involving the Saigo fractional integral
operators. Furthermore, the g-extensions of the main results are also considered. Our results obviously
include the recent results on Chebyshev and Griiss-type integral inequalities.

2. Saigo Fractional Integral Inequalities

Before stating the Saigo fractional integral inequalities, we mention below the definitions and notations
of some well-known operators of fractional calculus , we can see [21, 25].

Definition 2.1 ([21, 25]). A real-valued function f(t) (t > 0) is said to be in the space C,(u € R), if there
exists a real number p > u such that f(t) = #¢(t), where ¢(t) € C(0, o).

Definition 2.2 ([21, 25]). Leta > 0, 8,11 € R, then the Saigo fractional integral Ig’f T of order a for a real-valued
continuous function f(#) is defined by

—a-p t
Igf’”f(f) = tl"(_a) fo (t— 1) HLF (oc +B,-ma;1— %)f(r)dﬁc, (15)

where, the function ,F;(—) in the right-hand side of (15) is the Gaussian hypergeometric function defined

by

5 (@)n(b)n t"

ZFl (a/ b/ (o t) = (C)n H/

(16)

n=0

and (a), is the Pochhammer symbol (a), =a(@+1)---(a+n-1), (a)p=1.
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Iﬁ’?

The integral operator I ;" includes both the Riemann-Liouville and the Erdélyi-Kober fractional integral

operators given by the followmg relationships:

RYf(t) = 37" () = f (t— 1) f(t)dr, (a>0) (17)

T(a)

and

() = 10 p= 7 [ o fode, @0, n € R). 18
0 =10 = T [ =0 @ >0 neR) 18)

For f(t) = t in (15), we get the known formula:

Ia,ﬁ,nty _ F(y + 1)r(['l +1- :B + 77) ty_ﬁ
ot Tu+1-prp+1+a+n)

(19)

forallt >0, @ >0, min(u, u —p+1n) > -1.
In this section, we firstly give some new Chebyshev-type integral inequalities for the synchronous
functions involving the Saigo fractional integral operators.

Lemma 2.3. Let f and g be two synchronous functions on [0, co) and let u and v be two nonnegative continuous
functions on [0, o). Then we have

1P M1 fg) (1) + I oI P fg) (1) = I wf)(OI P g)(t) + I )OIy ug)(t), (20)
forallt>0,a>max0,—ﬁ,ﬁ<1,ﬁ—1 <n<0.
Proof. Consider

ot — 1)}

F(t,7) = oF (oz T+ B —ma;l— %) (T €(0,8); t>0)

I'(a)
_ 1 (- T)a_l (a+ ,B)(_T]) t-1)"~ (o + ﬁ)(a + ﬁ + 1)(—7})(_17 +1) (t— T)a+1
TT@ e Ta+D) g T@+2) gt @)

We observe that the function F(t, T) remains positive, for all T € (0,¢) (t > 0) since each term of the above
series is positive in view of the conditions stated with Lemma 2.3.
Since f and g are two synchronous functions on [0, ), then for all T > 0 and p > 0, we have

(f(r) = f(p))(g(t) = 9(p)) = 0. (22)
By (22), we write
f(@g(7) + f(p)g(p) = f(T)g(p) + f(p)g(7). (23)

Multiplying both side of (23) by v(7)F(t, 7) (F(t, T) defined by (21)) and integrating the resulting identity
with respect to T from 0 to t, we get

I fg)®) + F(p)a(p)Is T o(t) > g(p) P @) + F(O)Ig 7 (0g)(t). (24)

Multiplying both side of (24) by u(p)F(t, p) and integrating the resulting identity with respect to p from 0 to

t, we obtain
PP fg)(t) + I oI ufg)(t) = I @O ug)(t) + I P wf)OI 0g)(t), (25)

which implies (20). O
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Theorem 2.4. Let f and g be two synchronous functions on [0, oo) and let x, y and z be three nonnegative continuous
functions on [0, 00). Then we have

20O I o0 + T 0T wf o)) + 20 O =0T e fo) o
> IO O G0 + 1P PO o) + 15 ye 15w pes e
+IPEAOLT @0 + IO @O w0 + I GHOT o), 6
forallt >0, a>max{0,—p), < 1,8-1<n<0.
Proof. Putting u = y, v = z and using Lemma 2.3, we can write
Iy o)) + I 2O (yfa)(®) = Iy HOI P zg)(®) + I O (yg)(t), (27)

Multiplying both sides of (27) by Igf x(t), we obtain

1215 O oo + 101 W o) 0)
> 15 N0 o + N0 190), @8)

Putting u = x, v = z and using Lemma 2.3, we can write
I (OI 2 fg) (1) + I P20 (e fa) () 2 1P (e f) (DI zg) () + I P )0 (xg)(B), (29)

Multiplying both sides of (29) by I“ﬁ Ty(t), we obtain

Iy y(t)(r{fﬁ (O zfg)(®) + I T 2(O1) P (x fg)(t))
> 1o I5 GNO o + I ENOL o), 60)

With the same arguments as before, we can get

PO 01 W) + 152 ol o))
> P01 PO 90 + I AL o), 61
The required inequality (26) follows on adding the inequalities (28), (30) and (31). O

Lemma 2.5. Let f and g be two synchronous functions on [0, co) and let u and v be two nonnegative continuous
functions on [0, co). Then we have

P huOD Y @f g)(t) + I oI P ufg)(b) = I P YOI} 0g)®) + I @I (ug)®), (32)

forallt >0, a > max{0, -}, y > max{0,-0}, 3,6 <1,p-1<n<0,6-1<C<0.
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Proof. Multiplying both sides of (23) by v(p)G(t, p), where

£ 0(t — p)r !
I'(y)

In view of the arguments mentioned above in the proof of Lemma 2.3. We can see that the function G(¢, 7)

G(t, p) = JFy ()/ £ 6 -Cyil- ?) (p € (0,0); t > 0). (33)

remains positive under the conditions stated with Lemma 2.5. Integrating the resulting inequality obtained
with respect to p from O to t, we have

F@ODT 00 + I (0fg)B) = DI ©g)®) + g @f)(®). (34)

Multiplying both side of (34) by u(t)F(¢, 1) (defined by (21)) and integrating the resulting identity with
respect to T from 0 to t, we obtain

I oOI  wfa) ) + I P @fg)(®) = I O g)®) + LY @O (ug)®), (35)
which implies (32). O

Theorem 2.6. Let f and g be two synchronous functions on [0, oo) and let x, y and z be three nonnegative continuous
functions on [0, c0). Then we have

N (t)( IO (yf) () + 205 P TyOD T 2 fg)(8) + I 2B ”(yfg)(t))
+ (I OR 20 + 1y oI =0 s e o) o
> IO O o + I AT o)) + 1 vo I el

DY EPOIL ) 0) + =0 GAOR Go + I wHOL o). 66
forall t >0, a > max{0, B}, y > max{0,-0}, 3,6 <1, p-1<n<0,6-1<C<0.

Proof. Putting u = y, v = z and using Lemma 2.5, we can write

I yOD Y @ fg) ) + I 201y fa)®) = I HOL @g)(t) + 17 @I (yg)(b), (37)
Multiplying both sides of (37) by Iaﬁ x(t), we obtain

LI v OR G ® + 1 =01 (o))

> PO GO0 Eo + 1 O 100), 69

Putting u = x, v = z and using Lemma 2.5, we can write

P02 f o)) + I 201 (e fg) () = I e f)OL (2g)(t) + I @O (xg)(D), (39)
Multiplying both sides of (39) by I“ﬁ "y(t), we obtain

Ly On fa o + I 00 < f o))

> 1Py Ig CHOR Eo O + L 0T o)0), @)
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With the same arguments as before, we can get

PO O ufa)® + 1 ol e fo)o)
> Ié‘jf’”z(t)(lgf’”(xf)(t)lﬁjf'c(yg)(t) + Ig;f'%yf)(t)lg“f'”(xg)(t)), (41)
The required inequality (36) follows on adding the inequalities (38), (40) and (41). O

Remark 2.7. The inequalities (26) and (36) are reversed in the following cases: () The functions f and g
asynchronous on [0, o). (b) The functions x, y and z are negative on [0, ). (c) Two of he functions x, y and
z are positive and the third one is negative on [0, o).

Remark 2.8. For a =y, § = 0, 1 = (, Lemma 2.5 and Theorem 2.6 immediately reduce to Lemma 2.3 and
Theorem 2.4, respectively. For u(t) = v(t) = 1, Lemmas 2.3 and 2.5 immediately reduce to Theorems 1 and 2
in [25], respectively. If we replace f by —a (and 6 by —y additionally for Lemma 2.5 and Theorem 2.6), and
make use of the relation (17), then Lemmas 2.3 and 2.5 and Theorems 2.4 and 2.6 correspond to the known

results due to Dahmani [14]. Furthermore, set u(f) = v(t) = 1, then Lemmas 2.3 and 2.5 immediately reduce
to the known results due to Belarbi and Dahmani [6].

By putting 8 = 0 (and 6 = 0 additionally for Lemma 2.5 and Theorem 2.6), and using the relation (18),
Lemmas 2.3 and 2.5 and Theorem 2.4 and 2.6 yield the following fractional integral inequalities involving
the Erdélyi-Kober type fractional integral operators defined by (18).

Corollary 2.9. Let f and g be two synchronous functions on [0, co) and let u and v be two nonnegative continuous
functions on [0, 00). Then we have

I u@I* o f g)(E) + I*ToOI M ufg)(E) 2 1w )OI (0g)(E) + I (@ )OI (ug)(D), (42)
forallt>0,a>0,-1<n<0.

Corollary 2.10. Let f and g be two synchronous functions on [0,00) and let x, y and z be three nonnegative
continuous functions on [0, 00). Then we have

21 1Ty 1z g)() + IT2OI (5 g) (1)) + 21 YOI =OI (xf )
> OO 0 + IGO0 + Py o176 O E0)(0)
+ RO x)0)) + =01 AOF 90 + I GHOMG)0), @3)

forallt>0,a>0,-1<n<0.

Corollary 2.11. Let f and g be two synchronous functions on [0, co) and let u and v be two nonnegative continuous
functions on [0, 0). Then we have

MBI (@fg)(t) + D oI ufg)(t) = I wuf) BT (g)(#) + DI (ug)(®), (44)

forallt>0,a,7>0,-1 <max(n,C) <0.
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Corollary 2.12. Let f and g be two synchronous functions on [0, c0) and let x, y and z be three nonnegative
continuous functions on [0, 00). Then we have

PO Iy (OF 2 fa)E) + 20207y fa)E) + PE YOIz ) (1))
(I OP () + PEyOI =0 1 (o) O = IO HOI @) + I EHON (9)0)

YOO Eg)O+PEEAOI )0 |+ 120 I O g) O+ P W HOI x)(D) )
(45)

forallt >0,a,7>0,-1 <max(n,C) <0.

Nextly, we establish some new Griiss-type integral inequalities involving Saigo fractional integral
operators.

Lemma 2.13. Let f be an integrable function on [0, oo) satisfying the condition (7) on [0, co) and let x be a continuous
function on [0, c0). Then we have

2
aﬁﬂ (t)IaﬁU(fo)(t)_(Igfr’?(xf)(t)) :(q)lg:ﬁﬂ (t) - aﬁfl(xf)(t))(aﬁﬂ( f)(t)— aﬁﬂ (t))

L (xe@ - OB - 9)), @6
forallt>0,a>max{0,-B},<1,-1<n<0.

Proof. Let f be an integrable function on [0, o) satisfying the condition (7) on [0, o). For any p, T € [0, ),
we have

(@ = fF(PN(f(D) = P) + (P = f(O)(f(p) = @) = (P = f(O)(f(D) — P)
— (@~ f(O)(f(p) = D) = f2(1) + fAp) = 2f(p)f(D).  (47)

Multiplying both sides of (47) by x(p)F(t, p) (defined by (21)), and integrating the resulting inequality
obtained with respect to p from 0 to ¢, we have

(F@) = @I x(0) ~ I 0) + (@ = FONI5 ")) = 9157 x(0)) ~ (@ = FONFR) = @) x(t)
““(x(t)@ ft»(f(t)—qb)) FPOI () + P )6 - 2f (DT (xf)(B). (48)

Multiplying both sides of (48) by x(7)F(t, ), and integrating the resulting inequality obtained with respect
to T from 0 to t, we have

(1527 pe) = o)) (@I w00 ~ TP pi®)) + (@150 - T oo ) I wHie) - ol x(o)

- I5(0@ = FONFO - 9))is? ()~ 101 (0@ - FO) B - 9)
= Io I () + I OI @) - 205 GO, (49)

which gives (46) and proves the lemma. [
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Theorem 2.14. Let f and g be two integrable functions satisfying the condition (7) on [0, 00) and let x be a nonnegative
continuous function on [0, o). Then we have

OIS o0 - IO )0 < S@ - 00w - 1 x0) (50)
forallt>0,a>max{0,-B},<1,-1<n<0.

Proof. Let f and g be two functions satisfying the conditions of Theorem 2.14. Let H(z, p) be defined by

H(z, p) = (f(0) = f(e)(g(D) = 9(p)), T pe€l0,t], t>0. (51)

Multiplying both sides of (51) by x(1)F(t, T)x(p)F(t, p) and integrating the resulting identity with respect to
7 and p from O to f, we can state that

f f X(T)F(t, D)x(p)F(t, p)H(x, p)drdp = 205 P x(OIy P (x fg)(8) — 215 P (e YOIy (xg) (D). (52)

Thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can write that

([ [ e, pice pvtee)
<([ [ xore e e - fndeap) [ [ sore, e, pio - o)
= (o 0 - (15 nm) O o - (5 ao0) ). 6
Since (= f(D)(f(7) ~ ¢) > 0 and (¥ = g(D)(g(r) - ) > 0, we have
IO (0@ - D)0 - ) 20, 4
and
O (<O - g0) g0 - ) > 0 (55)

Thus, from (54), (55) and Lemma 2.13,we get

2
LI a0 - (1576H0) < (@10 - 152wpo) (15w - o1 x), (56)
and
PO )0 - (110) = (W0 - o) 0) 1 o) - w100, 7)

Combining (52), (53), (56) and (57), we deduce that

2
(52mxor " f o)) - "’“(xf)(t)l““(xg)(t)) J CHECRACHT)
x (I A0 - G150 (WIx(0) - 1)) 157 o) - v xw). (59)
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Now using the elementary inequality 4xy < (x + y)?, x, y € R, we can state that
{0r1x0) - BN 1500 - 915 7x0) < (130 - ) 59)
and
oIt - 1 o)) 15 )0 - w15 x0) = (15300 - ) (60)

From (58)-(60), we abtain (50). This complete the proof of Theorem 2.14. O

Lemma 2.15. Let f and g be two integrable functions on [0, c0) and let x and y be two nonnegative continuous
functions on [0, 00). Then we have

2
(27O oo + R v O e f o)) ~ I AT g)d = T PO (eg)o)
<(“ﬁﬂx(t)1”‘?(yf )(t) + I yOI P e () — 205 (xf)( t)ﬂ“(yf)(t))

X ( ol O (g + Iy YOI (kg - 213;5'”(xg>(t>ﬁ’“(yg)(t)) (61)
forallt >0, a > max{0,—f}, y > max{0,-0}, 3,6 <1,p-1<n<0,6-1<C<0.
Proof. Multiplying (51) by x(7)F(t, T)y(p)G(¢, p) (F(t, ) and G(t, p) defined by (21) and (33), respectively) and

integrating the resulting identity with respect to 7 and p from 0 to ¢, we can get
f f X(T)F(t, Dy(p)G(t, p)H(, p)dtdp = I (DD (yfa) () + I YOI T (e fg)(t)
= 157D (v = LY (O (xg)(). (62)

Then, thanks to the weighted Cauchy-Schwartz integral inequality for double integrals, we can obtain
(61). O

Lemma 2.16. Let f be an integrable function on [0, co) and let x and y be two nonnegative continuous functions on
[0, 00). Then we have

IR (A0 + I gL () — 205 YO (y ()
= (0157500 - Igf'”(xf)(t))(lz;;f’%yf)(t) =9l yo) + (15 epo) - ol o (@8 v - 1 whio)
LI OR(v0@ = FONFE) - 0)) - B vOIs (xO@ - FONF0 - 9), 63)

forallt >0, a >max{0, -}, y > max{0, -6}, 3,6 <1,-1<n<0,6-1<C<0.

Proof. Multiplying both sides of (48) by y(t)G(t, 7), and integrating the resulting inequality obtained with
respect to 7 from 0 to ¢, we have

(B o - o v )@l xt0 - e h) + (@1 v - B whio )15 o) - ot o)

- = FONF® - ) 1o () - gfcy(t)l"’g”( O@ - FO)F® - )
= DY (PO x(®) + DYy (20 - 20 (AL (B, (64)

which gives (63) and proves the lemma. [J
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Theorem 2.17. Let f and g be two integrable functions satisfying the condition (7) on [0, co) and let x and y be two
nonnegative continuous functions on [0, c0). Then we have

(0O o)) + B YO ef )0 - P GNORE )0 - T 0L o)1)
<| (@ -5 )0 )T =01y “yo) e (15 o019 wo-1 o)
X|(wrs (-1 o)) 1 -9, yo) o 157 ) -l 50 W -1 )0

(65)
forall t >0, a > max{0,—p}, 7 > max{0, =6}, §,6 <1, p—1<n<0,6—1 < <0.
Proof. Since (® — f(1))(f(t) — ¢) > 0 and (¥ — g(1))(9(1) — 1) > 0, we have
Iyt ’C(y(t)(fb - () - ¢)) L ymiy? "(x(t)(cp — FO)F(D) - qb)) <0, (66)
and
PO (WO - g0)a) - ) - B yOl (O - g0)a) - ) <0, (©7)

Applying Lemma 2.16 to f and g, and using Lemma 2.15 and the formulas (66), (67), we obtain (65). [

Theorem 2.18. Let f and g be two integrable functions satisfying the condition (7) on [0, co) and let x and y be two
nonnegative continuous functions on [0, c0). Then we have

7,0,C

I OR (vfa)O) + B}y I G f)t) = I GHOL, (o) 0 = 1 () t)l““(xg)(ﬂ‘
< IEPTOL Y Y@ — 9)W — ), (68)

forall t >0, a > max{0,—B}, ¥ > max{0,-0}, 3,6 <1,p-1<n<0,6-1<C<0.

Proof. From the condition (7), we have

lf@) - fEI<P-¢, Ig(r)—glEl<V-19, 1,p€[0,2), (69)
which implies that
IH(7, p)l = |f(7) = f(p)llg(T) — g(p)| < (D = P)(W - ). (70)

Combining (62) and (70), we obtain that

I OR Y (yfa)t) + Iy P fa)(®) — I O (ya)(t) - I ()OI (xg) ()

< fo fo X(OE(, Dy(p)G(, p)IH(, p)ldedp

t t
< fo fo x(7)F(t, T)y(p)G(t, p)dtdp(P — P)(V — ¢) = “ﬁ"x(t)ly‘s":y(t)(qn_¢)(\y_¢). 1)

This ends the proof. [J
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Theorem 2.19. Let f and g be two integrable functions satisfying the condition (12) on [0, o) and let x and y be two
nonnegative continuous functions on [0, c0). Then we have

TP O (y fa) (1) + Iy P (e fa)(e) - 1P Gef) (B (yg) (t) — V“(yf)(t)lﬁ;f’”(xg)(t)\

< M{I5P O )0 + 1 v 01 )0 - 205 O o), 72
forallt >0, a > max{0, B}, ¥ > max{0,-0}, 3,6 <1, p-1<n<0,6-1<C<0.

Proof. From the condition (12), we have

/() = f(p)l < Mlg(7) = g(p)l, 7, p €[0,), (73)
which implies that
IH(z, p)l = |f(z) = f(plg(7) = g(p)] < M(g(z) = 9(p))*. (74)

Combining (62) and (74), we get that

I OR Y (yf)t) + Dy P fa)(®) - I O (yg)(t) - B (y(OIF ”(xg)(t)\

_ 2
Sj;j;x(T)F(t,T)!/(P)G(t,P)|H(T,P)IdrdpSMffx(T)F(t,T)y(p)G(t,p)(g(T) g(p))*dzdp

= M{I PO )0 + Iy oD o) - 205 o)l o)) 75)
This ends the proof. [J

Theorem 2.20. Let f and g be two integrable functions on [0, c0) satisfying the lipschitzian condition with the
constants Ly and L, and let x and y be two nonnegative continuous functions on [0, co). Then we have

TP O (yfa)t) + Iy P e fo)®) — I e OL Y (ya)(t) — I (yf)( t)l“f'”(xg)(t)\

< Lle( P OD Y (Py () + I yOI P (Px(t) - Zlgf’”(tx(t))lg,’f’c(ty(t))), (76)
forall t >0, a > max{0, —B}, ¥ > max{0,-0}, 3,6 <1, p-1<n<0,6-1<C<0.

Proof. From the conditions of Theorem 2.20, we have

If(0) = flp)l < Lalt = pl,  19(7) = g(p)l < Lalt = pl, 7, p € [0, 00), (77)
which implies that
IH(z, p)l = 1f(r) = f(p)llg(1) = g(p)| < LiLa(z = p)*. (78)

Combining (62) and (78), we get that

IeP (O (yfg)(8) + Iy P (e fa)(t) - I )OI} (yg)(t) = I (yf)( t)l““(xg)(t)\

< fo fo X, Dy(p)G(E, p)H(, p)ldedp < LiL, fo fo {OF DY@ p)r— pYdedp

= LLa{ Iy O Py) + I v Ol P x0) - 205 o) Gye). (79)

This ends the proof. [
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Corollary 2.21. Let f and g be two differentiable functions on [0, oo) and let x and y be two nonnegative continuous
functions on [0, 00). Then we have

I (yfa)t) + D gL (e fg)(8) — P e OD D (yg) () - L (w1 ”(xg)(t)‘
< I1F allg I 2O Py 0) + Ty T (P(0) = 205 axO) ey @), (80)
forallt >0, a > max{0, B}, y > max{0,-0}, 3,6 <1, p-1<n<0,6-1<C<0.

Proof. We have f(17) — f(p) = pr f'(t)dt and g(7) — g(p) = fPT g'(tydt. That is, |f(t) = f(p)l < lIf'llelT = pl,
lg(7) = 9(p)l < 17’ lleolT = pl, T, p € [0, 00), and the result follows from Theorem 2.20. This ends the proof. O

Remark 2.22. If we replace f by —a and 6 by —y, set x(t) = y(t) = 1, and make use of the relation (17),
then Theorems 2.14 and 2.17 correspond to the known results due to Dahmani et al. [16]. If we replace 8
by —a and 6 by —y, and make use of the relation (17), then Theorems 2.18 and 2.20 and Theorem 2.19 and
Ccorollary 2.21 immediately reduce to the known results due to Dahmani et al. [16] and Dahmani [14],
respectively.

Remark 2.23. Similar to Ccorollary 2.9-2.12, by putting § = 0 and 6 = 0, and using the relation (18),
Lemmas 2.13, 2.15, 2.16 and Theorems 2.14, 2.17-2.20 can also yield some new fractional integral inequalities
involving the Erdélyi-Kober type fractional integral operators defined by (18).

3. Saigo Fractional g-integral Inequalities

For the convenience of the reader, we firstly deem it proper to give here basic definitions and related
details of the fractional g-calculus, we can see [25].
For any complex number o € C, we define (Notation in g-Calculus [20, 27])

1—=g%

[aly = = _qq , q#1 [l =[nln-1], 2L, neN (81)
and

([Al)n = ALIA+1],---[A+n—-1], (neN, A€Q), (82)

with [0],! = 1 and the g-shifted factorial is defined for as a product of n factors by
@@n=1,1n=0 (9s=1-a)1-ag1-ag""), neN, (83)

and in terms of the basic analogue of the gamma function

o Tgla+m)(d—q)"
@G5 n = T (n>0), (84)

where the g-gamma function is defined by

. _ \1-
T,(t) = %)q)t 0<g<1). (85)
We note that
o\t
L1+t = M, (86)

I-q
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and if |g| < 1, the definition (83) remains meaningful for n = oo, as a convergent infinite product given by

@w =[]0 -aq), (87)

=0

For A, u € C, we have (see [29, p.435-436])

= 1-Ag
W=7 @eC <, (59)
jo - M

@ Dn (A
1 @D (W

, (meNy,u¢Ny:=1{0,-1,-2,...}), (89)
and
limfay = a, liminl,! = nl, lm(Al) = (D (90)

where (1), denotes the Pochammer symbol (or the shifted or rising factorial) defined, in terms of the familiar
Gamma function, by

T(A+v 1 v=0; AeC\{0},
Wy =2 - a
) AA+1)...A+n-1), v=neN; 1€C,
it being understood conventionally that (0)o := 1.
The g-binomial expansion is also given by
(1= w7
(= Y =2 (=y/x; @)y = x* ( — . (92)
H 1= (/00"
Let to € R, then we define a specific time scale
Ty, = {t;t = toq", n a nonnegative integer} U {0}, 0<g<1, (93)
and for convenience sake, we denote T;, by T throughout this paper.
The Jackson’s g-derivative and g-integral of a function f defined on T are, respectively, given by
f) ~ f(qh)
Dyf(t) = ———— t#0, g#1 94
0= T E£0 g% 94)
and
t o
f f@dgt=t1-9) Y g ftg). (95)
0 k=0

Definition 3.1 ([1]). The Riemann-Liouville fractional g-integral operator of a function f(t) of order « is
given by

. pa-1 t

Igf(H) = @ j(;(qr/t; Qa-1f(T)dyT (>0, 0<g<1) (96)
where

@e = D> eR), 97)

- (a9%; 9)co
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Definition 3.2 ([2]). For a > 0, 7 € Rand 0 < g < 1, the basic analogue of the Kober fractional integral
operator is given by

T
T,(a)

Definition 3.3 ([26]). For a > 0, § € R, a basic analogue of the Saigo’s fractional integral operator is given
for |t/t| < 1by

L f(t) = (¢7T [t Qa1 f(T)dqT. (98)

t—ﬁ—lq—'i(mﬁ)
Fq(a)

where 17 is any non-negative integer, and the function ,®;(—) and the g-translation operator occurring in the
right-hand side of (99) are, respectively, defined by

o (@0)0(b;9)u

t
1P = x f @/t Qa7 qam(zcbl[q‘”ﬁ,q"’;q“;ﬂl,q])f(T)qu- (99)
0 a

2®1[a,b;c;q, 1] = Z:'O‘ D o (gl<1, |H<1) (100)
and
Ta(f®) = Y Aut"(T/t:q)n, (101)

n=—o00

where (Ap)nez (Z =0,+1,+2,---) is any bounded sequence of real or complex numbers.

For f(t) = t* in (99), following [26], we get the known formula:

I“rﬁr’]ty — rq([’l + 1)1-‘11(” +1- ;8 + T]) t“_ﬁ,
! Lyu+1-pLy(u+1+a+n)
forallt>0,0<g <1, min(u,u—-p+n>-1
We now state and prove the Saigo fractional g-integral inequalities which may be regarded as g-

(102)

extensions of the results derived in the previous section. Here we firstly give the g-analogues of Chebyshev-
type integral inequalities involving the Saigo fractional g-integral operators.

Lemma 3.4. Let f and g be two synchronous functions on T and let u and v be two nonnegative functions on T.
Then we have

LPMuBI ofg)(t) + I @I wfa)(t) = IP ) BI  wg)t) + I @ )OI (ug)(t),  (103)
forallt>0,0<q1,q2 <1, a>max{0,-p}, <1, n-p>-1L
Proof. Consider
tP-1g7n(@+p)
T,(a)

for 7 € (0,t), t > 0. We note that the function F(¢, T) remains positive for all values of T € (0,f) (t > 0) and
under the conditions imposed with Lemma 3.4.

F‘; (t, ’Z,') = (l]T/t,’ L])a_1 %,& (2(131 [qa+ﬁ, q—ﬂ; qa; q, q]) (104)

Since f and g are two synchronous functions on T, for all T > 0 and p > 0, then the inequality (23) is
satisfied. Multiplying both side of (23) by Z)(T)F (t, 1) (F; *(t, ) defined by (104)) and integrating the resulting
identity with respect to 7 from 0 to f, we get

1P wfg)() + F(P)a()L o) > g(p) P (wf)(E) + F()I5 (wg)(t). (105)
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Multiplying both side of (105) by u(p)Fy (£, p) and integrating the resulting identity with respect to p from
0 to ¢, we obtain

LA 0 fg)(t) + I oL wfg)(t) > I @f)OL P (ug)t) + P upHBL wg) ), (106)

which implies (103). O

Theorem 3.5. Let f and g be two synchronous functions on T and let x, y and z be three nonnegative functions on
T. Then we have

1201501 )0 + 2 YOI F) o) + 101 (o) o)
+ (IO 20 + 1P O =0 i3 o)
> 1) (15 OB e 0 + PO o) + 15 o (1 O e
+IPEAOL 6o 0) + TP =0 GO 0o + I aHOIY xpm), (107)

forallt>0,0<q1,42 <1, a>max{0,-p}, <1, n-p> -1

Proof. Putting u = y, v = z and using Lemma 3.4, we can write
LAy 2 fg) () + L 201 (yf)(#) = P OL @) @) + I O (ya)), (108)

Multiplying both sides of (108) by If;l’ﬁ "x(t), we obtain

1515 O e o)t + P01 w o) 0)
> P01 O G0 + I OO 4 0), (109

Putting u = x, v = z and using Lemma 3.4, we can write
PO @ f)) + 1 =01 (cf) ) = P AO1 z9)(0) + 157 A O1 (xg)(®), (110)

Multiplying both sides of (110) by 1;‘1'5 "ly(t), we obtain
° B, ﬂy(t)( 19 ”X(t)Ia B @fo)t) + I;"zrﬁrﬂz(t)lglrﬁrﬂ (ng)(t))
> 1P y(o( I3 GO o + IO o), 1)
With the same arguments as before, we can get
15210151 )0 + 1Py e o))

> P01 AT )0 + T HOL o)), 112

The required inequality (107) follows on adding the inequalities (109), (111) and (112). O
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Lemma 3.6. Let f and g be two synchronous functions on T and let u and v be two nonnegative functions on T.
Then we have

LA D @fg)(#) + I 00 wufg)t) > P uf)OL  0g)(t) + I B ug)#), (113)
forallt >0,0<q1,q2 <1, @ >max{0, -}, y > max{0,-6}, 5,0 <1, n—-B,C—-0>-1.

Proof. Multiplying both sides of (23) by v(p)Gy,(t, p), where

g0-1g-C0r+0)
L)

for p € (0,t), t > 0. We can see that the function G;(t, p) remains positive under the conditions stated with

Gy(t,p) = @p/tDy-17 1, (2®1 [4,47%q";49, Q]) (114)

Lemma 3.6. Integrating the resulting inequality obtained with respect to p from 0 to t, we have

FOgOL o) + L (0fg) () = FOL @g) 1) + gL @f)(@). (115)

Multiplying both side of (115) by u(t)F ,;1 (¢, 7) (defined by (104)) and integrating the resulting identity with
respect to T from 0 to t, we obtain

Do (ufg)(b) + I D (wf o)) = P wf)OL 0g)(t) + I @B ug)®), (116)

which implies (113). O

Theorem 3.7. Let f and g be two synchronous functions on T and let x, y and z be three nonnegative functions on
T. Then we have

1551520 ) 0) + 2P O o)t + T2 < 1Py ) o)
+ (PO 20 + Ly 20 |15 o))
> 1) (15 OR G0 + T CAOL o) + 1 yo (15 PO o
DAL ap®) + PO DO oo + I AL apm). 117)

forallt>0,0<q1,q2 <1, a>max{0, -}, y > max{0,-6}, 5,0 <1, n—-B,C—-0>-1.

Proof. Putting u = y, v = z and using Lemma 3.6, we can write
LAyOD @ fa)(t) + Dz 0Ly fa)(t) > Py HOLL o) E) + D AL (yg)®), (118)

Multiplying both sides of (118) by If;l’ﬁ "Ix(t), we obtain
1) (15700 o)) + 1 201w o) 0)
> 17715 W HOL Coo + I EHOL e0), (119

Putting u = x, v = z and using Lemma 3.6, we can write

LA (2 fg) () + D 2OL P e fa)(t) > IP " (x IOL ) (8) + I )OI eg) (), (120)
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Multiplying both sides of (120) by If;l’ﬁ Ty(t), we obtain

b y(t)( A OI  @ fo)(t) + 121 (xfg) (t))

7,0,C

> 1012 O Eoo + 1 0L o), 12D

With the same arguments as before, we can get

150150 (o) e + 1 yol e f o))
> [ ”z(t)( 1A OIL (yg) () + 1L () t)Ia'g”(xg)(t)), (122)

The required inequality (117) follows on adding the inequalities (119), (121) and (122). O

Remark 3.8. The inequalities (107) and (117) are reversed in the following cases: (a) The functions f and g
asynchronous on T. (b) The functions x, y and z are negative on T. (c) Two of he functions x, y and z are
positive and the third one is negative on T.

Remark 3.9. For a =y, § = 0, 1 = (, Lemma 3.6 and Theorem 3.7 immediately reduce to Lemma 3.4 and
Theorem 3.5, respectively. For u(t) = v(t) = 1 and q; = g = q, Lemma 3.4 and 3.6 immediately reduce to
Theorems 4 and 5 in [25], respectively. We observe that, if we replace § by —a, and make use of the relation
(3.8) in [26], and note the following relations:

IR = I2£(8). (123)

Furthermore, we replace g by —a and 6 by —y, our results reduce to Theorems 3.1 and 3.2 due to Ogiinmez
and Ozkan [24]. If we replace g by —a and 6 by —y, and make use of the relation (123), then Lemma3.6
reduces to Theorems 1 and 2 in [9]. If we replace by —a (and 6 by —y additionally for Lemma 3.6 and
Theorem 3.7), set g1 = g2 = g, and make use of the relation (123), then Lemma 3.4 and 3.6 and Theorems 3.5
and 3.7 correspond to the known results due to Yang [31].

Nextly, we present the g-analogues of Griiss-type integral inequalities involving the Saigo fractional
g-integral operators. The proof of the following results are similar to that of Theorem 3.5 and 3.7 and results
on Griiss-type integral inequalities involving the Saigo fractional integral operators in Section 2, therefore,
we omit the further details of the proof of the following results.

Lemma 3.10. Let f be a function satisfying the condition (7) on T and let x be a function on T. Then we have

01 P)0) — (177 0) = (015970~ 1P o) 15 - 6157300
- PO (M@ - FONF - @) (124)

forallt>0,0<g<1,a>max{0,-p}, <1, n-p>-1

Theorem 3.11. Let f and g be two functions satisfying the condition (7) on T and let x be a nonnegative function
on T. Then we have

2
IO - 11 NOL ()] < 3@ = )W - 1), (125)

forallt>0,0<g<1a>max{0,-B}, <1, n-B>-1
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Lemma 3.12. Let f and g be two functions on T and let x and y be two nonnegative functions on T. Then we have

(PO wfa)) + B2y ef )0 - I PO ()0 - T OIS )0
< (1P OR 20 + 1 yon w0 - 20 wHOL wH )|
X (IO )0+ B YOI )0 - 205 ) OF (o)), (126)
forall t >0,0 < q1,q2 < 1, @ > max{0,—p}, y > max{0, =8}, 8,6 < 1,1 — B, L — 6 > 1.
Lemma 3.13. Let f be a function on T and let x and y be two nonnegative functions on T. Then we have
ORGP0 + L yOI" @0 = 23 AR
= (@157t - 15 O (1WA = S5 90 + (1 )0 = G130 |0yt - 1 o)
~ PO (9@ = FONFD - 9) = Ly O (0@ - FO)FB - ), (127)

forallt >0,0<q1,q2 <1, @ >max{0, -}, y > max{0,-6}, 5,0 <1, n—-B,C—-0>-1.

Theorem 3.14. Let f and g be two functions on satisfying the condition (7) on T and let x and y be two nonnegative
functions on T. Then we have

2
(5P OR oo + L2y O e f o)) = 1P e HOT ) - T @ eg)0)
<|(@r5x - 15 enio ) B o= o1 yio )+ (15 o - ol o | v -1 )|

x| (W50~ 0 ) (B -9y e (57 eado-u 15 x| W v )|
(128)

forallt >0,0<q1,q2 <1, @ >max{0, -}, y > max{0,-6}, 5,0 <1, n—-p,C—-0>-1.

Theorem 3.15. Let f and g be two functions on satisfying the condition (7) on T and let x and y be two nonnegative
functions on T. Then we have

EPOI ()6 + L YOI ) (®) = P G fYOL () (1) — L2 (YOI (xg) 1)
< I%ﬁ'ﬁ”x(f)fé'f’cy(t)(dD - )W -1), (129)
forallt>0,0<g1,42 <1, @ >max{0,—p}, y > max{0,-0}, 5,06 <1, n—-B,C-6> -1

Theorem 3.16. Let f and g be two functions on satisfying the condition (12) on T and let x and y be two nonnegative
functions on T. Then we have

IO (yfa)® + Iy e fa) () — P f)OL (yg)(b) - 1;;6'C<yf><t>1;‘;ﬁ'”<xg><t>\

< M{PxOL )0 + v 0I5 )0 - 2057 O o)e), - (130)

forallt >0,0<q1,q2 <1, @ >max{0, -}, y > max{0,-6}, f,0 <1, n—-p,C—-0>-1.
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Theorem 3.17. Let f and g be two functions on T satisfying the lipschitzian condition with the constants Ly and L,
and let x and y be two nonnegative functions on T. Then we have

IO 00 + T VO o)) - I O o))~ T4 O o)
< Lo O0 B y0) + I yOI P Ex(0) - 25 o ty(e)), - (131

forallt >0,0<q1,q2 <1, @ >max{0, -}, y > max{0,-6}, 5,0 <1, n—-B,C—-0>-1.

Corollary 3.18. Let f and g be two functions on T and let x and y be two nonnegative functions on T. Then we have

LD (yf o) + I yOI (cfo)®) - P )OI (yg)®) - IZ,’;‘S’C(yf)(t)lf,”{ﬁ’”(xg)(t)‘
< 11D AllIDyals 15 OE“(Pyte) + 2y Ex() = 252 xS ), (132

where ||Dghllc = sup,. [Dgh(t)|, for all t > 0, 0 < g1,42 < 1, @« > max{0,—p}, y > max{0,-0}, §,0 < 1,
-B,C-06>-1

Remark 3.19. If we replace f by —a and 0 by —y, set x(t) = y(t) = p(t) and q1 = ¢» = g, and make use of the
relation (123), then Theorems 3.11 and 3.14 correspond to the known results due to Dahmani and Benzidane
[15]. Furthermore, we set x(t) = y(t) = 1, Theorems 3.11 and 3.14 reduce to the results in Zhu et al. [32].

Remark 3.20. If we replace by —a and 6 by —y, and make use of the relation (123), then Theorems 3.14-3.17
immediately reduce to the known results due to Brahim and Taf [8, 9].

We observe that, if we replace § = 0, and make use of the relation (3.8) in [26], and note the following
relations: IZ"O’" ft) = Ig’" f(t). By putting p = 0 and 0 = 0, Lemmas 3.4, 3.6, 3.10, 3.12, 3.13 and Theorems
3.5,3.7,3.11, 3.14-3.17 can yield the following fractional g-integral inequalities involving the Erdélyi-Kober
type fractional g-integral operators.

Finally, we note that, let § — 17, and use the limit formulas

. @%Dn
Ay

the results of Section 3 then correspond to the results obtained in Section 2.

= (@), qlinlrg [y(e) = (a), (133)
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