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On Modified Srivastava-Gupta Operators
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Abstract. Very recently the modified form of Srivastava-Gupta operators was studied in order to preserve
the linear functions. Here, we estimate the rate of approximation for functions having bounded derivatives
of the modified form.

1. Introduction

Srivastava and Gupta [17] introduced a general family of the summation-integral type operators. As the
special cases of such an important operators, one obtains the Phillips operators [15] (see also [5], [3]), the
Baskakov-Durrmmeyer type operators [8] and Bernstein-Durrmeyer operators [9]. Some other classes of
linear positive operators were considered in [4] and [11]. These operators were termed as Srivastava-Gupta
operators in [12], later some other approximation properties of these operators have been discussed in [18].
In the recent years several researchers have worked on different operators in this direction and they have
obtained various approximation properties, we mention some of important papers and recent book as [1],
[2], [14], [13], [16] , [20] and [6]. Very recently [19] considered the slight modification of Srivastava-Gupta
operators and she obtained some direct results. The modified form is given as

Gn,c( f , x) = n
∞∑

k=1

pn,k(x, c)
∫
∞

0
pn+c,k−1(t, c) f

(
(n − c)t

n

)
dt + pn,0(x, c) f (0), (1)

where

pn,k(x, c) =
(−x)k

k!
φ(k)

n,c(x)

and

φn,c(x) =


e−nx, c = 0
(1 + cx)−n/c, c ∈N := {1, 2, 3, ....}
(1 − x)n, c = −1.
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Here we discuss the cases c ∈ {0, 1, 2, 3, · · · } for x ∈ [0,∞). In case c = −1 the interval reduces to [0, 1]. These
operators reproduce the constant as well as linear functions and are different from those considered in [10]
and [7] etc.
We consider:

ΦDB = { f : f (x) − f (0) =

∫ x

0
φ(t)dt; f (t) = O(tr), t→∞},

where φ is bounded on every finite subinterval of the interval [0,∞). For fixed x ∈ [0,∞), λ ≥ 0 and f ∈ ΦDB,
we define the metric as

Ω( f , λ) = sup
t∈[x−λ,x+λ]∩[0,∞)

| f (t) − f (x)|.

Lemma 1.1. For x ∈ [0,∞), ψx(t) = t − x and c ∈N ∪ {−1, 0}, we immediately have by simple computation

Gn,c(1, x) = 1, Gn,c(ψx, x) = 0,

Gn,c

(
ψ2

x, x
)

=
x2c(2n − c) + 2(n − c)x

n(n − 2c)
.

For r = 0, 1, 2, ..., we have
Gn,c(ψr

x, x) = O
(
n−[(r+1)/2]

)
.

Application of Schwarz inequality, lead us to

Gn,c(|ψr
x|, x) ≤

√
Gn,c(ψ2r

x , x) = O
(
n−r/2

)
.

For n sufficiently large, we can write

Gn,c(|ψx|, x) ≤

√
2x(1 + cx)

n
.

The operators (1) has the form

Gn,c( f , x) =

∫
∞

0
Kn,c(x, t) f (t)dt,

where the kernel Kn,c(x, t) is given by

Kn,c(x, t) =

∞∑
k=1

pn,k(x, c)pn+c,k−1(t, c) + pn,0(x, c)δ(t),

by δ(t) we mean the Dirac delta function.

Lemma 1.2. For fixed x ∈ (0,∞) and n sufficiently large, one has

λn,c(x, y) =

∫ y

0
Kn,c(x, t)dt ≤

2x(1 + cx)
n(x − y)2 , 0 ≤ y < x,

1 − λn,c(x, z) =

∫
∞

z
Kn,c(x, t)dt ≤

2x(1 + cx)
n(z − x)2 , x < z < ∞.

The proof of the above lemma is obvious, we just have to use Lemma 1.1.

In the present article we estimate the rate of approximation for functions belonging to the class ΦDB.
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2. Rate of Approximation

Theorem 2.1. Let f ∈ ΦDB, x ∈ (0,∞) be fixed. Then for n sufficiently large, we have∣∣∣∣∣∣∣Gn,c( f , x) − f (x) −
φ(x+) − φ(x−)

2

√
2x(cx + 1)

n

∣∣∣∣∣∣∣
≤

2((3c + 1)x + 3)
n

[
√

n]∑
k=1

Ωx

(
φx,

x
k

)
+ O(n−r),

where

φx(t) =


φ(t) − φ(x−), 0 ≤ t < x
0, t = x
φ(t) − φ(x+), x < t < ∞

.

Proof. By simple calculation, we have

Gn,c( f , x) − f (x) ≤
φ(x+) − φ(x−)

2
Gn,c(|t − x|, x) +

φ(x+) + φ(x−)
2

Gn,c(t − x, x)

+

(
−

∫ x

0
+

∫ 2x

x
+

∫
∞

2x

) (∫ t

x
φx(u)du

)
dt(λn,c(x, t))

=:
φ(x+) − φ(x−)

2

√
2x(cx + 1)

n
− S1 + S2 + S3 (2)

First we integrate by parts to have

S1 =

∫ x

t
φx(u)duλn,c(x, t)|x0 +

∫ x

0
λn,c(x, t)φx(t)dt

=

∫ x−x/
√

n

0
+

∫ x

x−x/
√

n

λn,c(x, t)φx(t)dt.

As λn,c(x, t) ≤ 1, the monotonicity of Ωx(φx, λ) and the definition of φx(t), implies that∣∣∣∣∣∣
∫ x

x−x/
√

n
λn,c(x, t)φx(t)dt

∣∣∣∣∣∣ ≤ x
√

n
Ωx

(
φx,

x
√

n

)

≤
2x
n

[
√

n]∑
k=1

Ωx

(
φx,

x
k

)
.

Setting t = x
x−u and applying Lemma 1.2, we obtain∣∣∣∣∣∣∣

∫ x−x/
√

n

0
λn,c(x, t)φx(t)dt

∣∣∣∣∣∣∣ ≤ 2x(1 + cx)
n

∫ x−x/
√

n

0

Ωx

(
φx, x − t

)
(x − t)2 dt

≤
2(cx + 1)

n

∫ √
n

1
Ωx

(
φx,

x
u

)
du

≤
2(cx + 1)

n

√
n∑

k=1

Ωx

(
φx,

x
k

)
.

Combining the above estimates, we have

|S1| ≤
2((c + 1)x + 1)

n

√
n∑

k=1

Ωx

(
φx,

x
k

)
. (3)



Prerna Maheshwari (Sharma) / Filomat 29:6 (2015), 1173–1177 1176

Next,

S2 =

∫ 2x

x

(∫ t

x
φx(u)du

)
dt

(
λn,c(x, t)

)
= −

∫ 2x

x

(∫ t

x
φx(u)du

)
dt

(
1 − λn,c(x, t)

)
= −

∫ 2x

x
φx(u)du

(
1 − λn,c(x, 2x)

)
+

∫ 2x

x
φx(t)

(
1 − λn,c(x, t)

)
dt.

Using Lemma 1.2, we have∣∣∣∣∣∣−
∫ 2x

x
φx(u)du

(
1 − λn,c(x, 2x)

)∣∣∣∣∣∣ ≤ xΩx(φx, x)
2x(cx + 1)

nx2 =
2(1 + cx)

n
Ωx(φx, x).

Also, we have ∣∣∣∣∣∣
∫ 2x

x
φx(t)

(
1 − λn,c(x, t)

)
dt

∣∣∣∣∣∣ ≤ 2(cx + 1)
n

√
n∑

k=1

Ωx

(
φx,

x
k

)
.

Thus, we get

|S2| ≤
2(1 + cx)

n
Ωx(φx, x) +

2(cx + 1)
n

√
n∑

k=1

Ωx

(
φx,

x
k

)
. (4)

By the assumption f (t) = O(t2r) as t→∞, for a certain constant M > 0 depending only on f , x, r, we get

|S3| = C
∞∑

k=1

pn,k(x, c)
∫
∞

2x
pn+c,k−1(t, c)t2rdt.

Making use of Lemma 1.1 and the inequality t ≤ 2(t − x) for t ≥ 2x, with C′ = 22rC, we immediately have

|S3| ≤ C′
∞∑

k=1

pn,k(x, c)
∫
∞

0
pn+c,k−1(t, c)(t − x)2rdt = O(n−r). (5)

Combining the estimates in (2), (3), (4) and (5) the proof follows.
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