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Available at: http://www.pmf.ni.ac.rs/filomat

Ricci and Casorati Principal Directions of Wintgen Ideal Submanifolds

Simona Decua, Miroslava Petrović–Torgaševb, Aleksandar Šebekovićc, Leopold Verstraelend
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Abstract. We show that for Wintgen ideal submanifolds in real space forms the (intrinsic) Ricci principal
directions and the (extrinsic) Casorati principal directions coincide.

1. Wintgen Ideal Submanifolds of Real Space Forms

Let Mn be an n-dimensional Riemannian submanifold of an (n + m)–dimensional real space form M̃n+m(c)
of constant sectional curvature c and let 1,∇ and 1̃, ∇̃ be the Riemannian metric and the corresponding Levi–
Civita connection on Mn and on M̃n+m(c), respectively. Tangent vector fields on Mn will be written as X,Y, . . .
and normal vector fields on Mn in M̃n+m(c) will be written as ξ, η, . . . . The formulae of Gauss and Weingarten,
concerning the decomposition of the vector fields ∇̃XY and ∇̃Xξ, respectively, into their tangential and
normal components along Mn in M̃n+m(c), are given by ∇̃XY = ∇XY + h(X,Y) and ∇̃Xξ = −Aξ(X) + ∇⊥Xξ,
respectively, whereby h is the second fundamental form and Aξ is the shape operator or Weingarten map of Mn

with respect to the normal vector field ξ, such that 1̃(h(X,Y), ξ) = 1(Aξ(X),Y), and ∇⊥ is the connection in the
normal bundle.

The mean curvature vector field ~H is defined by ~H = 1
n tr h and its length ‖~H‖ = H is the extrinsic mean

curvature of Mn in M̃n+m(c). A submanifold Mn in M̃n+m(c) is totally geodesic when h = 0, totally umbilical
when h = 1~H, minimal when H = 0 and pseudo–umbilical when ~H is an umbilical normal direction.

Let {E1, . . . ,En, ξ1, . . . , ξm} be any adapted orthonormal local frame field on the submanifold Mn in M̃n+m(c),
denoted for short also as {Ei, ξα}, whereby i, j, · · · ∈ {1, 2, . . . ,n} and α, β, · · · ∈ {1, 2, . . . ,m}.

By the equation of Gauss, the (0, 4) Riemann–Christoffel curvature tensor of a submanifold Mn in M̃n+m(c) is
given by R(X,Y,Z,W) = 1̃(h(Y,Z), h(X,W)) − 1̃(h(X,Z), h(Y,W)) + c

{
1(Y,Z)1(X,W) − 1(X,Z)1(Y,W)

}
.

The (0, 2) Ricci curvature tensor of Mn is defined by S(X,Y) =
∑

i R(X,Ei,Ei,Y) and the metrically corre-
sponding (1, 1) tensor or Ricci operator will also be denoted by S: 1(S(X),Y) = S(X,Y). Since S is symmetric
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there exists on Mn an orthonormal set of eigenvector fields R1, . . . ,Rn which determine the intrinsic, Ricci prin-
cipal directions of the Riemannian manifold Mn, and the corresponding eigenfunctions Ric1, . . . ,Ricn are the
Ricci curvatures of Mn: S(Ri) = Rici Ri. A Riemannian manifold Mn is an Einstein space when S = Ric 1,
or still when all Ricci curvatures are equal Ric1 = · · · = Ricn = Ric, Mn is a quasi–Einstein space when it has
a Ricci curvature of multiplicity ≥ n − 1 and Mn is a 2–quasi–Einstein space when it has a Ricci curvature of
multiplicity ≥ n − 2. The scalar curvature of a Riemannian manifold Mn is defined by τ =

∑
i< j K(Ei ∧ E j)

whereby K(Ei ∧ E j) = R(Ei,E j,E j,Ei) is the sectional curvature for the plane section π = Ei ∧ E j, (i , j), and
the normalized scalar curvature function of Mn is defined by ρ = [2/n(n − 1)]τ. By the equation of Ricci, the
normal curvature tensor of a submanifold Mn in M̃n+m(c) is given by R⊥(X,Y, ξ, η) = 1([Aξ,Aη](X),Y), whereby
[Aξ,Aη] = AξAη − AηAξ, which, as already observed by Cartan [1], implies that the normal connection is flat
or trivial if and only if all shape operators Aξ are simultaneously diagonalisable. The normal scalar curvature of a

submanifold Mn is defined by τ⊥ =
{∑

i< j
∑
α<β R⊥(Ei,E j, ξα, ξβ)2

}1/2
and the normalized normal scalar curvature

of Mn is defined by ρ⊥ = [2/n(n − 1)]τ⊥.
For surfaces M2 in E3, the Euler inequality K ≤ H2, whereby K is the intrinsic Gauss curvature of M2 at once

follows from the fact that that K = k1k2 and H = 1
2 (k1 + k2), whereby k1 and k2 are the principal curvatures of

M2 in E3, and K = H2 if and only if M2 is totally umbilical, i.e. if k1 = k2, or still, by a Theorem of Meusnier,
if M2 is (part of) a plane E2 or of a round sphere S2 in E3. For surfaces M2 in E4, in 1979 Wintgen [21] proved
that the Gauss curvature K = τ and the squared mean curvature H2 and the extrinsic normal scalar curvature
K⊥ = τ⊥ always satisfy the inequality K ≤ H2

− K⊥, and that in this weak inequality actually the equality
holds, K = H2

− K⊥, if and only if the curvature ellipses E = {h(U,U) | U ∈ TM and ‖U‖ = 1} in the normal
planes of M2 in E4 are circles. These results of Wintgen were extended to all surfaces M2 in E2+m, regardless
their co–dimensions m by Rouxel [19] and Guadalupe, Rodriguez [12]. In 1999, De Smet, Dillen, Vrancken,
one of the authors [7] proved the generalized Wintgen inequality

ρ ≤ H2
− ρ⊥ + c, (∗)

for all n–dimensional submanifolds Mn with co–dimension m = 2 in real space forms M̃n+2(c), gave a
characterization of the equality situation in terms of an explicit description of the second fundamental form
and conjectured (∗) to hold for all n–dimensional submanifolds Mn with arbitrary co–dimensions m in real
space forms M̃n+m(c). Recently, Choi and Lu [6], Lu [16] and Ge–Tang [11] proved that indeed (∗) holds in
full generality for all submanifolds Mn in M̃n+m(c) and gave a characterization of the equality situation in terms
of an explicit description of the second fundamental form, thus establishing the following.

Theorem A. Let Mn be a submanifold in a real space form M̃n+m. Then the soft inequality (∗) holds and in (∗) actually
the equality holds if and only if, with respect to a suitable adapted orthonormal frame {Ei, ξα} on Mn in M̃n+m, the
shape operators of the submanifold take the following forms:

A1 =


λ1 µ 0 · · · 0
µ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1


,

A2 =


λ2 + µ 0 0 · · · 0

0 λ2 − µ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2


,
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A3 =


λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ3


,

A4 = A5 = · · · = Am = 0,

whereby λ1, λ2, λ3 and µ are real functions on Mn.

The submanifolds Mn in M̃n+m(c) for which

ρ = H2
− ρ⊥ + c (∗∗)

are called Wintgen ideal submanifolds; for many examples and for geometrical properties of such subman-
ifolds, see e.g. [3, 6, 7, 9–12, 14, 16, 18, 19]. A motivation for this terminology might go as follows: for
all possible isometric immersions of a Riemannian manifold Mn into a real space form M̃n+m(c), by (∗) the
value of the intrinsic normalised scalar curvature ρ of Mn puts a lower bound to the possible values of the extrinsic
“stress” H2

− ρ⊥ + c that Mn in any case cannot avoid “to undergo” as a submanifold in an ambient space
M̃n+m(c), and, from this point of view, every Wintgen ideal submanifold Mn actually realises a particular shape
in M̃n+m(c) such that this extrinsic stress does everywhere assume its theoretically smallest possible value as
given by ρ. A frame {E1, . . . ,En, ξ1, . . . , ξm}with the corresponding shape operators Aα as stated in Theorem
A is called a Choi–Lu frame on Mn in M̃n+m(c) and its distinguished tangent plane E1∧E2 is called the Choi–Lu
plane of the Wintgen ideal submanifolds concerned [9, 10].

2. The Casorati Principal Directions of Submanifolds

For any submanifold Mn in some ambient Riemannian manifold M̃n+m, the (1, 1) tensor field AC =
∑
α A2

α
is called its Casorati operator and the Casorati curvature (as such) of Mn in M̃n+m is defined by C = 1

n tr AC =
1
n‖h‖

2. The Casorati operator being symmetric there exists on Mn an orthonormal set of eigenvector fields
F1, . . . ,Fn which determine the extrinsic, Casorati principal directions of the submanifold Mn in M̃n+m, and the
corresponding eigenfunctions c1, . . . , cn, (all ≥ 0), are its extrinsic principal curvatures or the Casorati principal
curvatures of Mn in M̃n+m; AC(Fi) = ci Fi. For the geometrical meanings of these notions, which essentially go
back to Jordan and Casorati, see [2, 8, 13, 15, 20].

A hypersurface Mn in a Riemannian space M̃n+1 is called umbilical when its shape operator is proportional
to the identity, i.e. has an eigenvalue of multiplicity n, or still, when all its principal curvatures are equal. A
hypersurface Mn in M̃n+1 is called quasi–umbilical when its shape operator has an eigenvalue of multiplicity
≥ n − 1, (see e.g. [4]), and is called 2–quasi–umbilical when its shape operator has an eigenvalue of multiplicity
≥ n − 2, ([5], [17]). Similarly, a general submanifold Mn in some ambient Riemannian manifold M̃n+m

is called Casorati umbilical when its Casorati operator is proportional to the identity, i.e. has an eigenvalue of
multiplicity n, or still, when all its Casorati principal curvatures are equal. A submanifold Mn in M̃n+m is called
Casorati quasi–umbilical when its Casorati operator has an eigenvalue of multiplicity ≥ n−1, and is called Casorati
2–quasi–umbilical when its Casorati operator has an eigenvalue of multiplicity ≥ n − 2.

From Theorem A it follows that the Casorati operator of the Wintgen ideal submanifolds Mn in real space forms
M̃n+m(c) is given by

AC =


L + 2λ2µ + 2µ2 2λ1µ 0 · · · 0

2λ1µ L + 2µ2
− 2λ2µ 0 · · · 0

0 0 L · · · 0
...

...
...

. . .
...

0 0 0 · · · L


,

whereby L = λ2
1 + λ2

2 + λ2
3. Its eigenvalues are c1 = L + 2µ2 + 2µ(λ2

1 + λ2
2)1/2, c2 = L + 2µ2

− 2µ(λ2
1 + λ2

2)1/2, c3 =

· · · = cn = L, and, in terms of the basic vector fields E1 and E2 of the Choi–Lu frame along Mn in M̃n+m(c), the
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vector fields F̃1 = {λ2 + (λ2
1 +λ2

2)1/2
}E1 +λ1E2 and F̃2 = {λ2− (λ2

1 +λ2
2)1/2
}E1 +λ1E2 determine the 1–dimensional

eigenspaces of AC corresponding to c1 and c2, respectively, unless when λ1 = λ2 = 0 and µ , 0, in which
case the Choi–Lu plane itself is a 2–dimensional eigenspace of AC, or when µ = 0, in which case of course the
Casorati principal directions are undetermined, AC then being proportional to the identity operator, (and, even
stronger, Mn then being totally umbilical); and, in any case, the tangent subspace E3 ∧ · · · ∧ En of Mn is an
(n− 2)–dimensional eigenspace of AC corresponding to the Casorati curvature L. Hence, in particular we have the
following.

Theorem 2.1. Every Wintgen ideal submanifold Mn in a real space form M̃n+m(c) is Casorati 2–quasi–umbilical.
When Mn is not totally umbilical, then the orthogonal complement of its Choi–Lu plane is its (n − 2)–dimensional
Casorati eigenspace.

3. The Ricci Principal Directions of Riemannian Manifolds

From Theorem A, via the Gauss equation, it follows that the Ricci operator of the Wintgen ideal submanifolds
Mn in real space forms M̃n+m(c) is given by

S =


(n − 1)c̄ + (n − 2)µλ2 − 2µ2 (n − 2)µλ1 0 · · · 0

(n − 2)µλ1 (n − 1)c̄ − (n − 2)µλ2 − 2µ2 0 · · · 0
0 0 (n − 1)c̄ · · · 0
...

...
...

. . .
...

0 0 0 · · · (n − 1)c̄


,

whereby c̄ = L+c. Its eigenvalues are Ric1 = (n−1)c̄−2µ2+(n−2)µ(λ2
1+λ2

2)1/2, Ric2 = (n−1)c̄−2µ2
−(n−2)µ(λ2

1+

λ2
2)1/2, Ric3 = · · · = Ricn = (n−1)c̄, and, in terms of E1 and E2 the vector fields R̃1 = {λ2 +(λ2

1 +λ2
2)1/2)}E1 +λ1E2

and R̃2 = {λ2 − (λ2
1 + λ2

2)1/2
}E1 + λ1E2 determine the 1–dimensional eigenspaces of S corresponding to Ric1 and

Ric2, respectively, unless when λ1 = λ2 = 0 and µ , 0, in which case the Choi–Lu plane itself is a 2–dimensional
eigenspace of S, or when µ = 0, in which case of course the Ricci principal directions are undetermined, Mn then
being an Einstein space, (and, even stronger, Mn then being totally umbilical, and thus being a real space
form itself); and, in any case, the tangent subspace E3 ∧ · · · ∧ En of Mn is an (n − 2)–dimensional eigenspace of
S corresponding to the Ricci curvature (n − 1)c̄. Hence, in particular, we have the following.

Theorem 3.1. Every Wintgen ideal submanifold Mn in a real space form M̃n+m(c) is Ricci 2–quasi–umbilical. When
Mn is not totally umbilical, then the orthogonal complement of its Choi–Lu plane is its (n − 2)–dimensional Ricci
eigenspace.

4. Main Result

From the extrinsic geometric point of view, the Casorati principal directions of a submanifold Mn in a
Riemannian space M̃n+m likely are its most important tangent directions while, from the intrinsic geometric
point of view, for a Riemannian manifold Mn likely its most important tangent directions are its Ricci principal
directions. And, from the formulae given in Sections 2 and 3, clearly following

Theorem 4.1. On every Wintgen ideal submanifold in a real space form the Casorati and the Ricci principal directions
do coincide,

we may conclude that the particular shape any Wintgen ideal submanifold Mn does realise in ambient real
space forms M̃n+m(c) in order to undergo the very least possible amount of extrinsic stress as allowed by
its normalised intrinsic Riemannian scalar curvature, manifests the geometrical property that the principal
tangent directions which are determined by this shape, namely its Casorati principal directions, are the
same as the principal intrinsic tangent directions of its Riemannian structure, namely its Ricci principal
directions.
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1982, (128 pp).
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