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Estimation of Stress-Strength Reliability Using Record Ranked Set
Sampling Scheme from the Exponential Distribution

Mahdi Salehi, Jafar Ahmadi*

Department of Statistics, Ordered and Spatial Data Center of Excellence,
Ferdowsi University of Mashhad, P.O. Box 1159, Mashhad, 91775 Iran

Abstract. In this paper, point and interval estimation of stress-strength reliability based on upper record
ranked set sampling (RRSS) from one-parameter exponential distribution are considered. Maximum like-
lihood estimator (MLE) as well as the uniformly minimum variance unbiased estimator (UMVUE) of
stress-strength parameter are derived and their performance are studied. Also, some confidence intervals
for stress-strength parameter based on upper RRSS are constructed and then compared on the basis of a
simulation study. Finally, a data set has been analyzed for illustrative purposes.

1. Introduction

Let the random variable X represent the stress experienced by the component and the random variable
Y stand for the strength of the component available to overcome the stress. If the stress exceeds the strength,
ie. X > Y, the component would fail. Thus, reliability is defined as the probability of not failing or
Pr(X < Y). In reliability context, the parameter R := Pr(X < Y) is called stress-strength reliability. Parametric
and non-parametric inferences on R for several specific distributions of X and Y under different sampling
schemes have been found in the literature. It seems that Birnbaum and McCarty (1958) was the first paper
with Pr(X < Y) in its title. They obtained a non-parametric upper confidence bound for Pr(Y < X). Owen
et al. (1964) studied the stress-strength R under parametric assumptions on X and Y. They constructed
confidence limits for R when X and Y are dependent or independent normally distributed random variables.
There are several works on the inference procedures for R based on complete and incomplete data from X
and Y samples. We refer the readers to Kotz et al. (2003) and references therein for some applications of R.
This book collects and digests theoretical and practical results on the theory and applications of the stress-
strength relationships in industrial and economic systems up to 2003. Kundu and Raqgab (2009) considered
the estimation of the stress-strength parameter Pr(Y < X), when X and Y are independent and both are three-
parameter Weibull distributions. Erylmaz (2010) studied stress-strength reliability for a general coherent
system and illustrated the estimation procedure for exponential stress-strength distributions. Dattner
(2013) considered non-parametric estimation of Pr(Y < X) when both X and Y are observed with additional
errors. Recently, some authors have considered the statistical inference for R based on record data. We

2010 Mathematics Subject Classification. Primary 62F10; Secondary 62G30

Keywords. Stress-Strength, Record ranked set sampling, MLE, UMVUE, Bootstrap confidence interval.
Received: 15 November 2013; Accepted: 18 March 2014

Communicated by Miroslav Risti¢

*Corresponding author.

Email addresses: salehi2sms@gmail.com (Mahdi Salehi), ahmadi-j@um.ac.ir (Jafar Ahmadi)



M. Salehi, ]. Ahmadi / Filomat 29:5 (2015), 1149-1162 1150

recall that there are some situations such as in destructive stress testing, the experiments have been done
sequentially and only record-breaking data are observed. An example of such a set-up is the destructive
testing of wooden beams in which the first beam is subjected to increasing stress until it breaks; thereafter
beams are subjected to increasing stress until they break or the stress reaches the stress needed to break
the previous broken beam. In this way a beam breaks only if its strength is a lower record value; see
Glick (1978), Ahmadi and Arghami (2003) and Gulati and Padgett (2003). In record set-up, this scheme is
known as inverse sampling plan. For formal definition of records, let {X;, i > 1} be a sequence of independent
and identically distributed (iid) continuous random variables. Then, an observation X; is called an upper
record value if its value exceeds all previous observations, i.e., X is an upper record if X; > X; for every
i < j. These type of data are of interest and importance in several applications such as meteorological
analysis, sporting and athletic events, reliability analysis specially in studying minimal repair policy and
non-homogeneous Poisson process. We refer the reader to Arnold et al. (1998) for more details on record
values. Among some works about stress-strength reliability based on records, Baklizi (2008a and 2014)
studied point and interval estimation of the stress-strength reliability using record data in the one and two-
parameter exponential distributions. Baklizi (2008b) considered the likelihood and Bayesian estimation of
stress-strength reliability using lower record values from the generalized exponential distribution.
Mutllak et al. (2010) considered estimation of R using ranked set sampling (RSS) in the case of ex-
ponential distribution. We recall that the RSS is a sampling procedure that can be used to improve the
cost efficiency of selecting sample units of an experiment and can be viewed as a generalization of the
simple random sampling (SRS). It is recommended when the process of measuring sample units could
be easily ranked than measured. We refer the reader to Chen et al. (2004) for pertinent details on theory
and applications of ranked set sampling. This sampling motivate us to study the estimation of the stress-
strength reliability based on a new sampling scheme in record-breaking data. More specifically, suppose n
independent sequences are considered sequentially, the ith sequence sampling is terminated when the ith
record is observed. The only observations available for analysis are the last record value in each sequences.
Let us denote the last record for the ith sequence in this plan by R;;, then the available observations are

R = (Ri1,Rop, o Rup) e

1:  Ran —  Ri1=Ran
Rap  Rep — Rop=Rep
n: R(l)n R(Z)n R(n)n - Rn,n = R(n)n

where R;; is the ith ordinary (upper) record in the jth sequence. Notice that unlike the ordinary records,
here R;;’s are independent random variables but not ordered. This scheme proposed by Salehi and Ahmadi
(2014). In fact, the proposed scheme is based on general RSS, so, we call this design record ranked set sampling
(RRSS). Let F(; 0) and f(.; 0) be the cumulative distribution function (cdf) and probability density function
(pdf) of the sampling population, respectively. Then, by using the marginal density of ordinary record (see,
Arnold et al., 1998) the joint density of R is readily obtained as

2 -1 1-F iir 0 i1
fe0) =] (= log( = Y)' ) F(ri;0), 0€0, (1)
i=1 :

where r = (r11,722, .., r,,,n)T is the observed vector of R, 0 is real-valued parameter and © is the parameter
space.

As an example for proposed plan, consider a parallel repairable system with minimal repairs, consisting of n
identical components work independently with common cdf F. It is to be noted that minimal repair means
that the system is brought to the condition it had immediately before the failure occurred, i.e. the age of
the system is not changed as a result of the repair. Let us assume that the ith component (i = 1, ..., n) can be

repaired (i — 1) times, i.e, it is not repairable after the ith its failure. Hence, the @th failure is fatal to the
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system and the lifetime of the system is given by max({Tj, ..., T}, where T; is the lifetime of the ith component.
On the other hand, minimal repair process has the same distribution as the process of upper record values
derived from iid observations with distribution F, see for example, Brown and Proschan (1983), Ahmadi
and Arghami (2001) and Balakrishnan et al. (2009). Consequently, T; is identical in distribution with R;;, in
proposed plan. While system’s lifetime is calculated according to max{R1, ..., Ry}, it will be adequate to
know each R;; to acquire the whole system’s lifetime.

The rest of this paper is organized as follows: In Section 2, we derive the MLE and UMVUE of R as
well as their statistical proprieties and then compare them on the basis of mean squared error (MSE).
Some confidence intervals for R are derived and compared in Sections 3 and 4. An illustrative example is
considered in Section 5.

2. Point Estimation

Let us recall that a random variable Z is said to have an exponential distribution with mean 6(> 0)
denoted by Z ~ Exp(0), if its pdf and cdf, respectively, are

f(z;0) = %e—% and F(z;0)=1-¢7, 2>0,60>0. 2)

The exponential distribution is the simplest and most important distribution in reliability studies, and is
applied in a wide variety of statistical procedures, especially in life testing problems. See, for example,
Balakrishnan and Basu (1995). Let X and Y be two independent random variables following one-parameter
exponential distributions with the parameters 0 and 0,, respectively. Also, suppose R = Pr(X < Y) is the
2
O, + 64 '
the stress-strength R when the samples are permitted to be upper RRSS’s with possibly different number
of observations. More specifically, let r = (r11,722, ..., rn,n)T be the observation of random vector R =
(R11,R22, ...,Rn,n)T, an upper RRSS of size n from Exp(61), and s = (511,522, ...,sm,m)T be the observation of
the random vector S = (S11, S22, -, Sm,m)T, an upper RRSS of size m from Exp(0>).

stress-strength reliability. It is easy to see that in this case R = We are interested in estimating

2.1. MLE
First, we find the MLE of 0; and 0,. By substituting (2) into (1), the likelihood functions follow as
Q—N n
LiOsD) = ———exp (—l Y m], )
n. O b=d
16— 1)! =
i=1
QfM 1 m
Ly(628) = ———exp [_6_2 Z Sfrj]/ @
[1G -1t j=1

n(n+1

where N = T) and M = @ Then, the MLE of the parameters 6; and 0, can be readily given by
1y 1y
Oy = N ;Ru and Oy = i ; Sij, 5)
respectively. Using the invariance property of the MLE, we find the MLE of R as

-1

'M=
=z

A éZ(ML)
Ry = ———F—

=1+

I

éZ(ML) + él(ML)

NaeE!
“»

-
1l
—_



M. Salehi, ]. Ahmadi / Filomat 29:5 (2015), 1149-1162 1152

From Arnold et al. (1998, pp. 20), R;; has Gamma-distribution with parameters i and 6;, denoted by

i ~ Gamma(i, 01) with pdf
ri ! ii

r()e

where I'(.) is the complete gamma function. As it is mentloned earlier, R;;’s are independent random

fR,,(rz ir 91)

vii > 0,

variables. Therefore, Z R;; ~ Gamma(N, 01) and similarly ): S;j ~ Gamma(M, 6,). Consequently, from (6)
i=1
we have

-R

A d 1 -1
Ry = (1 + FzN,zM) , 7)
where 4 means identical in distribution and Fonoum stands for the F-distribution with 2N and 2M degrees
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Figure 1: Plot of MSER, R) and Bias(Ryr, R) versus R.

of freedoms. We use (7) for obtaining the bias and MSE of Ry, ie. Bias(RML,R) = E (RML —R) and
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N R 2
MSE(Rpm,R) = E (RML - R) , respectively. It is easy to see that by substituting R = 0.5 into (7) yields

R 4 a1+ FZN,ZM)_l , and then one can show that E (RML) = 0.5 when n = m. In Figures 1 and 2, we plot

the numerical values of Bias and MSE of Ry versus R, for some selected values of n and m. From these
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figures, we observe the following points:

e Asitis expected, the MSE and the Bias are reduced by increasing the sample sizes [see, Figure 1, parts

(c) and (d)].

e When n < m, the performance of the MLE is better for R = 0.5 + y comparing to R = 0.5 — ), where

0 <y <0.5. [see, Figure 2, parts (e) and (f)].

e Let MSE(Ryz, Rinax) = mlglx MSE(RML, R), then we observe that R,y o

(8)]-

Bias

Bias

-0.01 0.00 0.01 0.02 0.03

-0.02

-0.01 0.00 0.01 0.02 0.03

-0.02

®

_— n=3,m=3
---- n=3,m=6
P N Y B - n=3,m=9
P RN - =3,m=
/(, ~L _\\'\ n=3,m=12
“ IR
# ~ N
2 A
/’ DN
AN
NN
N
\\\'}\
N~ SN
SO
N
SRR
S S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
R
(h)
— n=3,m=3
---- n=6,m=3
----- - n=9,m=3
- n=12,m=3
e TS
~T ~
~T- ~
NI ~
DESEREN
\\\ \\
\‘-\\_ AN
\\i\.\\
N
NN /
0~ .7
NSV _-7
S, -3
IR SE S
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
R

Figure 2: Continued.
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[see, Figure 2, parts (e) and
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e If n < m, we have over-estimation and else we have under-estimation and also Bias(Ry, R) is sym-
metric, say about the point (0.5,0), when n = m [see, Figure 1, part (d) and Figure 2, parts (f) and
(h)].

e The MSE (RML, R) is symmetric, say about R = 0.5, when n = m, and departures from symmetry when
n < mand n > m, respectively [see, Figure 1, part (a)].

e As mentioned earlier, Ry is unbiased when R = 0.5 and m = n, this is confirmed by Figure 1 part (d).

2.2. UMVUE

It should be mentioned that when n = m = 1, the UMVUE of R does not exist [see, Kotz et al. (2003)].
So, we consider the following three cases:

(i) Case 1: min{m, n} > 2:

Since Rj1 4 X and 511 4 Y, so I(Ry1 < S11) is an unbiased estimator of R, where I(A) = 1, if the event A
T

occurs and I(A) = 0, otherwise. Also, from (3) and (4) it could be seen that | )\ R;;, ) S j,j) is a complete
=1 =1

sufficient statistic for (61, 02). Thus, by applying the Rao-Blackwell and Lehmann-Scheffe’s Theorem [see,

e.g. Lehmann and Cassela (1998)], gives the UMVUE of R as

n m
PriRy1 < S11| ZRi,i,Z Sjj

i=1 =1
m
El Sij m
PriW < m IZRI‘J‘,Z Sj,]' , (8)
Y Rii =1 j=1
i=1

Rumvu

Rii /=1 " 4 Beta(1,N —1)
" Beta(1,M —1)

- is an ancillary statistic. Then, by Basu’s Theorem, it is independent
R;;

m n
of the complete sufficient statistic. So we have Rumvu = Ew [Z S/ Z R,',i], where Fy/(.) is the cdf of the
j=1 i=1
random variable W. Finally, by doing some algebraic manipulation, we obtain
1- Q(IA{ML;n/m)/ if R <2,
Rumvu = ©)
Q(l —RML;TYI,”), if Rw> %
where Ry is given by (6) and

N-1 (N;l)

Qnm =) @) (_% 1 - t)d’ (10)

d=0

with N =n(n+1)/2 and M = m(m + 1)/2.
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(ii) Case 2: n =1 and m > 2:
. T

In this case, obviously | Ry,1, ) S| is a complete sufficient statistic and hence by using the Rao-Blackwell
j=1

and Lehmann-Scheffe’s Theorem, the UMV UE of R is derived as follows

M-1

R "
1_m— If{R11 SZS]'/]‘ . (11)
L Sjj 1
j=1

(iii) Case 3: m =1l and n > 2:

Similar to the Case 2, one can show that the UMVUE of R is

N-1

S n
1-[1--24 1[51,1 < ZRi,i]. (12)
2. Ri i=1

i=1

From (9), (10) and using (7), we have plotted the numerical values of Var (RUMVU) versus R, for some choices
of n and m in Figure 3. From this figure, it is observed that variance of Rumvu is symmetric, say about

(a) (b)
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Figure 3: Plot of Var(Rumvu, R) versus R.

R = 0.5, when n = m and is decreasing when the sample sizes increase (as we expected). It is observed from
Figure 3 that the behaviour of the variance of Rypvy is almost similar to the MSE of Rr.

2.3. Comparison

In this section, we intend to compare Rumvu and Ry, as Rypyvy is unbiased, so we consider the MSE as
a criterion. To this end, we have plotted MSE and variance of Ry and Rumvu, respectively, in Figure 4 for
some selected values of m and n. From this figure, we observe that MSE of Ry is less then the variance of
Rumvu for the values of R near to 0.5 specially for the small sample sizes.
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Figure 4: Comparison of MSE(Rpr, R) and Var(Rumvu, R) for some selected values of n and m.

3. Interval Estimation

We consider three methods to construct confidence interval (CI) for R.

3.1. CI Based on a Pivotal Quantity
From (7), a 100(1 — a)% CI for R is derived as follows

N -1 N
1—-Rpp ( 0() 1 - Ry (0() }

Pr{|1+ ——F 1-—= <R<|1+—F —||-1;=1-aq, 13

r{( + RML 2M,2N 5 SR+ RML 2M,2N 5 o (13)

where Fopon(y) is the yth quantile of Fppon-distribution. We can use (7) to obtain the expected length of CI
in (13).

3.2. Approximate CI

Consider a situation that the number of record values is sufficiently large. Hence we may use the
asymptotic confidence interval based on the limit distribution of Ryy. Let us denote the convergence in
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distribution by 2, We know that as n,m — oo, then (él - 91) 4N (0,0%) and (éz - 62) 4N (0,02%), where
02 =-1/E (% log L1(01; R)) and o3 = —-1/E (;—;% log L>(0,; S)) with L; and L, givenin (3) and (4), respectively.
It is easy to show that 07 = % and 0} = GM%. Now, suppose that n, m are sufficiently large in such a way that
M, p, where p € (0, 1), so we readily conclude that

N
A 2
Ql(ML) - 91 d 0 91 0
VN| A N .
(92<ML>—92)_) 2[(0)'( 0o Z

p

Hence, taking g(t1,t2) = tltjtz and then a simple application of the multivariate delta method yields [see,

Wasserman (2006, pp. 5-6)]

(RML - R) = (9 (él(ML)/ 92(ML)) -g(04, 92)) 4 N(0, w?), (14)
where
616, 1 1
S LR ey O ) 1
©= O+ 0.7 N( +p) 1)

By using the property in (14) and applying the Slutsky’s Theorem, a 100(1 — a)% approximate CI for R is
derived as follows

(RML —z1_30, Ry + Zl—gd)), (16)

where z, stands for the yth quantiles of the standard normal distribution and @ is obtained by substituting
the plug-in estimators él(ML) and éz(ML) instead of 07 and 0,, respectively, in (15). Similarly, if n < m we get

the approximate CI for R as (RML - zl,%S, Ry + zl,%é), where § = 2w lawn A/ J%A (1+p).

(Or0m1) +020u1))?

3.3. Parametric Bootstrap Cls

All inference procedures in this paper are obtained based on ) i_; R;; and Z;il S;,j and using the fact that
n m
Y. Ri; ~ Gamma(N,6;) and Y S jj ~ Gamma(M, 6>), so we can use the parametric bootstrap CIs. There are
i=1 j=1
several ways to construct bootstrap CIs. But, the percentile CI and bootstrap-t CI are commonly used for
the stress-strength. For more details on the various methods to construct bootstrap CIs and also using R
Software see Efron and Tibshirani (1993) and Rizzo (2008), respectively. The following algorithms are used
to construct the parametric bootstrap CIs for R in this paper.

Algorithm 3.1. (Percentile CI)

Step 1. Based on the independent observed samples t = (111,722, .-, rn,n)T and s = (511,522, - sm,m)T, calculate él(ML),
Oty and Ry from (5) and (6), respectively.
Step 2. Generate rl?;. ~ Gamma(i, él(ML)),i =1,..,nand s]’./‘]. ~ Gamma(j, éZ(ML))/j =1,..,m User* = (ril,r* rx

T R N .
*x * * * * * *
and s* = <51,1'52,2' .y Sm,m) to calculate Ql(ML), GZ(ML) and Ry, .

227 Tnn

Step 3. Repeat Step 2 for b =1, ..., B, to derive R(*b)ML, b=1,..,B.

Step 4. Let H be the empirical cumulative distribution function based on the parametric bootstrap estimates R* b =

(LML
1, ..., B, then the 100(1 — a)% percentile CI of R is (I:I’1 (%) ,H! (1 - %))

)T
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Algorithm 3.2. (Bootstrap-t CI based on the asymptotic standard deviation w in (15))
Step 1. Do Step 1 of Algorithm 3.1 and also compute & in (15) with Oypary and Oxary instead of 01 and 0, respectively.

Step 2. Do Step 2 of Algorithm 3.1 and also compute &* given in (15) substituting 6%, and é;( instead of 61 and

1(ML) ML)
0, respectively.

Step 3. Repeat Step 2 for b =1, ..., B, to derive R* —and &* ,b=1,...,B.

(HML )’
T R* R
— [ * _ oML _
Step 4. Let Z* = (z(l), . Z(B)) , where z(*b) =~ ,b=1,...,B.

N

&, R- z’%*cf)), where z3; is the yth quantile of Z*

Step 5. Compute the 100(1 — a)% bootstrap-t CI for R as (f{ -z s
given by Step 4.
Algorithm 3.3. (Bootstrap-t CI based on the bootstrap variance estimate)
Step 1. Do Steps 1-2 of Algorithm 3.1.
Step 2. Do Step 3 of Algorithm 3.1.
Step 3. For each iteration of Step 2, design another parametric bootstrap procedure to estimate the standard deviation of

R(’;)ML, say & (R(*h)ML). More precisely, repeat Step 2 of Algorithm 3.1 for b’ =1, ..., B’, with éf(ML) and GA;(ML)

instead of @1(ML) and éz(ML), respectively, and then calculate

. 1 _
& (R@)ML) - J B-1 bZl (R%ML B R**)2'

5
PDhkx _ 1 Dk k
where R** = & bél R(b,)ML.
T R* —-R
* = (¢ * N 1 A N
Step 4. Let t* = (ta)' . t(B)) , where t(b) = a(R;;)ML)’b =1,..,B.

Step 5. Compute the 100(1 — a)% bootstrap-t CI for R as (f{ -5 .0, R- tj:cf)), where t5 is the yth quantile of t*
2 2
given by Step 4.

4. Simulation Study

In the present section, we consider a simulation study for comparing the CIs obtained in the previous
section. All combination of n = 3,5,7, m = 3,5,7, 61 = 1, R = 0.1,0.3,0.5,0.95,0.99 and « = 0.05,0.1 are
used. In each combination, 1000 samples of r and s from Exp(61) and Exp(6;) are simulated, respectively.
Notice that, we fix B = 200 and B’ = 25. We generated the following CIs and collected the results in Tables
1and 2.

e Perc: The parametric percentile CI obtained based on Algorithm 3.1.

Boot-t: The parametric bootstrap-t CI obtained based on Algorithm 3.2.

Boot,-t: The parametric bootstrap-t CI obtained based on Algorithm 3.3.

MLE: The CI based on pivotal quantity given by (13).

AMLE: The asymptotic CI given in (16).
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Table 1: The coverage probability (C.P.) and expected length (E.L.) of R for a=0.05.

Perc Boot-t Boot-t MLE AMLE
R n m C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L.
010 3 3 0943 0.246 0.973 0.297 0.965 0.281 0947 0.245 0908  0.218
010 3 5 0934 0215 0.976 0.210 0.984 0.239 0949 0.187 0966  0.221
010 3 7 0921 0.207 0.971 0.191 0.989 0.253 0951 0.172 0.988  0.240
010 5 3 0937 0.174 0.968 0.230 0.986 0.284 0.945 0.201 0.931 0.204
010 5 5 0952 0.139 0.962 0.149 0.957 0.151 0955 0.139 0936  0.132
010 5 7 0937 0.126 0.950 0.127 0.978 0.143 0944 0.121 0959  0.133
010 7 3 0939 0.156 0.967 0.215 0.995 0.325 0961 0.190 0.961 0.216
010 7 5 0943 0.116 0.948 0.129 0.979 0.149 0950 0.122 0.951 0.128
010 7 7 0950 0.099 0.955 0.103 0.965 0.106 0960 0.099 0.947  0.096
030 3 3 0948 0451 0.982 0.609 0.973 0.607 0953 0452 0.901 0.458
030 3 5 0940 0.397 0.974 0.460 0.985 0.558 0949 0.375 0959 0473
030 3 7 0934 0.380 0.968 0.422 0.991 0.593 0.945 0.352 0980  0.531
030 5 3 0940 0.362 0.974 0.489 0.992 0.616 0956 0.387 0945 0455
030 5 5 0945 0.292 0.963 0.329 0.967 0.341 0949 0.293 0926  0.294
030 5 7 0942 0.263 0.960 0.281 0.977 0.328 0952 0.258 0960  0.293
030 7 3 0944 0.342 0.970 0.460 0.997 0.700 0954 0.372 0972 0515
030 7 5 0960 0.255 0.977 0.287 0.993 0.339 0967 0.261 0968  0.291
030 7 7 0953 0.216 0.965 0.230 0.969 0.241 0960 0.216 0.941 0.217
050 3 3 0957 0.502 0.975 0.689 0.970 0.695 0961 0.502 0.899  0.523
050 3 5 0935 0431 0.971 0.541 0.985 0.679 0949 0434 0955  0.542
050 3 7 0910 0407 0.969 0.502 0.996 0.744 0951 0410 0970  0.605
050 5 3 0946 0431 0.975 0.552 0.982 0.690 0.945 0435 0.951 0.543
050 5 5 0935 0.338 0.956 0.383 0.960 0.402 0934 0.339 0913  0.346
050 5 7 0944 0.301 0.970 0.332 0.987 0.393 0954 0.301 0958  0.343
050 7 3 0932 0410 0.984 0.516 0.994 0.749 0947 0411 0967  0.609
050 7 5 0945 0.301 0.966 0.333 0.988 0.395 0.948 0.301 0957  0.343
050 7 7 0945 0.255 0.965 0.273 0.970 0.288 0952 0.254 0933  0.257
095 3 3 0934 0.149 0.966 0.161 0.952 0.149 0941 0.148 0.899  0.122
095 3 5 0919 0.098 0.941 0.122 0.970 0.150 0933 0.116 0905 0.109
095 3 7 0913 0.086 0.952 0.112 0.983 0.168 0.948 0.108 0935 0.113
095 5 3 0920 0.127 0.957 0.112 0.963 0.123 0942 0.107 0950  0.120
095 5 5 0939 0.077 0.950 0.078 0.952 0.078 0.948 0.077 0917  0.071
095 5 7 0948 0.063 0.962 0.067 0.979 0.078 0959 0.067 0955  0.069
095 7 3 0920 0.120 0.951 0.100 0.980 0.129 0.945 0.096 0979  0.127
095 7 5 0941 0.069 0.955 0.066 0.971 0.073 0.945 0.065 0958  0.071
095 7 7 0941 0.053 0.939 0.053 0.948 0.054 0.945 0.053 0936  0.051
099 3 3 0948 0.033 0.964 0.033 0.951 0.029 0952 0.033 0.908  0.025
099 3 5 0952 0.022 0.955 0.026 0.984 0.032 0958 0.027 0940  0.023
099 3 7 0925 0.019 0.946 0.024 0.987 0.036 0945 0.024 0939  0.023
099 5 3 093 0.030 0.949 0.024 0.968 0.025 0951 0.024 0958  0.025
099 5 5 0941 0.017 0.947 0.017 0.946 0.016 0951 0.017 0938  0.015
099 5 7 0941 0.013 0.948 0.014 0.969 0.016 0953 0.014 0940 0.014
099 7 3 0928 0.028 0.956 0.021 0.984 0.027 0953 0.022 0983  0.027
099 7 5 093 0.015 0.942 0.014 0.963 0.015 0943 0.014 0959  0.015
099 7 7 0949 0.011 0.951 0.011 0.951 0.011 0951 0.011 0932  0.011

From Tables 1 and 2 we observe the following points:
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In the all of CIs we see that the expected length is almost decreasing when the sample sizes increase
(as we expect).

It seems that the maximum of the expected length occurs at R = 0.5 and the expected lengths are very
small for the extreme values of R, namely for 0.95 and 0.99 (similar to the MSE of the point estimators).

The percentile CI is better than the other bootstrap CIs since its expected length is smaller specially
for the values of R close to 0.5.

The Boot;-t CI works well compared to the Boot,-t CI specially in the large sample sizes.
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Table 2: The values of C.P. and E.L. of R for a=0.1.
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Perc Boot1-t Booty-t MLE AMLE
R n m CP E.L. C.P. E.L. C.P. E.L. C.P. E.L. C.P. E.L.
010 3 3 0.885 0.201 0923  0.229 0920 0.215 0.896  0.201 0.859 0.185
010 3 5 0.885 0.177 0924 0172 0950  0.193 0900 0.158 0.938 0.190
010 3 7 0.853 0.170 0927  0.157 0.971 0.210 0.898  0.147 0.971 0.215
010 5 3 0909 0.146 0.931 0.180 0973  0.222 0918 0.165 0.910 0.176
010 5 5 0.897 0.116 0915  0.121 0916  0.121 0904 0.116 0.890 0.111
010 5 7 0902 0.103 0912  0.103 0942 0.114 0.902 0.100 0.925 0.110
010 7 3 0.866 0.133 0904 0.169 0976  0.255 0.897  0.156 0.927 0.196
010 7 5 0.893 0.097 0.895 0.104 0933  0.120 0.897 0.101 0.915 0.108
010 7 7 0908 0.082 0916  0.084 0932  0.085 0919  0.082 0.904 0.080
030 3 3 0879 0.379 0.941 0.467 0922  0.465 0.899  0.381 0.847 0.381
030 3 5 0.870 0.336 0922  0.372 0954 0453 0.885 0.322 0.904 0.401
030 3 7 0905 0.323 0.941 0.346 0987  0.502 0921 0.304 0.974 0.453
030 5 3 0.883 0.311 0928  0.382 0963  0.482 0.907  0.329 0.907 0.388
030 5 5 0925 0.247 0.941 0.268 0946  0.276 0.927 0.248 0.904 0.248
030 5 7 0.883 0.222 0913  0.232 0942  0.268 0.893  0.219 0.912 0.247
030 7 3 0.865 0.287 0916  0.357 0984  0.544 0.893  0.309 0.929 0.429
030 7 5 0.890 0.215 0911 0.233 0.945 0.273 0.897 0.218 0.913 0.243
030 7 7 0906 0.183 0916  0.191 0920  0.199 0906 0.183 0.895 0.183
050 3 3 0.899 0428 0937  0.535 0.927  0.543 0911 0.430 0.863 0.440
050 3 5 0.882 0.368 0938  0.434 0966  0.545 0909 0.371 0.929 0.457
050 3 7 0.863 0.346 0917  0.400 0972  0.604 0.889  0.348 0.943 0.508
050 5 3 0.869 0.365 0922 0432 0954  0.543 0.884  0.369 0.900 0.454
050 5 5 0907 0.288 0932  0.315 0933  0.328 0910 0.288 0.893 0.291
050 5 7 0.891 0.254 0915 0.272 0.951 0.319 0903 0.254 0.918 0.288
050 7 3 0.886 0.347 0937  0.408 0.985 0.614 0920 0.350 0.960 0.511
050 7 5 0.892 0.253 0906  0.272 0.951 0.318 0.892  0.254 0.907 0.288
050 7 7 0.880 0.214 0908  0.225 0916  0.235 0.899 0.214 0.878 0.216
095 3 3 0916 0.116 0942  0.124 0.929 0.111 0916  0.117 0.882 0.103
095 3 5 0.893 0.081 0910  0.096 0964  0.117 0.899  0.094 0.908 0.096
095 3 7 0872 0.071 0909  0.088 0983  0.132 0901  0.086 0.910 0.102
095 5 3 0.881 0.100 0.911 0.090 0943  0.098 0901  0.087 0.932 0.103
095 5 5 0904 0.063 0.907  0.064 0904  0.063 0.902  0.063 0.893 0.060
095 5 7 0906 0.053 0908  0.056 0937  0.063 0906  0.055 0.923 0.058
095 7 3 0.865 0.097 0922  0.084 0976  0.107 0906  0.082 0.973 0.117
095 7 5 0.893 0.056 0.894  0.054 0923  0.059 0.897  0.053 0.920 0.059
095 7 7 0.897 0.044 0902  0.044 0904  0.045 0.899  0.045 0.896 0.043
099 3 3 0900 0.027 0.907  0.027 0.858  0.023 0.899  0.027 0.865 0.022
099 3 5 0.884 0.018 0.893  0.021 0950  0.024 0.891  0.021 0.891 0.020
099 3 7 0.865 0.015 0.887  0.019 0968  0.027 0.892  0.019 0.912 0.021
099 5 3 0876 0.023 0.897  0.020 0916  0.020 0.895  0.020 0.933 0.023
099 5 5 0.886 0.014 0.883  0.014 0.862  0.013 0.889  0.014 0.892 0.013
099 5 7 0.870 0.011 0.873  0.011 0.909 0.013 0.879  0.012 0.891 0.012
099 7 3 0875 0.022 0.895  0.018 0.955 0.021 0.888  0.018 0.964 0.025
099 7 5 0.88 0.012 0.887  0.012 0.925 0.013 0.895 0.012 0.928 0.013
099 7 7 0.882 0.009 0.889  0.009 0.885 0.009 0.891  0.009 0.881 0.009
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o As expected from the intuition, the exact CI of MLE is the best CI with respect to approximated Cls
while the performance of the percentile CI is similar to the CI based on MLE.

5. An Illustrative Example

In order to illustrate the results obtained in the preceding sections, we simulated two independent upper
RRSSs with sizesn =m =7,ie. r = (r11,..,777)" and s = (11, ...,577)", from Exp(61 = 7) and Exp(6> = 3).
The generated samples are displayed in Table 3. From Table 3, it is observed that r;;’s and s;;’s are not

Table 3: The simulated data.
r 5907 23.714 22352 20.875 26.800 56.346 37.190
1.710 10.678 2.773 5.069 19.958 29.970 7.427

necessarily ordered, as mentioned earlier. The true value of the stress-strength R is equal to 626«:261 =0.3. The

MLEs of the parameters 6; and 0, are obtained as 6.8994 and 2.7709, respectively. So, from (6) and (9), Rz
and Ryuyy are derived as 0.2865 and 0.2832, respectively. Therefore, both the MLE and the UMVUE of R
are close to the true value. From (13) and (16) and also Algorithms 3.1-3.3, we derived the corresponding
CIs for R. We got the number of bootstrap replication, B=1000, and presented the results in Table 4. From

Table 4: The 100(1 — a)% CI for R based on the simulated data given by Table 3.
a=0.1 a =0.05
CI Lower Upper Length Lower Upper Length
Perc 0.2067 0.3857 0.1789 0.1991 0.4061 0.2070
Booti-t  0.2011  0.3862 0.1851 0.1852 0.3987 0.2135
Boot,-t  0.1996  0.3900 0.1904 0.1750 0.4097 0.2347
MLE 0.2050 0.3849 0.1799 0.1913 0.4054 0.2141
AMLE 0.1967 0.3764 0.1797 0.1794 0.3936 0.2142

Table 4, it is observed that all CIs contain the true value of the stress-strength, i.e. R=0.3. Furthermore, as it
is observed from the entries of Tables 1 and 2 (for n = m = 7 and R=0.3), the Boof,-t is the longest CI. Thus
the obtained results in this section confirm the results in the previous sections.

6. Conclusion

In this paper, we have obtained MLE as well as UMVUE for stress-strength parameter R on the basis of
upper RRSS from the exponential distribution. These point estimators have been compared with respect to
the MSE criterion. It is observed that MLE has better performance when R is close to 0.5 while UMVUE is
better for the extreme values of R. Also, we derived an exact as well as an approximated CI based on MLE
and then compared them with three bootstrap CIs. Based on a simulation result and an illustrative example
we observed that the percentile CI and the exact CI of MLE have better performance than the other CIs.
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